9 Graph Cutting Procedures

Size: px
Start display at page:

Download "9 Graph Cutting Procedures"

Transcription

1 9 Grph Cutting Procedures Lst clss we begn looking t how to embed rbitrry metrics into distributions of trees, nd proved the following theorem due to Brtl (1996): Theorem 9.1 (Brtl (1996)) Given metric (X, d) with dimeter, let DT be the set of ll tree metrics tht dominte d. Then, O(log n log ) (X, d) distr(dt ). In the lst clss, we proved Theorem 9.1 ssuming the following theorem on grph decompositions: Theorem 9.2 Given grph G = (V, E) with edge lengths, nd prmeter, there exists procedure tht deletes edges E such tht: 1. Ech connected component C in (V, E E ) hs (wek) dimeter smller thn. 2. P r[edge e is cut] 8 log n (d(e)/). In this clss, we will describe two rndomized lgorithms tht ccomplish the required grph decomposition, which will implicitly define the distribution of trees tht re used in the embedding. Let us mke two ssumptions bout the edge lengths d(e): 1. The edge lengths re integers; i.e., d(e) Z +. This ssumption cn be dischrged by tking rtionl pproximtions nd scling. Hence, the smllest edge length is We cn ssume for the bove theorem tht d(e) 8. Indeed, if edge e hs d(e) > 8, then we cn just delete the edge. Since 8d(e) 1, the quntity 8 log n (d(e)/) 1 for n 2, nd hence the theorem still holds. This susmption will be convenient lter in the clss. 9.1 Brtls Cutting Scheme The first grph cutting procedure is essentilly due to Brtl (1996). The lgorithm is simple: it picks n rbitrry vertex, nd constructs component with sufficiently smll dimeter by cutting ll edges t certin (rndom) distnce wy from the chosen vertex. The distnce is essentilly chosen from distribution tht flls off exponentilly with distnce from the vertex. It then removes the component from the grph, nd itertes on the remining grph until the remining grph hs smll dimeter. We formlize this s follows: Algorithm Cut-1(G, ) let G = G. while G do Pick n rbitrry vertex r G. Construct shortest pth tree in G from r. V-1

2 1 2 r L R 1 R Figure 9.1: Illustrting the procedure Cut-1. Let R be drwn from the geometric distribution with prmeter p = 4 log n. Cut ll edges in G crossing [R 1, R] in the shortest pth tree. (I.e., edges hving one endpoint t distnce < R nd the other t distnce R from r.) Let L be the resulting component tht contins the vertex r. let G G \ L. end Recll tht smpling from geometric distribution with prmeter p is the sme s flipping coin with heds probbility p, nd returning the number of flips until we see heds. Hence, we cn imgine the process s setting counter R 1, nd deciding the fte of the edges crossing from R 1 to R by flipping coin with heds probbility p: if the coin turns up tils, then it increments R (nd hence sves the edges crossing from R 1 to R). If the coins turns up heds, it cuts those edges, removes the component thus creted, nd continues on the remining grph. The procedure is illustrted in Figure 9.1. Let r be the vertex chosen s the root from which we construct shortest-pth tree, nd R be the (rndom) distnce t which the procedure will cut the grph. The edges ( 1, 2 ), ( 3, 4 ), ( 5, 4 ) nd ( 5, 6 ) (mong others) re cut, nd L is the connected component tht is removed from the grph. Now we verify tht the procedure Cut-1 stisfies the two conditions required by Theorem 9.2. Fct 9.3 In the procedure Cut-1, for ny edge e with weight d(e) Pr[edge e is cut] 4 log n (d(e)/). Proof. For this proof, it is more instructive to consider cutting or sving view of the lgorithm: the chnce tht e is cut is precisely the chnce tht we get heds for some coin flip when the edge e is crossing the current intervl [R 1, R]. Since there re t most d(e) V-2

