)

Size: px
Start display at page:

Download ")"

Transcription

1 Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between gllons nd gllons. Thus, n underestimte of the fuel used is ( Fuel = ) =.7 gllons. 6 An overestimte of the fuel used is ( Fuel = ) =. gllons () The blck curve is for bos, the colored one for girls. The re under ech curve represents the chnge in growth in centimeters. Since men re generll tller thn women, the curve with the lrger re under it is the height velocit of the bos. (b) Ech squre below the height velocit curve hs re cm/r r = cm. Counting squres ling below the blck curve gives bout 4 cm. Thus, on verge, bos grow bout 4 cm between ges nd. (c) Counting squres ling below the blck curve gives bout cm growth for bos during their growth spurt. Counting squres ling below the colored curve gives bout 8 cm for girls during their growth spurt. (d) We cn mesure the difference in growth b counting squres tht lie between the two curves. Between ges nd.5, the verge girl grows fster thn the verge bo. Counting squres ields bout 5 cm between the colored nd blck curves for.5. Counting squres between the curves for.5 8 gives bout 8 squres. Thus, there is net increse of bos over girls b bout 8 5 = cm. 7. On the intervl t b, we hve Averge vlue of v(t) = b Since v(t) = s (t), b the Fundmentl Theorem of Clculus, we get: b v(t) dt. v(t) dt = (s(b) s()) = Averge velocit. b Solutions for Section 5.4 Eercises. () A grph of f () = sin( ) is shown in Figure 5.7. Since the derivtive f () is positive between = nd =, the chnge in f() is positive, so f() is lrger thn f(). Between = nd =.5, we see tht f () is negtive, so the chnge in f() is negtive; thus, f() is greter thn f(.5). Figure 5.7: Grph of f () = sin( )

2 (b) The chnge in f() between = nd = is given b the Fundmentl Theorem of Clculus: Since f() =, we hve Similrl, since we hve Since we hve The results re shown in the tble. f() f() = sin( )d =.. f() = +. =.. f() f() = sin( )d =.85, f() = +.85 =.85. f() f() = sin( )d =.774, f() = =.774. f() SOLUTIONS. We find the chnges in f() between n two vlues of b counting the re between the curve of f () nd the -is. Since f () is liner throughout, this is quite es to do. From = to =, we see tht f () outlines tringle of re / below the -is (the bse is nd the height is ). B the Fundmentl Theorem, so f() + f () d = f() f(), f () d = f() f() = = Similrl, between = nd = we cn see tht f () outlines rectngle below the -is with re, so f() = / = /. Continuing with this procedure (note tht t = 4, f () becomes positive), we get the tble below f() / / / / /. Since F () =, F (b) = f(t) dt. For ech b we determine F (b) grphicll s follows: F () = F () = F () + Are of rectngle = + = F () = F () + Are of tringle ( ) = +.5 =.5 F () = F () + Negtive of re of tringle =.5.5 = F (4) = F () + Negtive of re of rectngle = = F (5) = F (4) + Negtive of re of rectngle = = F (6) = F (5) + Negtive of re of tringle =.5 =.5 The grph of F (t), for t 6, is shown in Figure F (t) Figure 5.8 t

3 4 Chpter Five /SOLUTIONS 4. The grph of = e is bove the line = for. See Figure 5.9. Therefore The integrl ws evluted on clcultor. Are = (e ) d = = e = 5 ln() Figure 5.9 = = 5 Figure The grph of = 5 ln() is bove the line = for 5. See Figure 5.. Therefore The integrl ws evluted on clcultor. 6. Since for, we hve The integrl ws evluted on clcultor. 7. Since / / for, we hve The integrl ws evluted on clcultor. Are = (5 ln() ) d = Are = ( ) d =.8. Are = ( / / ) d = The grph of = sin + is bove the line =.5 for 6. See Figure 5.. Therefore The integrl ws evluted on clcultor. Are = sin +.5 d = = sin + =.5 6 Figure 5. = sin π/4 π = cos Figure 5.

