Statistical atlases (with applications in cardiac imaging)

Size: px
Start display at page:

Download "Statistical atlases (with applications in cardiac imaging)"

Transcription

1 GRIC Statistical atlases (with applications in cardiac imaging) Nicolas Duchateau CREATIS, Université Lyon 1, UMR CNRS 5220, Lyon, FR

2 Healthy cardiac function? Shape / anatomy: Global / local Functional descriptors: Synchrony + timings Global ejection Local motion/deformation Valves aperture/closure Other variables and their variability 1

3 Diseased cardiac function? LBBB #3 Inter-subjects differences LBBB #1 Intra-subjects differences LBBB #2 Pre-CRT Follow-up (6 months) 2

4 Statistical atlases ATLAS =??? 1) Geometry = shape information 2) Labels = functional information 3) Built from a population 3

5 Statistical atlases ATLAS =??? 1) Geometry = shape information 2) Labels = functional information 3) Built from a population Hart et al., STIA-MICCAI, 2010 Young and Frangi, EP, 2009 Ordas et al., ISPA, 2006 Peyrat et al., IEEE TMI,

6 Statistical atlases ATLAS =??? 1) Geometry = shape information 2) Labels = functional information 3) Built from a population Shape Ordas et al., ISPA, 2006 Fiber structure Peyrat et al., IEEE TMI, 2007 Lombaert et al., IEEE TMI, Velocities Duchateau et al., MedIA, 2011 Strain De Craene et al., MedIA + ISBI,

7 Statistical atlases ATLAS =??? 1) Geometry = shape information 2) Labels = functional information 3) Built from a population! Average + variability! Principal axes of variation (of what?)! Dimensionality reduction Different subjects Different phases ORL database 6

8 Statistical atlases ATLAS =??? 1) Geometry = shape information 2) Labels = functional information 3) Built from a population First dimension Second dimension Duchateau et al. Med Image Anal 2012 inward outward Mode 2 a abnormality Mode 1 Second dimension Hoogendoorn et al., IEEE TMI, 2013 First dimension 7

9 How to proceed? Subject 1 Subject 2... Subject N... Statistics on shape and/or function shape & pattern Temporal alignment Spatial correspondence Area strain (%) Reference timescale Reference geometry 8

10 Practical recommendations

11 Practical recommendations: temporal alignment Identify temporal landmarks: ECG events Valve events Piece-wise linear interpolation Perperidis et al., MedIA, 2005 Duchateau et al., MedIA,

12 Practical recommendations: temporal alignment Identify temporal landmarks: ECG events Valve events Piece-wise linear interpolation Perperidis et al., MedIA, 2005 Duchateau et al., MedIA, 2011 De Craene et al., ISBI, ESSENTIAL!!! Duchateau et al., UMB,

13 Practical recommendations: spatial alignment! Correspondences available: OK 10

14 Practical recommendations: spatial alignment! Correspondences available: OK! No segmentation available: registration + push-forward 10

15 Practical recommendations: spatial alignment! Correspondences available: OK! No segmentation available: registration + push-forward Duchateau et al. STIA-MICCAI, 2012 What to put inside?! Rotation only?! Scaling?! Lagrangian / Eulerian? OPEN QUESTION 10

16 Practical recommendations: which reference? Average reference image Given template (preferentially central) Registration template samples Average transformations Guimond et al., CVIU, 2000 Hoogendoorn et al., TMI,

17 Practical recommendations: which reference? Average reference image Given template (preferentially central) Registration template samples Average transformations Iterate Guimond et al., CVIU, 2000 Hoogendoorn et al., TMI,

18 Practical recommendations: which reference? Average reference image Given template (preferentially central) Registration template samples Average transformations Iterate Guimond et al., CVIU, 2000 Hoogendoorn et al., TMI,

19 Practical recommendations: which reference? Average reference image Given template (preferentially central) Registration template samples Average transformations Iterate Guimond et al., CVIU, 2000 Hoogendoorn et al., TMI,

20 Practical recommendations: which reference? Average reference image Given template (preferentially central) Registration template samples Average transformations Iterate Guimond et al., CVIU, 2000 Hoogendoorn et al., IEEE TMI,

21 Practical recommendations: statistics Linear or non-linear? A B A B Trouvé, SAMSI

22 Practical recommendations: statistics Linear or non-linear? A B A B Trouvé, SAMSI 2007 Pennec et al., IJCV, 2006 Known data structure Duchateau, PhD, 2012 Displacements = LARGE transformations (vectors) = is the diffeomorphic property preserved? Deformation / strain = tensors = are the tensor properties preserved? 12