3 coin flips, nd ech one cn come up heds with probbility p, we get tht Pr[edge e is cut] = 1 (1 p) d(e) 1 (1 pd(e)) = 4 log n d(e). Lemm 9.4 The probbility tht some component C creted in the lgorithm hs dimeter dim(c) > is t most 1 n. Proof. Consider ny fixed component L: note tht if the dimeter of the component L exceeds, then R must hve been > /2. Hence, Pr[dim(L) > ] P r[r > /2] = (1 p) 2 exp{ p log n } = exp{ } = 1 n 2. Since there re t most n components creted by the lgorithm, the trivil bound implies the lemm. Therefore, the procedure Cut-1 stisfies the conditions of Theorem 9.2 with probbility t lest (1 1 n ). To stisfy Theorem 9.2, we cn mplify the probbility of success in one of two wys: we cn either run the lgorithm on ny lrge components L (i.e., those with dim(l) > ) remining until ll components re smll enough; or, we cn truncte the distribution of R t 2. Let us exmine the trunction ide more closely. Suppose we truncte the distribution s follows: we follow the regulr cutting procedure bove; if we pick vlue of R so tht R > 2, we simply set R to be 2. Let the cuts t distnce /2 be sid to be specil cuts. Since specil cut is chosen with probbility 1/n 2 (due to the nlysis in Lemm 9.4), nd there re t most n such cuts Pr[edge e is cut due to specil cut] 1 n. If e.g. 1 n 2 d(e), then the clims of Theorem 9.2 re stisfied (lbeit with Pr[edge e is cut] 4 log n+2 being d(e)). If not, though, the probbility of cutting n edge is too high. To fix this, we do the following: Algorithm Preprocessing 1. Contrct ll edges e E with d(e) < 2n. 2. Run the procedure Cut-1 on the resulting grph with ˆ = Expnd ll the edges tht were contrcted in Step 1. This procedure will llow us to hve components no lrger thn in the originl grph, since expnding the contrcted edges in Step 3 will increse the dimeter by t most 2n n = 2, nd the cutting procedure cretes grphs of dimeter ˆ = 2. (This, however, comes t slightly 8 log n+2 higher price, since the bound on P r[edge e is cut] hs now incresed to ( d(e), which is slightly higher thn promised). V-3

4 σ 4 σ 2 σ 3 σ The FRT-Cutting Scheme Figure 9.2: Illustrting the construction of ˆB i. While the procedure given bove cn be tightened further, we will move on to nother prtitioning procedure. This procedure first ppered in pper of Clinescu, Krloff nd Rbni (2001), nd ws lter used by Fkchroenphol, Ro nd Tlwr (2003) to chieve the O(log n) bound on the distortion for embedding rbitrry grphs into distributions of trees. Algorithm Cut-2(G, ) Pick rdius R uniformly t rndom from [/4, /2]. Pick rndom permuttion σ S n, which defines n order < σ on the vertices. For every vertex v i, define bll B i = B(v i, R). Assign ech vertex to the first bll it lies in. Formlly, define ˆB i = B i j< σi B j. Delete ll edges in the cut (B i, V \ B i ) for ll i. An exmple of this procedure is given in Figure 9.2. Blls of rdius R re drwn round the first four vertices in permuttion σ, which re denoted by σ 1, σ 2, σ 3, nd σ 4 respectively. The dotted lines indicte the blls B i ; ˆB1 is the unshded region, while ˆB 2, ˆB 3 nd ˆB 4 re the shded regions from lighest to drkest. Note tht B 1 B 2 (nd thus vertex σ 2 ) belongs to ˆB 1, nd B 2 B 4 belongs to ˆB 2, nd so on. We now show tht this procedure lso results in prtition tht stisfies the two conditions of the theorem. The first condition holds by construction the wek dimeter of ech L i is no more thn the dimeter of ˆB i. But the wek dimeter of ˆB i is no more thn tht of B i ; since the rdius of ech B i is no more thn 2, the dimeter is no more thn. We will prove something slightly stronger thn the second condition: Clim 9.5 Given vertex v nd rdius ρ, the probbility tht the procedure Cut-2 cuts the bll B(v, ρ) is t most 8 log n (ρ/). As cn be expected, set S is cut by the prtitioning procedure if there re two components C 1 nd C 2 in the prtition such tht vertices from S lie in both these components. V-4

