Automatic Dense Semantic Mapping From Visual Street-level Imagery

Size: px
Start display at page:

Download "Automatic Dense Semantic Mapping From Visual Street-level Imagery"

Transcription

1 Automatic Dense Semantic Mapping From Visual Street-level Imagery Sunando Sengupta [1], Paul Sturgess [1], Lubor Ladicky [2], Phillip H.S. Torr [1] [1] Oxford Brookes University [2] Visual Geometry Group, Oxford University 1

2 Dense Semantic Map Generate an overhead view of an urban region. Label every pixel in the Map View is associated with an object class label Pavement Car Pedestrian Bollard Shop Sign Sky Post 2 Vegetation Tree Signage Road Building Fence

3 Dense Semantic Map Street images captured inexpensively from vehicle with multiple mounted camera [1]. [1] Yotta. DCL, Yotta dcl case studies, Available: 3

4 Semantic Mapping Framework Street level Images acquisition Semantic mapping framework comprises of two stages 4

5 Semantic Mapping Framework Street level Images acquisition Image Segmentation Semantic mapping framework comprises of two stages Semantic Image Segmentation at street level. 5

6 Semantic Mapping Framework Street level Images acquisition Image Segmentation Semantic mapping framework comprises of two stages Semantic Image Segmentation at street level. Ground Plane Labelling at a global level. Ground plane labelling One of the first attempts to do dense overhead mapping from street level images. 6

7 Semantic Image Segmentation Label every pixel in the image with an object class Input Output Automatic Labeller Raw Image Labelled Image Pavement Car Pedestrian Bollard Shop Sign Sky Post Vegetation Tree Signage Road Object Class Labels Building Fence 7

8 Semantic Image Segmentation We use Conditional Random Field Framework (CRF) CRF construction Input Image X Final Segmentation Each pixel is a node in a grid graph G = (V,E). Each node is a random variable x taking a label from label set. 8

9 Semantic Image Segmentation - CRF Total energy Optimal labelling given as 9 C c c c N j V i j i ij V i i i i x x x E ) ( ), ( ) ( ) (, x x E pix E pair E region

10 Semantic Image Segmentation - CRF Total energy E = E pix + E pair + E region E pix - Model individual pixel s cost of taking a label. Computed via the dense boosting approach Multi feature variant of texton boost [1] Car 0.2 Road 0.3 x [1] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr, Associative hierarchical crfs for object class image segmentation, in ICCV,

11 Semantic Image Segmentation - CRF Total energy E = E pix + E pair + E region E pair - Model each pixel neighbourhood interactions. Encourages label consistency in adjacent pixels Sensitive to edges in images. Contrast sensitive Potts model Car Road x i 0 g(i,j) Car Road x j E pair 11

12 Semantic Image Segmentation - CRF Total energy E = E pix + E pair + E region E region - Model behaviour of a group of pixels. Classify a region Encourages all the pixels in a region to take the same label. Group of pixels given by a multiple meanshift segmentations Car 0.3 Road 0.1 c 12

13 Semantic Image Segmentation Solved using alpha-expansion algorithm [1] Input Image Road Expansion Pavement Car Pedestrian Bollard Shop Sign Sky Post Vegetation Tree Signage Road Building Fence [1] Fast Approximate Energy Minimization via Graph Cuts. Yuri Boykov et al. ICCV 99 13

14 Semantic Image Segmentation Solved using alpha-expansion algorithm [1] Input Image Building Expansion Pavement Car Pedestrian Bollard Shop Sign Sky Post Vegetation Tree Signage Road Building Fence [1] Fast Approximate Energy Minimization via Graph Cuts. Yuri Boykov et al. ICCV 99 14

15 Semantic Image Segmentation Solved using alpha-expansion algorithm [1] Input Image Sky Expansion Pavement Car Pedestrian Bollard Shop Sign Sky Post Vegetation Tree Signage Road Building Fence [1] Fast Approximate Energy Minimization via Graph Cuts. Yuri Boykov et al. ICCV 99 15

16 Semantic Image Segmentation Solved using alpha-expansion algorithm [1] Input Image Pavement Expansion Pavement Car Pedestrian Bollard Shop Sign Sky Post Vegetation Tree Signage Road Building Fence [1] Fast Approximate Energy Minimization via Graph Cuts. Yuri Boykov et al. ICCV 99 16