23 Practical recommendations: statistics Linear or non-linear? A B A B Duchateau et al., MedIA, 2012 Trouvé, SAMSI 2007 «Learnable» data structure 13

24 Conclusions ATLAS =??? 1) Geometry = shape information 2) Labels = functional information 3) Built from a population Specific tools before comparing data Temporal alignment Choice of a reference Spatial alignment Careful statistics FULLY conditioned by the APPLICATION 14

25 Acknowledgements 2D/3D atlas of cardiac motion/deformation Mathieu De Craene Gemma Piella Duchateau et al., MedIA, 2012 De Craene et al., ISBI, D atlas of cardiac shape Corné Hoogendoorn Federico Sukno Hoogendoorn et al., IEEE TMI 2013 Available code:

Atlas construction and image analysis using statistical cardiac models

Atlas construction and image analysis using statistical cardiac models Atlas construction and image analysis using statistical cardiac models Mathieu De Craene 1,2, Federico M. Sukno 2,1, Catalina Tobon-Gomez 1,2, Constantine Butakoff 1,2, Rosa M. Figueras i Ventura 1,2,

More information

A bi-ventricular cardiac atlas built from high resolution MR images of healthy subjects and an analysis of shape and motion

A bi-ventricular cardiac atlas built from high resolution MR images of healthy subjects and an analysis of shape and motion A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion Wenjia Bai a,, Wenzhe Shi a, Antonio de Marvao b, Timothy J.W. Dawes b,

More information

Manifold Learning: Applications in Neuroimaging

Manifold Learning: Applications in Neuroimaging Your own logo here Manifold Learning: Applications in Neuroimaging Robin Wolz 23/09/2011 Overview Manifold learning for Atlas Propagation Multi-atlas segmentation Challenges LEAP Manifold learning for

More information

Multi-subject Registration for Unbiased Statistical Atlas Construction

Multi-subject Registration for Unbiased Statistical Atlas Construction Multi-subject Registration for Unbiased Statistical Atlas Construction Mathieu De Craene 1,2,3, Aloys du Bois d Aische 1,2,3, Benoît Macq 1, and Simon K. Warfield 2,3 1 Communications and Remote Sensing

More information

STIC AmSud Project. Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach

STIC AmSud Project. Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach STIC AmSud Project Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach Caroline Petitjean A joint work with Damien Grosgeorge, Pr Su Ruan, Pr JN Dacher, MD October 22,

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Reconstruction of Fiber Trajectories via Population-Based Estimation of Local Orientations

Reconstruction of Fiber Trajectories via Population-Based Estimation of Local Orientations IDEA Reconstruction of Fiber Trajectories via Population-Based Estimation of Local Orientations Pew-Thian Yap, John H. Gilmore, Weili Lin, Dinggang Shen Email: ptyap@med.unc.edu 2011-09-21 Poster: P2-46-

More information

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration

Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration D. Rueckert 1, A.F. Frangi 2,3, and J.A. Schnabel 4 1 Visual Information Processing, Department of Computing, Imperial

More information

Robust Spatio-Temporal Registration of 4D Cardiac Ultrasound Sequences

Robust Spatio-Temporal Registration of 4D Cardiac Ultrasound Sequences Robust Spatio-Temporal Registration of 4D Cardiac Ultrasound Sequences Jørn Bersvendsen a,b,c,matthewtoews d, Adriyana Danudibroto a,e, William M. Wells III f, Stig Urheim g,raúlsanjoséestépar f and Eigil

More information

DURING the last decade, the improvement of medical

DURING the last decade, the improvement of medical IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, NOVEMBER 2009 1 Registration of 4D Cardiac CT Sequences Under Trajectory Constraints With Multichannel Diffeomorphic Demons Jean-Marc Peyrat, Hervé

More information

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Mattias P. Heinrich Julia A. Schnabel, Mark Jenkinson, Sir Michael Brady 2 Clinical

More information

Low-Rank to the Rescue Atlas-based Analyses in the Presence of Pathologies

Low-Rank to the Rescue Atlas-based Analyses in the Presence of Pathologies Low-Rank to the Rescue Atlas-based Analyses in the Presence of Pathologies Xiaoxiao Liu 1, Marc Niethammer 2, Roland Kwitt 3, Matthew McCormick 1, and Stephen Aylward 1 1 Kitware Inc., USA 2 University

More information

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos Measuring longitudinal brain changes in humans and small animal models Christos Davatzikos Section of Biomedical Image Analysis University of Pennsylvania (Radiology) http://www.rad.upenn.edu/sbia Computational