5 It is esy to see tht Clim 9.5 implies the second condition in Theorem 9.2: given n edge e = {u, v}, consider the bll of rdius d(e) round u. Any prtition tht cuts the edge e lso cuts the bll B(u, d(e)), nd hence Clim 9.5 gives us the desired condition. Let us now prove Clim 9.5. Since the nmes of the vertices do not mtter in the lgorithm, let us ssume tht they re numbered in order of their distnce from u, i.e., d(u, v 1 ) d(u, v 2 )... d(u, v n ). Now for every vertex v i in the grph, let us consider the following events. We sy node v i intersects the Bll B(u, ρ) if the rndom rdius R is chosen such tht R [d(v i, u) ρ, d(v i, u) + ρ] (this mens it cn possibly hppen tht nodes from B(u, ρ) lie inside ˆ(B) i nd outside of ˆ(B) i ). We sy tht node protects the bll if R > d(v i, u) + ρ, becuse then the bll is contined in the cluster generted by v i nd cnnot be cut nymore by nodes tht come fter v i in the permuttion σ. Finlly, we sy node v i cuts the bll first if v i intersects B(u, ρ) nd if no node prior to v i in the permuttion σ intersects or protects the bll. We cn mke the following observtion. Observtion 9.6 If the bll B(u, ρ) is cut then there must exist node v i tht cuts it first with respect to the definition bove. This mens Pr[B(u, ρ) is cut] i Pr[v i cuts B(u, ρ) first], nd it suffices to bound the probbility tht node cuts the bll first. Note tht for the i-th node to cut bll first, it must hppen tht R flls into the right rnge (i.e., R [d(v i, u) ρ, d(v i, u) + ρ]) nd further tht ll nodes v j, j < i come fter v i in the permution σ, s ll these nodes would either cut the bll or protect it (recll tht we ordered the nodes ccording to the distnce from u). The event thtt v i precedes v j, j < i in σ holdes with probbility 1/i nd is independent from the choice of the rdius R. Altogether we get By summing over ll i we get Pr[v i cuts B(u, ρ) first] Pr[R [d(v i, u) ρ, d(v i, u) + ρ]] 1 i = 2ρ /4 1 i = 1 i 8ρ. Pr[B(u, ρ) is cut] n Pr[v i cuts B(u, ρ) first] i=1 n i 1 i 8ρ = 8ρ H n, (9.1) where H n = n = O(log n) denotes the n-th hromnic number. Thus, the rndom prtitions generted by procedure Cut-2 lso meet the second condition of Theorem 9.2, nd this proves the theorem. V-5

6 9.2.1 Improved Embedding into Rndom Trees We cn slightly improve Eqution 9.1 by observing tht node tht is closer to u thn /4 ρ or frther thn /2 + ρ cnnot cut the bll B(u, ρ) t ll. Furthermore, we cn ssume ρ /8 s otherwise Clim 9.5 trivilly holds. This mens we cn restrict the sum in Eqution 9.1 to nodes v i tht re inside the 5 8 -bll round u, but outside the 1 8-bll. This gives Pr[B(u, ρ) is cut] B(u,) i= B(u,/8) Pr[v i cuts B(u, ρ) first] 8ρ ( ( B(u, ) )) O log B(u, /8) This improved bound on the probbility of cutting n edge cn be used to get n improved distortion for embedding into distributions over dominting trees. Recll tht in the lst lecture we showed tht the expected length of n edge e = (x, y) in the rndom tree when using the recursive prtitioning pproch is E[d T (x, y)] = 4 Pr[x nd y re cut in level 0] + 2 Pr[x nd y re cut in level 1 they re in the sme level 1 grph] j Pr[x nd y re cut in level j they re in sme level j grph ] , where the sum hs log terms. Now, using the prtitioning scheme with = /2 j+1 in level j gives Pr[x, y cut in level j they re in sme level j grph] 8 1 ( ( B(u, /2 j+1 /2 j+1 O ) )) log B(u, /2 j 2 ) nd we cn bound the sum by E[d T (x, y)] log j=1 ( 64 O log ( B(u, /2 j+1 ) )) B(u, /2 j 2 O(log n), ) since the sum telescopes. This gives n embedding into distribution over dominting trees with distortion O(log n). References [Br96] Yir Brtl. Probbilistic pproximtions of metric spces nd its lgorithmic pplictions. In Proceedings of the 37th IEEE Symposium on Foundtions of Computer Science (FOCS), pges , , V-6

