MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

Size: px
Start display at page:

Download "MATH 2530: WORKSHEET 7. x 2 y dz dy dx ="

Transcription

1 MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl coordintes. (b) Find x 2 y dx dy dz for the region [, ] [, 2] [, 3]. x 2 y dx dy dz = 3 x 2 y dz dy dx = 3x 2 y dy dx = 6x 2 dx = 2 (c) xplin why, in cylindricl coordintes (i.e., for the stndrd cylindricl coordintes with (x, y) converted to polr), r describes the distnce from the z-xis. For ech fixed constnt c, notice we re giving the horizontl slice z = c polr coordintes. In polr coordintes, r represents the distnce from point to the origin, so for point (x, y, c) in the plne z = c, r for this point represents the distnce from this point to the origin of tht plne (,, c) on the z-xis. (d) Describe the following surfces in cylindricl coordintes (gin, for stndrd cylindricl coordintes): r =, r = 4, θ =, z = 3, z = r, r = θ, z = θ. As stted bove, r represents the distnce from the z-xis, so r = represents the z-xis itself (the set of ll stuff distnce from the z-xis is just the z-xis!) nd r = 4 represents cylinder of rdius 4 wrpped round the z-xis. θ = will look like hlf of plne; notice in R 2, θ = corresponds to the x-xis, so relly we re looking t the hlf of the plne y = where x : For z = 3, notice tht when we switch into cylindricl coordintes, (x, y) chnge into polr coordintes, but z does not chnge t ll; therefore, z = 3 just looks like z = 3 in norml R 3, tht is, just horizontl plne. Dte: Mrch 2, 28.

2 To see wht z = r gives us, it is esiest just to chnge r bck into x nd y; this gives us z = x 2 + y 2, just our stndrd cone. For r = θ, first notice tht, since there is no dependence on z, we know tht ll the horizontl slices of this surfce will look the sme. Notice tht, s θ increses nd we move counterclockwise, r increses t the sme rte. Therefore, we get something tht spirls round the z-xis nd, since gin for ll z, we get this sme spirl, this should look like plne tht hs been twisted round the z-xis: Finlly, for z = θ, notice tht r cn be nything, so for ech choice of θ, we get line from the origin to (i.e., representing ll vlues of r) where θ = z; s θ increses, we gin rotte round counterclockwise round the z-xis while incresing z t the sme rte. This gives us the helix shpe: (2) Find the volume bounded by the xy-plne nd the prboloid z = 4 x 2 y 2 (hint: where does this surfce hit the xy-plne?). The volume under z = 4 x 2 y 2 bove the xy-plne will the volume under this grph bove the region where the grph hits the xy-plne. Notice tht 4 x 2 y 2 hits the xy-plne where z =. This is exctly where x 2 + y 2 = 4. So we wnt to find the volume bove the region D x 2 + y 2 4 below z = 4 x 2 y 2. Since D is disc, it is best to convert to polr coordintes. So our volume is given by (4 x 2 y 2 ) da = (4 r 2 )r dθdr = 2 (4r r 3 ) dr = 8 D