More information

Efficient population registration of 3D data

Efficient population registration of 3D data Efficient population registration of 3D data Lilla Zöllei 1, Erik Learned-Miller 2, Eric Grimson 1, William Wells 1,3 1 Computer Science and Artificial Intelligence Lab, MIT; 2 Dept. of Computer Science,

More information

GLIRT: Groupwise and Longitudinal Image Registration Toolbox

GLIRT: Groupwise and Longitudinal Image Registration Toolbox Software Release (1.0.1) Last updated: March. 30, 2011. GLIRT: Groupwise and Longitudinal Image Registration Toolbox Guorong Wu 1, Qian Wang 1,2, Hongjun Jia 1, and Dinggang Shen 1 1 Image Display, Enhancement,

More information

Registration: Rigid vs. Deformable

Registration: Rigid vs. Deformable Lecture 20 Deformable / Non-Rigid Registration ch. 11 of Insight into Images edited by Terry Yoo, et al. Spring 2017 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by

More information

RIGID IMAGE REGISTRATION

RIGID IMAGE REGISTRATION RIGID IMAGE REGISTRATION Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging duygu.tosun@ucsf.edu What is registration? Image registration

More information

Exercise 12a - Post Processing for Stress/Strain Analysis

Exercise 12a - Post Processing for Stress/Strain Analysis Exercise 12a - Post Processing for Stress/Strain Analysis This tutorial will walk through some of the most basic features of HyperView. Note: The model results used for this tutorial had an unrealistic,

More information

Image Atlas Construction via Intrinsic Averaging on the Manifold of Images

Image Atlas Construction via Intrinsic Averaging on the Manifold of Images Image Atlas Construction via Intrinsic Averaging on the Manifold of Images Yuchen Xie Jeffrey Ho Baba C. Vemuri Department of Computer and Information Sciences and Engineering University of Florida {yxie,jho,vemuri}@cise.ufl.edu

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation Xiahai Zhuang (PhD) Centre for Medical Image Computing University College London Fields-MITACS Conference on Mathematics

More information

Adaptation of multiscale function extension to inexact matching. Application to the mapping of individuals to a learnt manifold.

Adaptation of multiscale function extension to inexact matching. Application to the mapping of individuals to a learnt manifold. Adaptation of multiscale function extension to inexact matching. Application to the mapping of individuals to a learnt manifold. Nicolas Duchateau?1, Mathieu De Craene 2, Marta Sitges 1, and Vicent Caselles

More information

RELATIVE SCALE ESTIMATION AND 3D REGISTRATION OF MULTI-MODAL GEOMETRY USING GROWING LEAST SQUARES

RELATIVE SCALE ESTIMATION AND 3D REGISTRATION OF MULTI-MODAL GEOMETRY USING GROWING LEAST SQUARES RELATIVE SCALE ESTIMATION AND 3D REGISTRATION OF MULTI-MODAL GEOMETRY USING GROWING LEAST SQUARES Nicolas Mellado Matteo Dellepiane Université de Toulouse University College London Visual Computing Lab,

More information

Deformetrica: a software for statistical analysis of anatomical shapes

Deformetrica: a software for statistical analysis of anatomical shapes Deformetrica: a software for statistical analysis of anatomical shapes Alexandre Routier, Marcel Prastawa, Benjamin Charlier, Cédric Doucet, Joan Alexis Glaunès, Stanley Durrleman To cite this version:

More information

BLUT : Fast and Low Memory B-spline Image Interpolation

BLUT : Fast and Low Memory B-spline Image Interpolation BLUT : Fast and Low Memory B-spline Image Interpolation David Sarrut a,b,c, Jef Vandemeulebroucke a,b,c a Université de Lyon, F-69622 Lyon, France. b Creatis, CNRS UMR 5220, F-69622, Villeurbanne, France.

More information

Semantic Context Forests for Learning- Based Knee Cartilage Segmentation in 3D MR Images

Semantic Context Forests for Learning- Based Knee Cartilage Segmentation in 3D MR Images Semantic Context Forests for Learning- Based Knee Cartilage Segmentation in 3D MR Images MICCAI 2013: Workshop on Medical Computer Vision Authors: Quan Wang, Dijia Wu, Le Lu, Meizhu Liu, Kim L. Boyer,

More information

Template Estimation for Large Database : a Diffeomorphic Iterative Centroid Method Using Currents

Template Estimation for Large Database : a Diffeomorphic Iterative Centroid Method Using Currents Template Estimation for Large Database : a Diffeomorphic Iterative Centroid Method Using Currents Claire Cury 12346, Olivier Colliot 1234, and Joan A. Glaunès 5 1 Université Pierre et Marie Curie-Paris

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. Thesis, Electrical Engineering

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. Thesis, Electrical Engineering Recognizing Deformable Shapes Salvador Ruiz Correa Ph.D. Thesis, Electrical Engineering Basic Idea Generalize existing numeric surface representations for matching 3-D objects to the problem of identifying

More information

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation!