7 [CKR01] Grui Călinescu, Howrd Krloff, nd Yuvl Rbni. Approximtion lgorithms for the 0-extension problem. In Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pges 8 16, [FRT03] Jittt Fkchroenphol, Stish B. Ro, nd Kunl Tlwr. A tight bound on pproximting rbitrry metrics by tree metrics. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC), pges , V-7

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Midterm 2 Sample solution

Midterm 2 Sample solution Nme: Instructions Midterm 2 Smple solution CMSC 430 Introduction to Compilers Fll 2012 November 28, 2012 This exm contins 9 pges, including this one. Mke sure you hve ll the pges. Write your nme on the

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3.5.1 Single slit diffrction Wves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. We will consider this lter.

More information

II. THE ALGORITHM. A. Depth Map Processing

II. THE ALGORITHM. A. Depth Map Processing Lerning Plnr Geometric Scene Context Using Stereo Vision Pul G. Bumstrck, Bryn D. Brudevold, nd Pul D. Reynolds {pbumstrck,brynb,pulr2}@stnford.edu CS229 Finl Project Report December 15, 2006 Abstrct A

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications.

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications. 15-112 Fll 2018 Midterm 1 October 11, 2018 Nme: Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

EECS 281: Homework #4 Due: Thursday, October 7, 2004

EECS 281: Homework #4 Due: Thursday, October 7, 2004 EECS 28: Homework #4 Due: Thursdy, October 7, 24 Nme: Emil:. Convert the 24-bit number x44243 to mime bse64: QUJD First, set is to brek 8-bit blocks into 6-bit blocks, nd then convert: x44243 b b 6 2 9

More information

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22)

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22) Homework Context Free Lnguges III Prse Trees nd Homework #5 (due 10/22) From textbook 6.4,b 6.5b 6.9b,c 6.13 6.22 Pln for tody Context Free Lnguges Next clss of lnguges in our quest! Lnguges Recll. Wht

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3..1 Single slit diffrction ves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. e will consider this lter. Tke

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

arxiv:cs.cg/ v1 18 Oct 2005

arxiv:cs.cg/ v1 18 Oct 2005 A Pir of Trees without Simultneous Geometric Embedding in the Plne rxiv:cs.cg/0510053 v1 18 Oct 2005 Mrtin Kutz Mx-Plnck-Institut für Informtik, Srbrücken, Germny mkutz@mpi-inf.mpg.de October 19, 2005

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

Introduction. Chapter 4: Complex Integration. Introduction (Cont d)

Introduction. Chapter 4: Complex Integration. Introduction (Cont d) Introduction Chpter 4: Complex Integrtion Li, Yongzho Stte Key Lbortory of Integrted Services Networks, Xidin University October 10, 2010 The two-dimensionl nture of the complex plne required us to generlize

More information

Complete Coverage Path Planning of Mobile Robot Based on Dynamic Programming Algorithm Peng Zhou, Zhong-min Wang, Zhen-nan Li, Yang Li

Complete Coverage Path Planning of Mobile Robot Based on Dynamic Programming Algorithm Peng Zhou, Zhong-min Wang, Zhen-nan Li, Yang Li 2nd Interntionl Conference on Electronic & Mechnicl Engineering nd Informtion Technology (EMEIT-212) Complete Coverge Pth Plnning of Mobile Robot Bsed on Dynmic Progrmming Algorithm Peng Zhou, Zhong-min

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation Representtion of Numbers Number Representtion Computer represent ll numbers, other thn integers nd some frctions with imprecision. Numbers re stored in some pproximtion which cn be represented by fixed

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012 Fculty of Mthemtics Wterloo, Ontrio N2L 3G1 Grde 7/8 Mth Circles Geometric Arithmetic Octoer 31, 2012 Centre for Eduction in Mthemtics nd Computing Ancient Greece hs given irth to some of the most importnt

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

)

) Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Misrepresentation of Preferences

Misrepresentation of Preferences Misrepresenttion of Preferences Gicomo Bonnno Deprtment of Economics, University of Cliforni, Dvis, USA gfbonnno@ucdvis.edu Socil choice functions Arrow s theorem sys tht it is not possible to extrct from