4 5.4 SOLUTIONS 5 9. The grph of = cos t is bove the grph of = sin t for t π/4 nd = cos t is below = sin t for π/4 < t < π. See Figure 5.. Therefore, we find the re in two pieces: Are = π/4 The integrl ws evluted on clcultor. (cos t sin t) dt + π. We hve f(t) = F (t) = t, so b the Fundmentl Theorem of Clculus, (sin t cos t) dt =.88. π/4 t dt = F () F () = 9 = 8.. We hve f(t) = F (t) = /t, so b the Fundmentl Theorem of Clculus, dt = F (5) F () = ln 5 ln = ln 5. t. We hve f(t) = F (t) = cos t, so b the Fundmentl Theorem of Clculus, π/ cos t dt = F (π/) F () = =.. We hve f(t) = F (t) = 4t, so b the Fundmentl Theorem of Clculus, 4t dt = F () F ( ) = =. Notice in this cse the integrl is becuse the function being integrted, f(t) = 4t, is odd: the negtive contribution to the integrl from = to b = ectl cncels the positive. Problems 4. Note tht g() d = g(t) dt. Thus, we hve (f() + g()) d = 5. Note tht f(z) dz = f() d. Thus, we hve cf(z) dz = c f() d + g() d = 8 + =. f(z) dz = 8c. 6. Note tht (g()) d = (g(t)) dt. Thus, we hve ( (f()) (g()) ) d = (f()) d (g()) d = = We hve ( (f()) d f() d) = 8 = 5.

5 6 Chpter Five /SOLUTIONS 8. We write ( cg() + (c f()) ) d = ( cg() + c (f()) ) d = c g() d + c (f()) d = c g() d + c (f()) d = c () + c () = c + c. 9. The grph of = f( 5) is the grph of = f() shifted to the right b 5. Since the limits of integrtion hve lso shifted b 5 (to + 5 nd b + 5), the res corresponding to +5 f( 5) d nd f() d re the sme. Thus, f( 5) d = f() d = 8.. The res we computed re shded in Figure 5.. Since = nd = / re inverse functions, their grphs re reflections bout the line =. Similrl, = nd = / re inverse functions nd their grphs re reflections bout the line =. Therefore, the two shded res in Figure 5. re equl. = / / Figure 5.. We hve 8 = f() d = Since f is odd, f() d =, so f() d = 8.. Since f is even, f() d = (/)6 = nd. We hve 8 = f() d = Thus, since 4 d = 4(5 ) =, we hve f() d + f() d. f() d = (/)4 = 7. Therefore f() d (f() + 4) d = f() d = 7 = 4. f() d + f() d = 8 = 6, so f() d =. 4 d.

6 5.4 SOLUTIONS 7 4. We hve 4 f() d = 8/ = 4 nd f() d = 4 4 f() d = 4 5 f() d + f() d =. Thus 4 f() d = 4 =. 5. () See Figure 5.4. Since the shded region lies within rectngle of re, the re is less thn. (b) Since the re is given b the integrl Are = e / d =.856. = e / Figure (), since the integrnd is n odd function nd the limits re smmetric round. (b), since the integrnd is n odd function nd the limits re smmetric round. 7. () e d >, since e >, nd e d represents the re below the curve = e. (b) Looking t Figure 5.5, we see tht e d represents the re under the curve. This re is clerl greter thn zero, but it is less thn e since it fits inside rectngle of width nd height e (with room to spre). Thus < e d < e <. e = e = f() = + = Figure 5.5 Figure Notice tht f() = + is incresing for, since gets bigger s increses. This mens tht f() f() f(). For this function, f() = nd f() =. Thus, the re under f() lies between the re under the line = nd the re under the line = on the intervl. See Figure 5.6. Tht is, ( ) + d ( ). 9. () The integrnd is positive, so the integrl cnnot be negtive. (b) The integrnd. If the integrl =, then the integrnd must be identicll, which is not true.