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation! Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation Ozan Oktay, Wenzhe Shi, Jose Caballero, Kevin Keraudren, and Daniel Rueckert Department of Compu.ng Imperial

More information

Medical Image Analysis Active Shape Models

Medical Image Analysis Active Shape Models Medical Image Analysis Active Shape Models Mauricio Reyes, Ph.D. mauricio.reyes@istb.unibe.ch ISTB - Institute for Surgical Technology and Biomechanics University of Bern Lecture Overview! Statistical

More information

Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images. Overview. Image Registration

Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images. Overview. Image Registration Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images Overview 1. Part 1: Theory 1. 2. Learning 2. Part 2: Applications ernst.schwartz@meduniwien.ac.at

More information

Dynamic Facial Expression Recognition with Atlas Construction and Sparse Representation

Dynamic Facial Expression Recognition with Atlas Construction and Sparse Representation IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, MONTH XX 1 Dynamic Facial Expression Recognition with Atlas Construction and Sparse Representation Yimo Guo, Guoying Zhao, Senior Member, IEEE, and

More information

Semi-automatic Segmentation of Vertebral Bodies in Volumetric MR Images Using a Statistical Shape+Pose Model

Semi-automatic Segmentation of Vertebral Bodies in Volumetric MR Images Using a Statistical Shape+Pose Model Semi-automatic Segmentation of Vertebral Bodies in Volumetric MR Images Using a Statistical Shape+Pose Model A. Suzani, A. Rasoulian S. Fels, R. N. Rohling P. Abolmaesumi Robotics and Control Laboratory,

More information

Morphological Classification: Application to Cardiac MRI of Tetralogy of Fallot

Morphological Classification: Application to Cardiac MRI of Tetralogy of Fallot Morphological Classification: Application to Cardiac MRI of Tetralogy of Fallot Dong Hye Ye 1, Harold Litt 2,ChristosDavatzikos 1, and Kilian M. Pohl 1 1 SBIA, University of Pennsylvania, Philadelphia,

More information

Volumetric Analysis of the Heart from Tagged-MRI. Introduction & Background

Volumetric Analysis of the Heart from Tagged-MRI. Introduction & Background Volumetric Analysis of the Heart from Tagged-MRI Dimitris Metaxas Center for Computational Biomedicine, Imaging and Modeling (CBIM) Rutgers University, New Brunswick, NJ Collaboration with Dr. Leon Axel,

More information

Anatomical landmark and region mapping based on a template surface deformation for foot bone morphology

Anatomical landmark and region mapping based on a template surface deformation for foot bone morphology Anatomical landmark and region mapping based on a template surface deformation for foot bone morphology Jaeil Kim 1, Sang Gyo Seo 2, Dong Yeon Lee 2, Jinah Park 1 1 Department of Computer Science, KAIST,

More information

MARS: Multiple Atlases Robust Segmentation

MARS: Multiple Atlases Robust Segmentation Software Release (1.0.1) Last updated: April 30, 2014. MARS: Multiple Atlases Robust Segmentation Guorong Wu, Minjeong Kim, Gerard Sanroma, and Dinggang Shen {grwu, mjkim, gerard_sanroma, dgshen}@med.unc.edu

More information

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images Jianhua Yao 1, Russell Taylor 2 1. Diagnostic Radiology Department, Clinical Center,

More information

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang Deformable Segmentation using Sparse Shape Representation Shaoting Zhang Introduction Outline Our methods Segmentation framework Sparse shape representation Applications 2D lung localization in X-ray 3D

More information

Mapping the Effects of Aβ 1 42 Levels on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity Fields

Mapping the Effects of Aβ 1 42 Levels on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity Fields Mapping the Effects of Aβ 142 Levels on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity Fields Marco Lorenzi 1,2, Nicholas Ayache 1, Giovanni B Frisoni 2,

More information

Anatomy-Preserving Nonlinear Registration of Deep Brain ROIs Using Confidence-Based Block-Matching