3 (3) Let be the cylinder y 2 + z 2 4 with y, z nd x. Find xz dv. Here, notice we hve cylinder wrpped round the x-xis; so, we should use version of cylindricl coordintes where we replce y nd z with r nd θ. Tking y = r cos(θ) nd z = r sin(θ), notice tht both y nd z re negtive when θ 3/2; so this is our rnge for θ. Of course, our rnge for x is from to nd our rnge for r is from to 2. So we get: xz dv = 3/2 xr sin(θ) r dx dr dθ = 3/2 r 2 sin(θ)/2 dr dθ = 3/2 4 sin(θ) dθ = 4 (4) Let be the region enclosed by the plne z = 3 nd the cone z 2 = x 2 + y 2. Find z dv. Notice tht this region is going to look like the solid cone bove z = r nd below z = 3. In cylindricl coordintes, we cn describe this either s r z (if we wnt to integrte first with respect to r) or s r z 3 (if we wnt to integrte first with respect to z). The full rnge for z would be to 3 nd the full rnge for r would lso be to 3. This gives us: 3 z 3 3 z dv = z r dr dθ dz = z 3 /2 dθ dz = z 3 dz = 8/4 (5) Clculte the volume contined by the four plnes x + y + z =, x + y + z =, y = 2, nd z = (there re few wys to do this, but you should be ble to do this with one triple integrl!). This ws probbly little tricker thn I would of liked... but here goes: I m going to use the outside in method. Notice tht one of our boundries is y = 2, so this is good indiction tht y would mke good outer bound (we could lso use z). Notice tht slice with respect to constnt vlue of y, sy y = c, must be contined by the lines x + z = c, x + z = c, nd z =, which we cn rewrite s the three lines z = x + c, z = x + c, nd z = ; so our slice is tringle formed by the three points (, c), (c, ), nd ( c, ) in the plne y = c. Since we re strting with one of our boundries s y = 2, notice this mens tht our point on the z-xis lies underneth the x-xis. So we must ssume tht z begins s negtive. To be sure we get bounded solid, we should only llow y to vry until c = (i.e., until we hit the xy-plne). This mens tht our mximum rnge for y should be y 2. Next, we need to find our inner two bounds by treting y s constnt nd nlyzing our slice for this constnt vlue of y. If we sketch the bove described tringulr slice, notice tht integrting first with respect to z would require two integrls. So we should integrte first with respect to x. this gives us rnge for x of z + y x z + y nd mximum possible rnge for z of y z.

4 y = So finlly, we cn clculte our volume s: z+y y z+ dx dz dy = y y 2 y + dy = 7/3 3/2 + 2y + 2z 2 dz dy = 2y(y ) ( y) 2 + (2 y) dy (6) Find the volume of the sliced cylinder contined within x 2 + y 2 4, bove the xyplne, nd below the plne z + x y = (hint: θ should not hve its full llowble rnge!) I think wht s esiest here is noticing tht you re ctully looking t the volume under the grph z = y x bove the xy-plne; so we cn ctully use double integrl! To figure out wht we should integrte over, we wnt find the projectiond onto the xy-plne. Notice tht we need x nd y to give us something in the cylinder, mening we need x 2 + y 2 4, nd we need to be under the grph, mening we need z = y x or y x. This looks like the hlf of the circle of rdius 2 sliced by y = x: Here, we hve /4 θ 5/4 nd r 2. So we get volume of: 5/4 (y x) da = (r sin(θ) r cos(θ))r dθ dr = r 2 (2 2) dr = 6 2/3 D /4 (7) Chnge the bounds of integrtion on the triple integrl 3 y x z 2 dz dy dx to get triple integrl so tht you integrte first with respect to x, then with respect to z, nd lst with respect to y (hint: it s esiest (in my opinion) to switch one pir of djcent integrls t time). The ide here is tht the inner two bounds of integrtion correspond to the rnge for y nd z given constnt vlue of x nd the outer two bounds of integrtion correspond to the totl mximum rnge for y nd x. So, to get the required bounds

5 of integrtion, it is esiest to switch the inner or outer bounds one t time (this just ends up being exctly like switching the bounds of integrtion for double iterted integrls). So, to begin, let s chnge the outer two bounds. notice tht the outer two bounds describe the region x 2 nd x y 2. This gives us the tringulr region: We cn flip the order of description with y 2 nd x y. So we cn flip our outer two bounds of integrtion: 3 y x z 2 dz dy dx = y 3 y z 2 dz dx dy To finish, we need to shift x to be the first bound of integrtion. But notice tht our inner two bounds of integrtion describe rnge for x nd z given constnt choice of y. Consequently, we cn flip these two without much work to get y 3 y z 2 dz dx dy = 3 y y z 2 dx dz dy (8) Recll tht solid of revolution is solid obtined by rotting the re under the grph of function y = f(x) round either the x or y xis. Using triple integrls (nd conversion to cylindricl coordintes), confirm the disc nd cylinder formuls: () Assuming f(x) : if the re under the curve y = f(x) between x = nd x = b is rotted round the x-xis, then the resulting solid hs volume (f(x)) 2 dx. Since we re rotting round the x-xis, we should use cylindricl coordinte system where y nd z re replced with polr coordintes. Note tht, in this cse, y = f(x) plys the role of the upper bound for the rdius of our solid; so we hve r f(x), θ 2, nd x b. Then the volume of this solid is: V = f(x) r dr dθ dx = (f(x)) 2 /2 dθ dx = f(x) 2 dx