7 8 Chpter Five /SOLUTIONS. We know tht we cn divide the integrl up s follows: f() d = f() d + f() d. The grph suggests tht f is n even function for, so f() d = f() d. Substituting this in to the preceding eqution, we hve f() d = f() d + f() d.. () For, we hve Averge vlue = f()d = (6) =. (b) If f() is even, the grph is smmetric bout the -is. For emple, see Figure 5.7. B smmetr, the re between = nd = is twice the re between = nd =, so Thus for, we hve Averge vlue = f()d = (6) =. f()d = () =. () 6 The grph confirms tht the verge vlue between = nd = is the sme s the verge vlue between = nd =, which is. Figure 5.7 Figure 5.8 (c) If f() is odd, then the grph is smmetric bout the origin. For emple, see Figure 5.8. B smmetr, the re bove the -is cncels out the re below the -is, so Thus for, we hve Averge vlue = f()d =. f()d = () =. () The grph confirms tht the verge vlue between = nd = is zero.. () Since the function is odd, the res bove nd below the -is cncel. Thus, so e d = e d = e d + e d, e d =.

8 5.4 SOLUTIONS 9 (b) For with n =, we hve =, =, =, =, nd =. See Figure 5.9. Thus, Left sum = f( ) + f( ) + f( ) = e + e + e =.445. (c) For, with n =, we hve =, =, =, =, nd =. See Figure 5.9. Thus, Left sum = f( ) + f( ) + f( ) = e () e ( ) e ( ) =.449. (d) No. The rectngles between nd re not the sme size s those between nd. See Figure 5.9. There re three rectngles with nonzero height on [, ] nd onl two on [, ]. Figure 5.9. () Yes. (b) No, becuse the sum of the left sums hs subdivisions. The result is the left sum pproimtion with subdivisions to f() d. 4. B the Fundmentl Theorem, f() f() = f () d, Since f () is negtive for, this integrl must be negtive nd so f() < f(). 5. First rewrite ech of the quntities in terms of f, since we hve the grph of f. If A nd A re the positive res shown in Figure 5.4: so Since Are A > Are A, nd therefore f() f() = f(4) f() = f(4) f() = A < f() f() < 4 4 f (t) dt = A f (t) dt = A A + A f A + A (t) dt = < A A + A A < < A f(4) f() < f(4) f(). 4 A A = f () Figure 5.4

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

1 The Definite Integral

1 The Definite Integral The Definite Integrl Definition. Let f be function defined on the intervl [, b] where

More information

6.3 Definite Integrals and Antiderivatives

6.3 Definite Integrals and Antiderivatives Section 6. Definite Integrls nd Antiderivtives 8 6. Definite Integrls nd Antiderivtives Wht ou will lern out... Properties of Definite Integrls Averge Vlue of Function Men Vlue Theorem for Definite Integrls

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

Section 5.3 : Finding Area Between Curves

Section 5.3 : Finding Area Between Curves MATH 9 Section 5. : Finding Are Between Curves Importnt: In this section we will lern just how to set up the integrls to find re etween curves. The finl nswer for ech emple in this hndout is given for

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

Chapter Spline Method of Interpolation More Examples Electrical Engineering

Chapter Spline Method of Interpolation More Examples Electrical Engineering Chpter. Spline Method of Interpoltion More Exmples Electricl Engineering Exmple Thermistors re used to mesure the temperture of bodies. Thermistors re bsed on mterils chnge in resistnce with temperture.

More information

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral Lesson - FTC PART 2 Review! We hve seen definition/formul for definite integrl s n b A() = lim f ( i )Δ = f ()d = F() = F(b) F() n i=! where F () = f() (or F() is the ntiderivtive of f() b! And hve seen

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Integrl When we compute the derivtive of complicted function, like + sin, we usull use differentition rules, like d [f()+g()] d f()+ d g(), to reduce the computtion d d d to

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan,

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan, Wht is on tody Professor Jennifer Blkrishnn, jbl@bu.edu 1 Velocity nd net chnge 1 2 Regions between curves 3 1 Velocity nd net chnge Briggs-Cochrn-Gillett 6.1 pp. 398-46 Suppose you re driving long stright

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information

Revisit: Limits at Infinity

Revisit: Limits at Infinity Revisit: Limits t Infinity Limits t Infinity: Wewrite to men the following: f () =L, or f ()! L s! + Conceptul Mening: Thevlueoff () willbesclosetol s we like when is su Forml Definition: Forny"> 0(nomtterhowsmll)thereeistsnM

More information

LIMITS AND CONTINUITY

LIMITS AND CONTINUITY LIMITS AND CONTINUITY Joe McBride/Stone/Gett Imges Air resistnce prevents the velocit of skdiver from incresing indefinitel. The velocit pproches it, clled the terminl velocit. The development of clculus

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

Essential Question What are some of the characteristics of the graph of a rational function?