Anatomy-Preserving Nonlinear Registration of Deep Brain ROIs Using Confidence-Based Block-Matching Anatomy-Preserving Nonlinear Registration of Deep Brain ROIs Using Confidence-Based Block-Matching Manik Bhattacharjee 1,2, Alain Pitiot 3,AlexisRoche 4, Didier Dormont 1,2, and Eric Bardinet 1,2,5 1 CNRS

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

Image segmentation with a statistical shape prior

Image segmentation with a statistical shape prior Image segmentation with a statistical shape prior Arturo Mendoza Quispe & Caroline Petitjean October 26, 2015 Shape prior based image segmentation Foulonneau 04 Sans a priori Avec a priori Etyngier 07

More information

Generation of ultra-realistic synthetic echocardiographic sequences

Generation of ultra-realistic synthetic echocardiographic sequences Generation of ultra-realistic synthetic echocardiographic sequences Mathieu De Craene, Martino Alessandrini, Pascal Allain, Stephanie Marchesseau, I Waechter-Stehle, J Weese, E Saloux, H. G. Morales, R

More information

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age Version 1.0 UNC 4D infant cortical surface atlases from neonate to 6 years of age contain 11 time points, including 1, 3, 6, 9, 12,

More information

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011 Auto-Segmentation Using Deformable Image Registration Lei Dong, Ph.D. Dept. of Radiation Physics University of Texas MD Anderson Cancer Center, Houston, Texas AAPM Therapy Educational Course Aug. 4th 2011

More information

Topology-preserving transformations of discrete images in the cubic grid. Recent results and open problems.

Topology-preserving transformations of discrete images in the cubic grid. Recent results and open problems. Topology-preserving transformations of discrete images in the cubic grid. Recent results and open problems. Nicolas Passat LSIIT - UMR CNRS 7005, Université de Strasbourg, France DGCV 2010, Paris, 23 24

More information

Non-Rigid Image Registration III

Non-Rigid Image Registration III Non-Rigid Image Registration III CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS6240) Non-Rigid Image Registration

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE Recognizing Deformable Shapes Salvador Ruiz Correa Ph.D. UW EE Input 3-D Object Goal We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

More information

Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net

Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net Marc-Michel Rohé, Maxime Sermesant, Xavier Pennec To cite this version: Marc-Michel Rohé, Maxime Sermesant, Xavier Pennec. Automatic Multi-Atlas

More information

STATISTICS AND ANALYSIS OF SHAPE

STATISTICS AND ANALYSIS OF SHAPE Control and Cybernetics vol. 36 (2007) No. 2 Book review: STATISTICS AND ANALYSIS OF SHAPE by H. Krim, A. Yezzi, Jr., eds. There are numerous definitions of a notion of shape of an object. These definitions

More information

Spatial normalization of injured brains for neuroimaging research: An illustrative introduction of available options

Spatial normalization of injured brains for neuroimaging research: An illustrative introduction of available options Spatial normalization of injured brains for neuroimaging research: An illustrative introduction of available options Junghoon Kim, PhD, Brian Avants, PhD, Sunil Patel, MS, and John Whyte, MD, PhD 1 Recent

More information

Synthetic Echocardiographic Image Sequences for Cardiac Inverse Electro-Kinematic Learning

Synthetic Echocardiographic Image Sequences for Cardiac Inverse Electro-Kinematic Learning Synthetic Echocardiographic Image Sequences for Cardiac Inverse Electro-Kinematic Learning Adityo Prakosa 1, Maxime Sermesant 1, Hervé Delingette 1, Eric Saloux 2, Pascal Allain 3, Pascal Cathier 3, Patrick

More information

Direct Registration of White Matter Tractographies with Application to Atlas Construction

Direct Registration of White Matter Tractographies with Application to Atlas Construction Direct Registration of White Matter Tractographies with Application to Atlas Construction Arnaldo Mayer, Hayit Greenspan Medical image processing lab, Tel-Aviv University, Ramat-Aviv, Israel arnakdom@post.tau.ac.il,

More information

Gadgetron implementation for PET/MR motion correction

Gadgetron implementation for PET/MR motion correction implementation for motion correction Thomas Küstner School of Biomedical Engineering & Imaging Sciences, King s College London, St. Thomas Hospital, London, UK Dept. of Diagnostic and Interventional Radiology,

More information

Reconstruction of Detailed Left Ventricle Motion from tmri Using Deformable Models

Reconstruction of Detailed Left Ventricle Motion from tmri Using Deformable Models Reconstruction of Detailed Left Ventricle Motion from tmri Using Deformable Models Xiaoxu Wang 1, Joel Schaerer 2, Suejung Huh 1, Zhen Qian 1, Dimitis Metaxas 1, Ting Chen 3, and Leon Axel 3 1 Rutgers