6 (b) Agin, ssuming f(x) : if the re under the curve y = f(x) between x = nd x = b is rotted round the y-xis, then the resulting solid hs volume 2 xf(x) dx. Here, since we re rotting round the y-xis, we should chnge x nd z to polr coordintes. Trying to find bounds for r in terms of our other vribles would be hrd; but notice tht we cn integrte r on it s mximum rnge from to b. Our rnge for y then is y f(r) nd our rnge for θ is gin θ 2. We then get: V = f(r) rdy dθ dr = Replcing x with r yields the bove formul. rf(r) dθ dr = 2rf(r) dr

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

Math 35 Review Sheet, Spring 2014

Math 35 Review Sheet, Spring 2014 Mth 35 Review heet, pring 2014 For the finl exm, do ny 12 of the 15 questions in 3 hours. They re worth 8 points ech, mking 96, with 4 more points for netness! Put ll your work nd nswers in the provided

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy.

Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy. Iterted Integrls Type I Integrls In this section, we begin the study of integrls over regions in the plne. To do so, however, requires tht we exmine the importnt ide of iterted integrls, in which inde

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a Mth 176 Clculus Sec. 6.: Volume I. Volume By Slicing A. Introduction We will e trying to find the volume of solid shped using the sum of cross section res times width. We will e driving towrd developing

More information

Matlab s Numerical Integration Commands

Matlab s Numerical Integration Commands Mtlb s Numericl Integrtion Commnds The relevnt commnds we consider re qud nd dblqud, triplequd. See the Mtlb help files for other integrtion commnds. By the wy, qud refers to dptive qudrture. To integrte:

More information

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area:

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area: Bck to Are: Are & Volume Chpter 6. & 6. Septemer 5, 6 We cn clculte the re etween the x-xis nd continuous function f on the intervl [,] using the definite integrl:! f x = lim$ f x * i )%x n i= Where fx

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1)

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1) POLAR EQUATIONS AND GRAPHS GEOMETRY INU4/54 (MATHS ) Dr Adrin Jnnett MIMA CMth FRAS Polr equtions nd grphs / 6 Adrin Jnnett Objectives The purpose of this presenttion is to cover the following topics:

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

Supplemental Notes: Line Integrals

Supplemental Notes: Line Integrals Nottion: Supplementl Notes: Line Integrls Let be n oriented curve prmeterized by r(t) = x(t), y(t), z(t) where t b. denotes the curve with its orienttion reversed. 1 + 2 mens tke curve 1 nd curve 2 nd

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

arxiv: v2 [math.ho] 4 Jun 2012

arxiv: v2 [math.ho] 4 Jun 2012 Volumes of olids of Revolution. Unified pproch Jorge Mrtín-Morles nd ntonio M. Oller-Mrcén jorge@unizr.es, oller@unizr.es rxiv:5.v [mth.ho] Jun Centro Universitrio de l Defens - IUM. cdemi Generl Militr,

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

Applications of the Definite Integral ( Areas and Volumes)

Applications of the Definite Integral ( Areas and Volumes) Mth1242 Project II Nme: Applictions of the Definite Integrl ( Ares nd Volumes) In this project, we explore some pplictions of the definite integrl. We use integrls to find the re etween the grphs of two

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

Physics 208: Electricity and Magnetism Exam 1, Secs Feb IMPORTANT. Read these directions carefully:

Physics 208: Electricity and Magnetism Exam 1, Secs Feb IMPORTANT. Read these directions carefully: Physics 208: Electricity nd Mgnetism Exm 1, Secs. 506 510 11 Feb. 2004 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your nme netly: Lst nme: First nme: Sign your nme: Plese

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

Math 17 - Review. Review for Chapter 12

Math 17 - Review. Review for Chapter 12 Mth 17 - eview Ying Wu eview for hpter 12 1. Given prmetric plnr curve x = f(t), y = g(t), where t b, how to eliminte the prmeter? (Use substitutions, or use trigonometry identities, etc). How to prmeterize

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

Yoplait with Areas and Volumes

Yoplait with Areas and Volumes Yoplit with Ares nd Volumes Yoplit yogurt comes in two differently shped continers. One is truncted cone nd the other is n ellipticl cylinder (see photos below). In this exercise, you will determine the

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

Topics in Analytic Geometry

Topics in Analytic Geometry Nme Chpter 10 Topics in Anltic Geometr Section 10.1 Lines Objective: In this lesson ou lerned how to find the inclintion of line, the ngle between two lines, nd the distnce between point nd line. Importnt

More information

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan,

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan, Wht is on tody Professor Jennifer Blkrishnn, jbl@bu.edu 1 Velocity nd net chnge 1 2 Regions between curves 3 1 Velocity nd net chnge Briggs-Cochrn-Gillett 6.1 pp. 398-46 Suppose you re driving long stright

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

1 Drawing 3D Objects in Adobe Illustrator

1 Drawing 3D Objects in Adobe Illustrator Drwing 3D Objects in Adobe Illustrtor 1 1 Drwing 3D Objects in Adobe Illustrtor This Tutoril will show you how to drw simple objects with three-dimensionl ppernce. At first we will drw rrows indicting

More information

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals Double Integrls MATH 375 Numericl Anlysis J. Robert Buchnn Deprtment of Mthemtics Fll 2013 J. Robert Buchnn Double Integrls Objectives Now tht we hve discussed severl methods for pproximting definite integrls

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

1 Quad-Edge Construction Operators

1 Quad-Edge Construction Operators CS48: Computer Grphics Hndout # Geometric Modeling Originl Hndout #5 Stnford University Tuesdy, 8 December 99 Originl Lecture #5: 9 November 99 Topics: Mnipultions with Qud-Edge Dt Structures Scribe: Mike

More information

It is recommended to change the limits of integration while doing a substitution.

It is recommended to change the limits of integration while doing a substitution. MAT 21 eptember 7, 216 Review Indrjit Jn. Generl Tips It is recommended to chnge the limits of integrtion while doing substitution. First write the min formul (eg. centroid, moment of inerti, mss, work

More information

)

) Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x Bsic Integrtion This chpter contins the fundmentl theory of integrtion. We begin with some problems to motivte the min ide: pproximtion by sum of slices. The chpter confronts this squrely, nd Chpter 3

More information

Math 4 Review for Quarter 2 Cumulative Test

Math 4 Review for Quarter 2 Cumulative Test Mth 4 Review for Qurter 2 Cumultive Test Nme: I. Right Tringle Trigonometry (3.1-3.3) Key Fcts Pythgoren Theorem - In right tringle, 2 + b 2 = c 2 where c is the hypotenuse s shown below. c b Trigonometric

More information

1 The Definite Integral

1 The Definite Integral The Definite Integrl Definition. Let f be function defined on the intervl [, b] where

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION Chpter 3 DACS 1 Lok 004/05 CHAPTER 5 APPLICATIONS OF INTEGRATION 5.1 Geometricl Interprettion-Definite Integrl (pge 36) 5. Are of Region (pge 369) 5..1 Are of Region Under Grph (pge 369) Figure 5.7 shows

More information

Algebra II Notes Unit Ten: Conic Sections

Algebra II Notes Unit Ten: Conic Sections Sllus Ojective: 0. The student will sketch the grph of conic section with centers either t or not t the origin. (PARABOLAS) Review: The Midpoint Formul The midpoint M of the line segment connecting the

More information

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola.