Essential Question What are some of the characteristics of the graph of a rational function? 8. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS A..A A..G A..H A..K Grphing Rtionl Functions Essentil Question Wht re some of the chrcteristics of the grph of rtionl function? The prent function for rtionl functions

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

x )Scales are the reciprocal of each other. e

x )Scales are the reciprocal of each other. e 9. Reciprocls A Complete Slide Rule Mnul - eville W Young Chpter 9 Further Applictions of the LL scles The LL (e x ) scles nd the corresponding LL 0 (e -x or Exmple : 0.244 4.. Set the hir line over 4.

More information

The Reciprocal Function Family. Objectives To graph reciprocal functions To graph translations of reciprocal functions

The Reciprocal Function Family. Objectives To graph reciprocal functions To graph translations of reciprocal functions - The Reciprocl Function Fmil Objectives To grph reciprocl functions To grph trnsltions of reciprocl functions Content Stndrds F.BF.3 Identif the effect on the grph of replcing f () b f() k, kf(), f(k),

More information

1.1 Lines AP Calculus

1.1 Lines AP Calculus . Lines AP Clculus. LINES Notecrds from Section.: Rules for Rounding Round or Truncte ll finl nswers to 3 deciml plces. Do NOT round before ou rech our finl nswer. Much of Clculus focuses on the concept

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Topics in Analytic Geometry

Topics in Analytic Geometry Nme Chpter 10 Topics in Anltic Geometr Section 10.1 Lines Objective: In this lesson ou lerned how to find the inclintion of line, the ngle between two lines, nd the distnce between point nd line. Importnt

More information

Math 35 Review Sheet, Spring 2014

Math 35 Review Sheet, Spring 2014 Mth 35 Review heet, pring 2014 For the finl exm, do ny 12 of the 15 questions in 3 hours. They re worth 8 points ech, mking 96, with 4 more points for netness! Put ll your work nd nswers in the provided

More information

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area:

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area: Bck to Are: Are & Volume Chpter 6. & 6. Septemer 5, 6 We cn clculte the re etween the x-xis nd continuous function f on the intervl [,] using the definite integrl:! f x = lim$ f x * i )%x n i= Where fx

More information

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x Bsic Integrtion This chpter contins the fundmentl theory of integrtion. We begin with some problems to motivte the min ide: pproximtion by sum of slices. The chpter confronts this squrely, nd Chpter 3

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

Algebra II Notes Unit Ten: Conic Sections

Algebra II Notes Unit Ten: Conic Sections Sllus Ojective: 0. The student will sketch the grph of conic section with centers either t or not t the origin. (PARABOLAS) Review: The Midpoint Formul The midpoint M of the line segment connecting the

More information

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1)

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1) POLAR EQUATIONS AND GRAPHS GEOMETRY INU4/54 (MATHS ) Dr Adrin Jnnett MIMA CMth FRAS Polr equtions nd grphs / 6 Adrin Jnnett Objectives The purpose of this presenttion is to cover the following topics:

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

Matrices and Systems of Equations

Matrices and Systems of Equations Mtrices Mtrices nd Sstems of Equtions A mtri is rectngulr rr of rel numbers. CHAT Pre-Clculus Section 8. m m m............ n n n mn We will use the double subscript nottion for ech element of the mtri.