More information

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department of Radiology, University

More information

SVF-Net: Learning Deformable Image Registration Using Shape Matching

SVF-Net: Learning Deformable Image Registration Using Shape Matching SVF-Net: Learning Deformable Image Registration Using Shape Matching Marc-Michel Rohé, Manasi Datar, Tobias Heimann, Maxime Sermesant, Xavier Pennec To cite this version: Marc-Michel Rohé, Manasi Datar,

More information

Construction of Left Ventricle 3D Shape Atlas from Cardiac MRI

Construction of Left Ventricle 3D Shape Atlas from Cardiac MRI Construction of Left Ventricle 3D Shape Atlas from Cardiac MRI Shaoting Zhang 1, Mustafa Uzunbas 1, Zhennan Yan 1, Mingchen Gao 1, Junzhou Huang 1, Dimitris N. Metaxas 1, and Leon Axel 2 1 Rutgers, the

More information

Atlas Construction and Sparse Representation for the Recognition of Facial Expression

Atlas Construction and Sparse Representation for the Recognition of Facial Expression This work by IJARBEST is licensed under a Creative Commons Attribution 4.0 International License. Available at: https://www.ijarbest.com/ Atlas Construction and Sparse Representation for the Recognition

More information

Semi-automated Basal Ganglia Segmentation Using Large Deformation Diffeomorphic Metric Mapping

Semi-automated Basal Ganglia Segmentation Using Large Deformation Diffeomorphic Metric Mapping Semi-automated Basal Ganglia Segmentation Using Large Deformation Diffeomorphic Metric Mapping Ali Khan 1, Elizabeth Aylward 2, Patrick Barta 3, Michael Miller 4,andM.FaisalBeg 1 1 School of Engineering

More information

A global issue in Computer Vision and Cognitive&Physiology Vision (

A global issue in Computer Vision and Cognitive&Physiology Vision ( Motion A global issue in Computer Vision and Cognitive&Physiology Vision (http://www.institut-vision.org/index.php?lang=en) Are we working on real videos in which spatial redundancy is pre-processed? Much

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/1/eaao7005/dc1 Supplementary Materials for Computational discovery of extremal microstructure families The PDF file includes: Desai Chen, Mélina Skouras, Bo Zhu,

More information

Morphological Analysis of Brain Structures Using Spatial Normalization

Morphological Analysis of Brain Structures Using Spatial Normalization Morphological Analysis of Brain Structures Using Spatial Normalization C. Davatzikos 1, M. Vaillant 1, S. Resnick 2, J.L. Prince 3;1, S. Letovsky 1, and R.N. Bryan 1 1 Department of Radiology, Johns Hopkins

More information

method for prostate segmentation of Magnetic Resonance Images Methods: The method is based on the registration of an anatomical atlas

method for prostate segmentation of Magnetic Resonance Images Methods: The method is based on the registration of an anatomical atlas myjournal manuscript No. (will be inserted by the editor) Atlas-Based Prostate Segmentation Using an Hybrid Registration Sébastien Martin 1, Vincent Daneen 2, Jocelyne Troccaz 1 1 Laboratoire TIMC-IMAG,

More information

Auto-contouring the Prostate for Online Adaptive Radiotherapy

Auto-contouring the Prostate for Online Adaptive Radiotherapy Auto-contouring the Prostate for Online Adaptive Radiotherapy Yan Zhou 1 and Xiao Han 1 Elekta Inc., Maryland Heights, MO, USA yan.zhou@elekta.com, xiao.han@elekta.com, Abstract. Among all the organs under

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa UW Ph.D. Graduate Researcher at Children s Hospital

Recognizing Deformable Shapes. Salvador Ruiz Correa UW Ph.D. Graduate Researcher at Children s Hospital Recognizing Deformable Shapes Salvador Ruiz Correa UW Ph.D. Graduate Researcher at Children s Hospital Input 3-D Object Goal We are interested in developing algorithms for recognizing and classifying deformable

More information

Prediction of infarct localization from myocardial deformation

Prediction of infarct localization from myocardial deformation Prediction of infarct localization from myocardial deformation Nicolas Duchateau, Maxime Sermesant To cite this version: Nicolas Duchateau, Maxime Sermesant. Prediction of infarct localization from myocardial

More information

Optimization of Brain Conformal Mapping with Landmarks

Optimization of Brain Conformal Mapping with Landmarks Optimization of Brain Conformal Mapping with Landmarks Yalin Wang 1,LokMingLui 1,TonyF.Chan 1, and Paul M. Thompson 2 Mathematics Department, UCLA, Los Angeles, CA 90095, USA Lab. of Neuro Imaging, UCLA