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Fall 2018 Midterm 2 November 15, 2018

Fall 2018 Midterm 2 November 15, 2018 Nme: 15-112 Fll 2018 Midterm 2 November 15, 2018 Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

6.3 Definite Integrals and Antiderivatives

6.3 Definite Integrals and Antiderivatives Section 6. Definite Integrls nd Antiderivtives 8 6. Definite Integrls nd Antiderivtives Wht ou will lern out... Properties of Definite Integrls Averge Vlue of Function Men Vlue Theorem for Definite Integrls

More information

Graphs with at most two trees in a forest building process

Graphs with at most two trees in a forest building process Grphs with t most two trees in forest uilding process rxiv:802.0533v [mth.co] 4 Fe 208 Steve Butler Mis Hmnk Mrie Hrdt Astrct Given grph, we cn form spnning forest y first sorting the edges in some order,

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

Lily Yen and Mogens Hansen

Lily Yen and Mogens Hansen SKOLID / SKOLID No. 8 Lily Yen nd Mogens Hnsen Skolid hs joined Mthemticl Myhem which is eing reformtted s stnd-lone mthemtics journl for high school students. Solutions to prolems tht ppered in the lst

More information

The Distributed Data Access Schemes in Lambda Grid Networks

The Distributed Data Access Schemes in Lambda Grid Networks The Distributed Dt Access Schemes in Lmbd Grid Networks Ryot Usui, Hiroyuki Miygi, Yutk Arkw, Storu Okmoto, nd Noki Ymnk Grdute School of Science for Open nd Environmentl Systems, Keio University, Jpn

More information

Physics 208: Electricity and Magnetism Exam 1, Secs Feb IMPORTANT. Read these directions carefully:

Physics 208: Electricity and Magnetism Exam 1, Secs Feb IMPORTANT. Read these directions carefully: Physics 208: Electricity nd Mgnetism Exm 1, Secs. 506 510 11 Feb. 2004 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your nme netly: Lst nme: First nme: Sign your nme: Plese

More information

AVolumePreservingMapfromCubetoOctahedron

AVolumePreservingMapfromCubetoOctahedron Globl Journl of Science Frontier Reserch: F Mthemtics nd Decision Sciences Volume 18 Issue 1 Version 1.0 er 018 Type: Double Blind Peer Reviewed Interntionl Reserch Journl Publisher: Globl Journls Online

More information

An Efficient Divide and Conquer Algorithm for Exact Hazard Free Logic Minimization

An Efficient Divide and Conquer Algorithm for Exact Hazard Free Logic Minimization An Efficient Divide nd Conquer Algorithm for Exct Hzrd Free Logic Minimiztion J.W.J.M. Rutten, M.R.C.M. Berkelr, C.A.J. vn Eijk, M.A.J. Kolsteren Eindhoven University of Technology Informtion nd Communiction

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Nearest Keyword Set Search in Multi-dimensional Datasets

Nearest Keyword Set Search in Multi-dimensional Datasets Nerest Keyword Set Serch in Multi-dimensionl Dtsets Vishwkrm Singh Deprtment of Computer Science University of Cliforni Snt Brbr, USA Emil: vsingh014@gmil.com Ambuj K. Singh Deprtment of Computer Science

More information

A New Learning Algorithm for the MAXQ Hierarchical Reinforcement Learning Method

A New Learning Algorithm for the MAXQ Hierarchical Reinforcement Learning Method A New Lerning Algorithm for the MAXQ Hierrchicl Reinforcement Lerning Method Frzneh Mirzzdeh 1, Bbk Behsz 2, nd Hmid Beigy 1 1 Deprtment of Computer Engineering, Shrif University of Technology, Tehrn,

More information

File Manager Quick Reference Guide. June Prepared for the Mayo Clinic Enterprise Kahua Deployment

File Manager Quick Reference Guide. June Prepared for the Mayo Clinic Enterprise Kahua Deployment File Mnger Quick Reference Guide June 2018 Prepred for the Myo Clinic Enterprise Khu Deployment NVIGTION IN FILE MNGER To nvigte in File Mnger, users will mke use of the left pne to nvigte nd further pnes