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

Applications of the Definite Integral ( Areas and Volumes)

Applications of the Definite Integral ( Areas and Volumes) Mth1242 Project II Nme: Applictions of the Definite Integrl ( Ares nd Volumes) In this project, we explore some pplictions of the definite integrl. We use integrls to find the re etween the grphs of two

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

Study Guide for Exam 3

Study Guide for Exam 3 Mth 05 Elementry Algebr Fll 00 Study Guide for Em Em is scheduled for Thursdy, November 8 th nd ill cover chpters 5 nd. You my use "5" note crd (both sides) nd scientific clcultor. You re epected to no

More information

The notation y = f(x) gives a way to denote specific values of a function. The value of f at a can be written as f( a ), read f of a.

The notation y = f(x) gives a way to denote specific values of a function. The value of f at a can be written as f( a ), read f of a. Chpter Prerequisites for Clculus. Functions nd Grphs Wht ou will lern out... Functions Domins nd Rnges Viewing nd Interpreting Grphs Even Functions nd Odd Functions Smmetr Functions Defined in Pieces Asolute

More information

Yoplait with Areas and Volumes

Yoplait with Areas and Volumes Yoplit with Ares nd Volumes Yoplit yogurt comes in two differently shped continers. One is truncted cone nd the other is n ellipticl cylinder (see photos below). In this exercise, you will determine the

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION Chpter 3 DACS 1 Lok 004/05 CHAPTER 5 APPLICATIONS OF INTEGRATION 5.1 Geometricl Interprettion-Definite Integrl (pge 36) 5. Are of Region (pge 369) 5..1 Are of Region Under Grph (pge 369) Figure 5.7 shows

More information

Date: 9.1. Conics: Parabolas

Date: 9.1. Conics: Parabolas Dte: 9. Conics: Prols Preclculus H. Notes: Unit 9 Conics Conic Sections: curves tht re formed y the intersection of plne nd doulenpped cone Syllus Ojectives:. The student will grph reltions or functions,

More information

Introduction. Chapter 4: Complex Integration. Introduction (Cont d)

Introduction. Chapter 4: Complex Integration. Introduction (Cont d) Introduction Chpter 4: Complex Integrtion Li, Yongzho Stte Key Lbortory of Integrted Services Networks, Xidin University October 10, 2010 The two-dimensionl nture of the complex plne required us to generlize

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

Angle Properties in Polygons. Part 1 Interior Angles

Angle Properties in Polygons. Part 1 Interior Angles 2.4 Angle Properties in Polygons YOU WILL NEED dynmic geometry softwre OR protrctor nd ruler EXPLORE A pentgon hs three right ngles nd four sides of equl length, s shown. Wht is the sum of the mesures

More information

Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy.

Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy. Iterted Integrls Type I Integrls In this section, we begin the study of integrls over regions in the plne. To do so, however, requires tht we exmine the importnt ide of iterted integrls, in which inde

More information

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a Mth 176 Clculus Sec. 6.: Volume I. Volume By Slicing A. Introduction We will e trying to find the volume of solid shped using the sum of cross section res times width. We will e driving towrd developing

More information

Section 9.2 Hyperbolas

Section 9.2 Hyperbolas Section 9. Hperols 597 Section 9. Hperols In the lst section, we lerned tht plnets hve pproimtel ellipticl orits round the sun. When n oject like comet is moving quickl, it is le to escpe the grvittionl

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

6.5 Trapezoidal Rule

6.5 Trapezoidal Rule Chter 6 The Definite Integrl 6. Trezoidl Rule Wht you will lern bout... Trezoidl Aroimtions Other Algorithms Error Anlysis nd why... Some definite integrls re best found by numericl roimtions, nd rectngles

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

MENSURATION-IV

MENSURATION-IV MENSURATION-IV Theory: A solid is figure bounded by one or more surfce. Hence solid hs length, bredth nd height. The plne surfces tht bind solid re clled its fces. The fundmentl difference between plne

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

EXPONENT RULES Add Multiply Subtraction Flip

EXPONENT RULES Add Multiply Subtraction Flip Algebr II Finl Em Review Nme Chpter 7 REVIEW: EXPONENT RULES Add Multiply Subtrction Flip Simplify the epression using the properties of eponents. Assume ll vribles re positive. 4 4. 8 8.. 4. 5. 9 9 5