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa (CSE/EE576 Computer Vision I)

Recognizing Deformable Shapes. Salvador Ruiz Correa (CSE/EE576 Computer Vision I) Recognizing Deformable Shapes Salvador Ruiz Correa (CSE/EE576 Computer Vision I) Input 3-D Object Goal We are interested in developing algorithms for recognizing and classifying deformable object shapes

More information

Probabilistic Registration of 3-D Medical Images

Probabilistic Registration of 3-D Medical Images Probabilistic Registration of 3-D Medical Images Mei Chen, Takeo Kanade, Dean Pomerleau, Jeff Schneider CMU-RI-TR-99-16 The Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 1513 July,

More information

Retrospective Evaluation of Inter-subject Brain Registration

Retrospective Evaluation of Inter-subject Brain Registration Retrospective Evaluation of Inter-subject Brain Registration P. Hellier 1, C. Barillot 1, I. Corouge 1,B.Gibaud 2, G. Le Goualher 2,3, L. Collins 3, A. Evans 3, G. Malandain 4, and N. Ayache 4 1 Projet

More information

Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images

Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images Sarah Parisot 1,2,3, Hugues Duffau 4, Stéphane Chemouny 3, Nikos Paragios 1,2 1. Center for Visual Computing, Ecole Centrale

More information

4D Auto MVQ (Mitral Valve Quantification)

4D Auto MVQ (Mitral Valve Quantification) 4D Auto MVQ (Mitral Valve Quantification) Federico Veronesi, Glenn Reidar Lie, Stein Inge Rabben GE Healthcare Introduction As the number of mitral valve repairs is on the rise, so is the need for mitral

More information

by Mahender Reddy Concept To Reality / Summer 2006

by Mahender Reddy Concept To Reality / Summer 2006 by Mahender Reddy Demand for higher extrusion rates, increased product quality and lower energy consumption have prompted plants to use various methods to determine optimum process conditions and die designs.

More information

3D Statistical Shape Model Building using Consistent Parameterization

3D Statistical Shape Model Building using Consistent Parameterization 3D Statistical Shape Model Building using Consistent Parameterization Matthias Kirschner, Stefan Wesarg Graphisch Interaktive Systeme, TU Darmstadt matthias.kirschner@gris.tu-darmstadt.de Abstract. We

More information

RESEARCH STATEMENT Ronald Lok Ming Lui

RESEARCH STATEMENT Ronald Lok Ming Lui Ronald Lok Ming Lui 1/11 RESEARCH STATEMENT Ronald Lok Ming Lui (malmlui@math.harvard.edu) The main focus of my research has been on problems in computational conformal geometry and human brain mapping.

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

AUTO-ENCODING OF DISCRIMINATING MORPHOMETRY FROM CARDIAC MRI

AUTO-ENCODING OF DISCRIMINATING MORPHOMETRY FROM CARDIAC MRI AUTO-ENCODING OF DISCRIMINATING MORPHOMETRY FROM CARDIAC MRI Dong Hye Ye 1, Benoit Desjardins 2, Victor Ferrari 2, Dimitris Metaxas 3, Kilian M. Pohl 4 Department of Electrical and Computer Engineering,

More information

Shape Registration with Spherical Cross Correlation

Shape Registration with Spherical Cross Correlation Shape Registration with Spherical Cross Correlation Boris Gutman 1,2 {bgutman@ucla.edu}, Yalin Wang 1,2, Tony Chan 1, Paul M. Thompson 2, and Arthur W. Toga 2 1 UCLA Department of Mathematics 2 UCLA Laboratory

More information

Improving Segmentation of the Left Ventricle using a Two-Component Statistical Model

Improving Segmentation of the Left Ventricle using a Two-Component Statistical Model Improving Segmentation of the Left Ventricle using a Two-Component Statistical Model Sebastian Zambal, Jiří Hladůvka, and Katja Bühler VRVis Research Center for Virtual Reality and Visualization, Donau-City-Strasse

More information

Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography

Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography Burak Erem 1, Gregory C. Sharp 2, Ziji Wu 2, and David Kaeli 1 1 Department of Electrical and Computer Engineering,

More information

Image Registration I

Image Registration I Image Registration I Comp 254 Spring 2002 Guido Gerig Image Registration: Motivation Motivation for Image Registration Combine images from different modalities (multi-modality registration), e.g. CT&MRI,