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola. Review of conic sections Conic sections re grphs of the form REVIEW OF CONIC SECTIONS prols ellipses hperols P(, ) F(, p) O p =_p REVIEW OF CONIC SECTIONS In this section we give geometric definitions

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Integrl When we compute the derivtive of complicted function, like + sin, we usull use differentition rules, like d [f()+g()] d f()+ d g(), to reduce the computtion d d d to

More information

6.4: SHELL METHOD 6.5: WORK AND ENERGY NAME: SOLUTIONS Math 1910 September 26, 2017

6.4: SHELL METHOD 6.5: WORK AND ENERGY NAME: SOLUTIONS Math 1910 September 26, 2017 6.4: SHELL METHOD 6.5: WORK AND ENERGY NAME: SOLUTIONS Mt 9 September 26, 27 ONE-PAGE REVIEW Sell Metod: Wen you rotte te region between two grps round n xis, te segments prllel to te xis generte cylindricl

More information

9 Graph Cutting Procedures

9 Graph Cutting Procedures 9 Grph Cutting Procedures Lst clss we begn looking t how to embed rbitrry metrics into distributions of trees, nd proved the following theorem due to Brtl (1996): Theorem 9.1 (Brtl (1996)) Given metric

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral Lesson - FTC PART 2 Review! We hve seen definition/formul for definite integrl s n b A() = lim f ( i )Δ = f ()d = F() = F(b) F() n i=! where F () = f() (or F() is the ntiderivtive of f() b! And hve seen

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3.5.1 Single slit diffrction Wves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. We will consider this lter.

More information

MENSURATION-IV

MENSURATION-IV MENSURATION-IV Theory: A solid is figure bounded by one or more surfce. Hence solid hs length, bredth nd height. The plne surfces tht bind solid re clled its fces. The fundmentl difference between plne

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3..1 Single slit diffrction ves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. e will consider this lter. Tke

More information

Conic Sections Parabola Objective: Define conic section, parabola, draw a parabola, standard equations and their graphs

Conic Sections Parabola Objective: Define conic section, parabola, draw a parabola, standard equations and their graphs Conic Sections Prol Ojective: Define conic section, prol, drw prol, stndrd equtions nd their grphs The curves creted y intersecting doule npped right circulr cone with plne re clled conic sections. If

More information

Surfaces. Differential Geometry Lia Vas

Surfaces. Differential Geometry Lia Vas Differentil Geometry Li Vs Surfces When studying curves, we studied how the curve twisted nd turned in spce. We now turn to surfces, two-dimensionl objects in three-dimensionl spce nd exmine how the concept

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997. Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni 19104 R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey 07974 Mrch 2,1997 Astrct In seminl pper from 1935,

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Lily Yen and Mogens Hansen

Lily Yen and Mogens Hansen SKOLID / SKOLID No. 8 Lily Yen nd Mogens Hnsen Skolid hs joined Mthemticl Myhem which is eing reformtted s stnd-lone mthemtics journl for high school students. Solutions to prolems tht ppered in the lst

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

SIMPLIFYING ALGEBRA PASSPORT.

SIMPLIFYING ALGEBRA PASSPORT. SIMPLIFYING ALGEBRA PASSPORT www.mthletics.com.u This booklet is ll bout turning complex problems into something simple. You will be ble to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Objective: Students will understand what it means to describe, graph and write the equation of a parabola. Parabolas

Objective: Students will understand what it means to describe, graph and write the equation of a parabola. Parabolas Pge 1 of 8 Ojective: Students will understnd wht it mens to descrie, grph nd write the eqution of prol. Prols Prol: collection of ll points P in plne tht re the sme distnce from fixed point, the focus

More information

Midterm 2 Sample solution

Midterm 2 Sample solution Nme: Instructions Midterm 2 Smple solution CMSC 430 Introduction to Compilers Fll 2012 November 28, 2012 This exm contins 9 pges, including this one. Mke sure you hve ll the pges. Write your nme on the