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

Name Date Class. cot. tan. cos. 1 cot 2 csc 2

Name Date Class. cot. tan. cos. 1 cot 2 csc 2 Fundmentl Trigonometric Identities To prove trigonometric identit, use the fundmentl identities to mke one side of the eqution resemle the other side. Reciprocl nd Rtio Identities csc sec sin cos Negtive-Angle

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

Matlab s Numerical Integration Commands

Matlab s Numerical Integration Commands Mtlb s Numericl Integrtion Commnds The relevnt commnds we consider re qud nd dblqud, triplequd. See the Mtlb help files for other integrtion commnds. By the wy, qud refers to dptive qudrture. To integrte:

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

This notebook investigates the properties of non-integer differential operators using Fourier analysis.

This notebook investigates the properties of non-integer differential operators using Fourier analysis. Frctionl erivtives.nb Frctionl erivtives by Fourier ecomposition by Eric Thrne 4/9/6 This notebook investigtes the properties of non-integer differentil opertors using Fourier nlysis. In[]:=

More information

Parallel Square and Cube Computations

Parallel Square and Cube Computations Prllel Squre nd Cube Computtions Albert A. Liddicot nd Michel J. Flynn Computer Systems Lbortory, Deprtment of Electricl Engineering Stnford University Gtes Building 5 Serr Mll, Stnford, CA 945, USA liddicot@stnford.edu

More information

Lecture 5: Spatial Analysis Algorithms

Lecture 5: Spatial Analysis Algorithms Lecture 5: Sptil Algorithms GEOG 49: Advnced GIS Sptil Anlsis Algorithms Bsis of much of GIS nlsis tod Mnipultion of mp coordintes Bsed on Eucliden coordinte geometr http://stronom.swin.edu.u/~pbourke/geometr/

More information

WebAssign Lesson 1-3a Substitution Part 1 (Homework)

WebAssign Lesson 1-3a Substitution Part 1 (Homework) WeAssign Lesson -3 Sustitution Prt (Homework) Current Score : / 3 Due : Fridy, June 7 04 :00 AM MDT Jimos Skriletz Mth 75, section 3, Summer 04 Instructor: Jimos Skriletz. /.5 points Suppose you hve the

More information

Angle properties of lines and polygons

Angle properties of lines and polygons chievement Stndrd 91031 pply geometric resoning in solving problems Copy correctly Up to 3% of workbook Copying or scnning from ES workbooks is subject to the NZ Copyright ct which limits copying to 3%

More information

Summer Review Packet For Algebra 2 CP/Honors

Summer Review Packet For Algebra 2 CP/Honors Summer Review Pcket For Alger CP/Honors Nme Current Course Mth Techer Introduction Alger uilds on topics studied from oth Alger nd Geometr. Certin topics re sufficientl involved tht the cll for some review

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

Math/CS 467/667 Programming Assignment 01. Adaptive Gauss Quadrature. q(x)p 4 (x) = 0

Math/CS 467/667 Programming Assignment 01. Adaptive Gauss Quadrature. q(x)p 4 (x) = 0 Adptive Guss Qudrture 1. Find n orthogonl polynomil p 4 of degree 4 such tht 1 1 q(x)p 4 (x) = 0 for every polynomil q(x) of degree 3 or less. You my use Mple nd the Grm Schmidt process s done in clss.

More information

Chapter 2 Sensitivity Analysis: Differential Calculus of Models

Chapter 2 Sensitivity Analysis: Differential Calculus of Models Chpter 2 Sensitivity Anlysis: Differentil Clculus of Models Abstrct Models in remote sensing nd in science nd engineering, in generl re, essentilly, functions of discrete model input prmeters, nd/or functionls

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

EECS 281: Homework #4 Due: Thursday, October 7, 2004

EECS 281: Homework #4 Due: Thursday, October 7, 2004 EECS 28: Homework #4 Due: Thursdy, October 7, 24 Nme: Emil:. Convert the 24-bit number x44243 to mime bse64: QUJD First, set is to brek 8-bit blocks into 6-bit blocks, nd then convert: x44243 b b 6 2 9