More information

Engineer To Engineer Note

Engineer To Engineer Note Engineer To Engineer Note EE-186 Technicl Notes on using Anlog Devices' DSP components nd development tools Contct our technicl support by phone: (800) ANALOG-D or e-mil: dsp.support@nlog.com Or visit

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

1 Drawing 3D Objects in Adobe Illustrator

1 Drawing 3D Objects in Adobe Illustrator Drwing 3D Objects in Adobe Illustrtor 1 1 Drwing 3D Objects in Adobe Illustrtor This Tutoril will show you how to drw simple objects with three-dimensionl ppernce. At first we will drw rrows indicting

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem Announcements Project : erch It s live! Due 9/. trt erly nd sk questions. It s longer thn most! Need prtner? Come up fter clss or try Pizz ections: cn go to ny, ut hve priority in your own C 88: Artificil

More information

Theory of Computation CSE 105

Theory of Computation CSE 105 $ $ $ Theory of Computtion CSE 105 Regulr Lnguges Study Guide nd Homework I Homework I: Solutions to the following problems should be turned in clss on July 1, 1999. Instructions: Write your nswers clerly

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

Rational Numbers---Adding Fractions With Like Denominators.

Rational Numbers---Adding Fractions With Like Denominators. Rtionl Numbers---Adding Frctions With Like Denomintors. A. In Words: To dd frctions with like denomintors, dd the numertors nd write the sum over the sme denomintor. B. In Symbols: For frctions c nd b

More information

arxiv: v1 [cs.cg] 9 Dec 2016

arxiv: v1 [cs.cg] 9 Dec 2016 Some Counterexmples for Comptible Tringultions rxiv:62.0486v [cs.cg] 9 Dec 206 Cody Brnson Dwn Chndler 2 Qio Chen 3 Christin Chung 4 Andrew Coccimiglio 5 Sen L 6 Lily Li 7 Aïn Linn 8 Ann Lubiw 9 Clre Lyle

More information

Supplemental Notes: Line Integrals

Supplemental Notes: Line Integrals Nottion: Supplementl Notes: Line Integrls Let be n oriented curve prmeterized by r(t) = x(t), y(t), z(t) where t b. denotes the curve with its orienttion reversed. 1 + 2 mens tke curve 1 nd curve 2 nd

More information

Computing offsets of freeform curves using quadratic trigonometric splines

Computing offsets of freeform curves using quadratic trigonometric splines Computing offsets of freeform curves using qudrtic trigonometric splines JIULONG GU, JAE-DEUK YUN, YOONG-HO JUNG*, TAE-GYEONG KIM,JEONG-WOON LEE, BONG-JUN KIM School of Mechnicl Engineering Pusn Ntionl

More information

Looking up objects in Pastry

Looking up objects in Pastry Review: Pstry routing tbles 0 1 2 3 4 7 8 9 b c d e f 0 1 2 3 4 7 8 9 b c d e f 0 1 2 3 4 7 8 9 b c d e f 0 2 3 4 7 8 9 b c d e f Row0 Row 1 Row 2 Row 3 Routing tble of node with ID i =1fc s - For ech

More information

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997. Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni 19104 R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey 07974 Mrch 2,1997 Astrct In seminl pper from 1935,

More information

Edge-Unfolding Almost-Flat Convex Polyhedral Terrains. Yanping Chen

Edge-Unfolding Almost-Flat Convex Polyhedral Terrains. Yanping Chen Edge-Unfolding Almost-Flt Convex Polyhedrl Terrins by Ynping Chen Submitted to the Deprtment of Electricl Engineering nd Computer Science in prtil fulfillment of the requirements for the degree of Mster

More information

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search. CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke

More information

fraction arithmetic. For example, consider this problem the 1995 TIMSS Trends in International Mathematics and Science Study:

fraction arithmetic. For example, consider this problem the 1995 TIMSS Trends in International Mathematics and Science Study: Brringer Fll Mth Cmp November, 06 Introduction In recent yers, mthemtics eductors hve begun to relize tht understnding frctions nd frctionl rithmetic is the gtewy to dvnced high school mthemtics Yet, US