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information

Study Sheet ( )

Study Sheet ( ) Key Terms prol circle Ellipse hyperol directrix focus focl length xis of symmetry vertex Study Sheet (11.1-11.4) Conic Section A conic section is section of cone. The ellipse, prol, nd hyperol, long with

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

Math Line Integrals I

Math Line Integrals I Mth 213 - Line Integrls I Peter A. Perry University of Kentucky November 16, 2018 Homework Re-Red Section 16.2 for Mondy Work on Stewrt problems for 16.2: 1-21 (odd), 33-41 (odd), 49, 50 Begin Webwork

More information

Naming 3D objects. 1 Name the 3D objects labelled in these models. Use the word bank to help you.

Naming 3D objects. 1 Name the 3D objects labelled in these models. Use the word bank to help you. Nming 3D ojects 1 Nme the 3D ojects lelled in these models. Use the word nk to help you. Word nk cue prism sphere cone cylinder pyrmid D A C F A B C D cone cylinder cue cylinder E B E prism F cue G G pyrmid

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

ECE 468/573 Midterm 1 September 28, 2012

ECE 468/573 Midterm 1 September 28, 2012 ECE 468/573 Midterm 1 September 28, 2012 Nme:! Purdue emil:! Plese sign the following: I ffirm tht the nswers given on this test re mine nd mine lone. I did not receive help from ny person or mteril (other

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com M Centres of Mss - Rigid bodies nd composites. Figure A continer is formed by removing right circulr solid cone of height l from uniform solid right circulr cylinder of height 6l. The centre O of the plne

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

Tilt-Sensing with Kionix MEMS Accelerometers

Tilt-Sensing with Kionix MEMS Accelerometers Tilt-Sensing with Kionix MEMS Accelerometers Introduction Tilt/Inclintion sensing is common ppliction for low-g ccelerometers. This ppliction note describes how to use Kionix MEMS low-g ccelerometers to

More information

Edge-Unfolding Almost-Flat Convex Polyhedral Terrains. Yanping Chen

Edge-Unfolding Almost-Flat Convex Polyhedral Terrains. Yanping Chen Edge-Unfolding Almost-Flt Convex Polyhedrl Terrins by Ynping Chen Submitted to the Deprtment of Electricl Engineering nd Computer Science in prtil fulfillment of the requirements for the degree of Mster

More information

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe LOG STUCTUED MEGE TEES Series Summtion eview Let n = + + + + k $ = #%& #. Wht is n? n = k+ - Wht is log () + log ()

More information

Geometric transformations

Geometric transformations Geometric trnsformtions Computer Grphics Some slides re bsed on Shy Shlom slides from TAU mn n n m m T A,,,,,, 2 1 2 22 12 1 21 11 Rows become columns nd columns become rows nm n n m m A,,,,,, 1 1 2 22

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

1.1 Lines AP Calculus

1.1 Lines AP Calculus . Lines AP Clculus. LINES Notecrds from Section.: Rules for Rounding Round or Truncte ll finl nswers to 3 deciml plces. Do NOT round before ou rech our finl nswer. Much of Clculus focuses on the concept

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

Updated: March 31, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: March 31, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: March 3, 26 Calculus III Section 5.6 Math 232 Calculus III Brian Veitch Fall 25 Northern Illinois University 5.6 Triple Integrals In order to build up to a triple integral let s start back at

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

6.3 Definite Integrals and Antiderivatives

6.3 Definite Integrals and Antiderivatives Section 6. Definite Integrls nd Antiderivtives 8 6. Definite Integrls nd Antiderivtives Wht ou will lern out... Properties of Definite Integrls Averge Vlue of Function Men Vlue Theorem for Definite Integrls

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates ections 15.4 Integration using Transformations in Polar, Cylindrical, and pherical Coordinates Cylindrical Coordinates pherical Coordinates MATH 127 (ection 15.5) Applications of Multiple Integrals The

More information