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

Chapter 2. 3/28/2004 H133 Spring

Chapter 2. 3/28/2004 H133 Spring Chpter 2 Newton believe tht light ws me up of smll prticles. This point ws ebte by scientists for mny yers n it ws not until the 1800 s when series of experiments emonstrte wve nture of light. (But be

More information

3 FRACTIONS. Before you start. Objectives

3 FRACTIONS. Before you start. Objectives FRATIONS Only one eighth of n iceberg shows bove the surfce of the wter, which leves most of it hidden. The lrgest northern hemisphere iceberg ws encountered ner Bffin Islnd in nd in 1. It ws 1 km long,

More information

Thirty-fourth Annual Columbus State Invitational Mathematics Tournament. Instructions

Thirty-fourth Annual Columbus State Invitational Mathematics Tournament. Instructions Thirty-fourth Annul Columbus Stte Invittionl Mthemtics Tournment Sponsored by Columbus Stte University Deprtment of Mthemtics Februry, 008 ************************* The Mthemtics Deprtment t Columbus Stte

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

The Distributed Data Access Schemes in Lambda Grid Networks

The Distributed Data Access Schemes in Lambda Grid Networks The Distributed Dt Access Schemes in Lmbd Grid Networks Ryot Usui, Hiroyuki Miygi, Yutk Arkw, Storu Okmoto, nd Noki Ymnk Grdute School of Science for Open nd Environmentl Systems, Keio University, Jpn

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

ONU Calculus I Math 1631

ONU Calculus I Math 1631 ONU Clculus I Mth 1631 2013-2014 Syllus Mrs. Trudy Thompson tthompson@lcchs.edu Text: Clculus 8 th Edition, Anton, Bivens nd Dvis Prerequisites: C or etter in Pre-Clc nd techer s permission This course

More information

9 Graph Cutting Procedures

9 Graph Cutting Procedures 9 Grph Cutting Procedures Lst clss we begn looking t how to embed rbitrry metrics into distributions of trees, nd proved the following theorem due to Brtl (1996): Theorem 9.1 (Brtl (1996)) Given metric

More information

Rational Numbers---Adding Fractions With Like Denominators.

Rational Numbers---Adding Fractions With Like Denominators. Rtionl Numbers---Adding Frctions With Like Denomintors. A. In Words: To dd frctions with like denomintors, dd the numertors nd write the sum over the sme denomintor. B. In Symbols: For frctions c nd b

More information

Computing offsets of freeform curves using quadratic trigonometric splines

Computing offsets of freeform curves using quadratic trigonometric splines Computing offsets of freeform curves using qudrtic trigonometric splines JIULONG GU, JAE-DEUK YUN, YOONG-HO JUNG*, TAE-GYEONG KIM,JEONG-WOON LEE, BONG-JUN KIM School of Mechnicl Engineering Pusn Ntionl

More information

Engineer To Engineer Note

Engineer To Engineer Note Engineer To Engineer Note EE-169 Technicl Notes on using Anlog Devices' DSP components nd development tools Contct our technicl support by phone: (800) ANALOG-D or e-mil: dsp.support@nlog.com Or visit

More information

SIMPLIFYING ALGEBRA PASSPORT.

SIMPLIFYING ALGEBRA PASSPORT. SIMPLIFYING ALGEBRA PASSPORT www.mthletics.com.u This booklet is ll bout turning complex problems into something simple. You will be ble to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give

More information

Are You Ready for Algebra 3/Trigonometry? Summer Packet **Required for all Algebra 3/Trig CP and Honors students**

Are You Ready for Algebra 3/Trigonometry? Summer Packet **Required for all Algebra 3/Trig CP and Honors students** Are You Red for Algebr /Trigonometr? Summer Pcket **Required for ll Algebr /Trig CP nd Honors students** Pge of The Algebr /Trigonometr course prepres students for Clculus nd college science courses. In

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3..1 Single slit diffrction ves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. e will consider this lter. Tke

More information