More information

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018 Premster Course Algorithms Chpter 6: Shortest Pths Christin Scheieler SS 8 Bsic Grph Algorithms Overview: Shortest pths in DAGs Dijkstr s lgorithm Bellmn-For lgorithm Johnson s metho SS 8 Chpter 6 Shortest

More information

Approximation by NURBS with free knots

Approximation by NURBS with free knots pproximtion by NURBS with free knots M Rndrinrivony G Brunnett echnicl University of Chemnitz Fculty of Computer Science Computer Grphics nd Visuliztion Strße der Ntionen 6 97 Chemnitz Germny Emil: mhrvo@informtiktu-chemnitzde

More information

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E 4-1 NAME DATE PERIOD Pges 142 147 Prllel Lines nd Plnes When plnes do not intersect, they re sid to e prllel. Also, when lines in the sme plne do not intersect, they re prllel. But when lines re not in

More information

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES MARCELLO DELGADO Abstrct. The purpose of this pper is to build up the bsic conceptul frmework nd underlying motivtions tht will llow us to understnd ctegoricl

More information

Revisit: Limits at Infinity

Revisit: Limits at Infinity Revisit: Limits t Infinity Limits t Infinity: Wewrite to men the following: f () =L, or f ()! L s! + Conceptul Mening: Thevlueoff () willbesclosetol s we like when is su Forml Definition: Forny"> 0(nomtterhowsmll)thereeistsnM

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl component

More information

Notes for Graph Theory

Notes for Graph Theory Notes for Grph Theory These re notes I wrote up for my grph theory clss in 06. They contin most of the topics typiclly found in grph theory course. There re proofs of lot of the results, ut not of everything.

More information

CS 221: Artificial Intelligence Fall 2011

CS 221: Artificial Intelligence Fall 2011 CS 221: Artificil Intelligence Fll 2011 Lecture 2: Serch (Slides from Dn Klein, with help from Sturt Russell, Andrew Moore, Teg Grenger, Peter Norvig) Problem types! Fully observble, deterministic! single-belief-stte

More information

Study Guide for Exam 3

Study Guide for Exam 3 Mth 05 Elementry Algebr Fll 00 Study Guide for Em Em is scheduled for Thursdy, November 8 th nd ill cover chpters 5 nd. You my use "5" note crd (both sides) nd scientific clcultor. You re epected to no

More information

The Reciprocal Function Family. Objectives To graph reciprocal functions To graph translations of reciprocal functions

The Reciprocal Function Family. Objectives To graph reciprocal functions To graph translations of reciprocal functions - The Reciprocl Function Fmil Objectives To grph reciprocl functions To grph trnsltions of reciprocl functions Content Stndrds F.BF.3 Identif the effect on the grph of replcing f () b f() k, kf(), f(k),

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

Determining Single Connectivity in Directed Graphs

Determining Single Connectivity in Directed Graphs Determining Single Connectivity in Directed Grphs Adm L. Buchsbum 1 Mrtin C. Crlisle 2 Reserch Report CS-TR-390-92 September 1992 Abstrct In this pper, we consider the problem of determining whether or

More information

LECT-10, S-1 FP2P08, Javed I.

LECT-10, S-1 FP2P08, Javed I. A Course on Foundtions of Peer-to-Peer Systems & Applictions LECT-10, S-1 CS /799 Foundtion of Peer-to-Peer Applictions & Systems Kent Stte University Dept. of Computer Science www.cs.kent.edu/~jved/clss-p2p08

More information

OUTPUT DELIVERY SYSTEM

OUTPUT DELIVERY SYSTEM Differences in ODS formtting for HTML with Proc Print nd Proc Report Lur L. M. Thornton, USDA-ARS, Animl Improvement Progrms Lortory, Beltsville, MD ABSTRACT While Proc Print is terrific tool for dt checking

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

Essential Question What are some of the characteristics of the graph of a rational function?

Essential Question What are some of the characteristics of the graph of a rational function? 8. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS A..A A..G A..H A..K Grphing Rtionl Functions Essentil Question Wht re some of the chrcteristics of the grph of rtionl function? The prent function for rtionl functions

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information