More information

Weighted Functional Boxplot with Application to Statistical Atlas Construction

Weighted Functional Boxplot with Application to Statistical Atlas Construction Weighted Functional Boxplot with Application to Statistical Atlas Construction Yi Hong 1, Brad Davis 3, J.S. Marron 1, Roland Kwitt 3, Marc Niethammer 1,2 1 University of North Carolina (UNC) at Chapel

More information

4D Cardiac Reconstruction Using High Resolution CT Images

4D Cardiac Reconstruction Using High Resolution CT Images 4D Cardiac Reconstruction Using High Resolution CT Images Mingchen Gao 1, Junzhou Huang 1, Shaoting Zhang 1, Zhen Qian 2, Szilard Voros 2, Dimitris Metaxas 1, and Leon Axel 3 1 CBIM Center, Rutgers University,

More information

Martino Alessandrini, Brecht Heyde, Szymon Cygan, Maxime Sermesant, Hervé Delingette, Olivier Bernard, De Craene, Jan D Hooge

Martino Alessandrini, Brecht Heyde, Szymon Cygan, Maxime Sermesant, Hervé Delingette, Olivier Bernard, De Craene, Jan D Hooge Elastic registration vs. block matching for quantification of cardiac function with 3D ultrasound: Initial results of a direct comparison in silico based on a new evaluation pipeline Martino Alessandrini,

More information

Surgery Simulation and Planning

Surgery Simulation and Planning Surgery Simulation and Planning S. H. Martin Roth Dr. Rolf M. Koch Daniel Bielser Prof. Dr. Markus Gross Facial surgery project in collaboration with Prof. Dr. Dr. H. Sailer, University Hospital Zurich,

More information

Multi-atlas labeling with population-specific template and non-local patch-based label fusion

Multi-atlas labeling with population-specific template and non-local patch-based label fusion Multi-atlas labeling with population-specific template and non-local patch-based label fusion Vladimir Fonov, Pierrick Coupé, Simon Eskildsen, Jose Manjon, Louis Collins To cite this version: Vladimir

More information

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION Ms. Vaibhavi Nandkumar Jagtap 1, Mr. Santosh D. Kale 2 1 PG Scholar, 2 Assistant Professor, Department of Electronics and Telecommunication,

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

Automatic Model-Based Segmentation of Medical Images

Automatic Model-Based Segmentation of Medical Images Automatic Model-Based Segmentation of Medical Images Cristian Lorenz Jochen Peters, Fabian Wenzel, Jürgen Weese May 26 th 2014 Need Medical imaging systems produce a huge amount of patient images with

More information

Manifold Learning-based Data Sampling for Model Training

Manifold Learning-based Data Sampling for Model Training Manifold Learning-based Data Sampling for Model Training Shuqing Chen 1, Sabrina Dorn 2, Michael Lell 3, Marc Kachelrieß 2,Andreas Maier 1 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg 2 German Cancer

More information

NUMERICAL COUPLING BETWEEN DEM (DISCRETE ELEMENT METHOD) AND FEA (FINITE ELEMENTS ANALYSIS).

NUMERICAL COUPLING BETWEEN DEM (DISCRETE ELEMENT METHOD) AND FEA (FINITE ELEMENTS ANALYSIS). NUMERICAL COUPLING BETWEEN DEM (DISCRETE ELEMENT METHOD) AND FEA (FINITE ELEMENTS ANALYSIS). Daniel Schiochet Nasato - ESSS Prof. Dr. José Roberto Nunhez Unicamp Dr. Nicolas Spogis - ESSS Fabiano Nunes

More information

Multimodal Elastic Image Matching

Multimodal Elastic Image Matching Research results based on my diploma thesis supervised by Prof. Witsch 2 and in cooperation with Prof. Mai 3. 1 February 22 nd 2011 1 Karlsruhe Institute of Technology (KIT) 2 Applied Mathematics Department,

More information

On the Manifold Structure of the Space of Brain Images

On the Manifold Structure of the Space of Brain Images On the Manifold Structure of the Space of Brain Images Samuel Gerber, Tolga Tasdizen, Sarang Joshi, and Ross Whitaker Scientific Computing and Imaging Institute, University of Utah, USA, sgerber@cs.utah.edu

More information

Low-rank Atlas Image Analyses in the Presence of Pathologies

Low-rank Atlas Image Analyses in the Presence of Pathologies JOURNAL OF L A TEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2014 1 Low-rank Atlas Image Analyses in the Presence of Pathologies Xiaoxiao Liu, Marc Niethammer, Roland Kwitt, Nikhil Singh, Matt McCormick, Stephen

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information