17 Semantic Image Segmentation Solved using alpha-expansion algorithm [1] Input Image Final solution Pavement Car Pedestrian Bollard Shop Sign Sky Post Vegetation Tree Signage Road Building Fence [1] Fast Approximate Energy Minimization via Graph Cuts. Yuri Boykov et al. ICCV 99 17

18 Ground Plane Labelling Combine many labellings from street level imagery. Input Output Automatic Labeller Street Level labellings Labelled Ground Plane 18

19 Ground Plane CRF A CRF defined over the ground plane. Each ground plane pixel (zi) is a random variable taking a label from the label set. Energy for ground plane crf is E g ( Z) E g pix E g pair Z 19

20 Ground Plane Pixel Cost K X Z We assume a flat world. 20

21 Ground Plane Pixel Cost K X Z Homography Road Pavement Post/Pole A ground plane region is estimated. 21

22 Ground Plane Pixel Cost K X Z Homography Road Pavement Post/Pole Each point in the image projects to a unique point on the ground plane. Creating a homography 22

23 Ground Plane Pixel Cost K X Z Homography Road Pavement Post/Pole The image labelling is mapped to the ground plane via the homography. Ground plane Pixel histograms 23

24 Ground Plane Pixel Cost K X Z Homography Road Pavement Post/Pole Ground plane Pixel histograms Labels projected from many views are combined in a histogram. The normalised histogram gives the naïve probability of the ground plane pixel taking a label. 24

25 Ground Plane Pixel Cost K X Z Homography Road Pavement Post/Pole Ground plane Pixel histograms Labels projected from many views are combined in a histogram. The normalised histogram gives the naïve probability of the ground plane pixel taking a label. 25

26 Ground Plane labelling Histogram is built for every ground plane pixel giving E g pix Pairwise cost (E g pair) added to induce smoothness Contrast sensitive potts model Z

27 Ground Plane labelling Final CRF solution obtained using alpha expansion. Void

28 Ground Plane labelling Final CRF solution obtained using alpha expansion. Road expansion

29 Ground Plane labelling Final CRF solution obtained using alpha expansion. Building expansion

30 Ground Plane labelling Final CRF solution obtained using alpha expansion. Pavement expansion

31 Ground Plane labelling Final CRF solution obtained using alpha expansion. Car expansion

32 Ground Plane Labelling Final CRF solution obtained using alpha expansion. Final Solution

33 Dataset Subset of the images captured by the van 14.8 km of track, 8000 images from each camera. Pixel-level labelled ground truth images. Dataset available [1]. 13 object categories Pavement Car Pedestrian Bollard Shop Sign Sky Post Vegetation Tree Signage Road Building Fence Training - 44 images, testing - 42 images. [1] 33

34 SIS Results Input Semantic segmentation Ground Truth Pavement Car Pedestrian Bollard Shop Sign Sky Post Vegetation Tree Signage Road Building Fence Input Images, output of our image level CRF, ground truths. Used Automatic Labelling environment [1] [1] The Automatic Labelling Environment, L Ladicky, PHS Torr. Code available 34

35 Semantic Map Results Semantic map of Pembroke city 35

36 Ground plane Map Evaluation Street Images Back-projected Map results Ground Truth We back-project the ground plane map into image domain and evaluate the results. Global pixel accuracy of 82.9% 36

37 Results 37

38 Conclusions Presented a method to generate overhead view semantic mapping. Experiments on large tracks (~15km) which can be scaled up to country wide mapping Dataset available [1]. [1] 38

39 Future Work Perform a 3D street level semantic mapping and reconstruction. Add detailed street level information like information boards, traffic boards etc. Thank you!!! Oxford Brookes Vision group Oxford Brookes University 39

40

41 41

42 42

43 43

44 Ground Plane Pixel Cost K X Multi-view Z Homography Road Pavement Post/Pole Single view Using single view will create a shadow effect for objects violating flat world assumption and wrong label estimate 44

Combining Appearance and Structure from Motion Features for Road Scene Understanding

Combining Appearance and Structure from Motion Features for Road Scene Understanding STURGESS et al.: COMBINING APPEARANCE AND SFM FEATURES 1 Combining Appearance and Structure from Motion Features for Road Scene Understanding Paul Sturgess paul.sturgess@brookes.ac.uk Karteek Alahari karteek.alahari@brookes.ac.uk

More information

Semantic Mapping of Road Scenes

Semantic Mapping of Road Scenes Semantic Mapping of Road Scenes Sunando Sengupta Thesis submitted in partial fulfilment of the requirements of the award of Doctor of Philosophy Oxford Brookes University 2014 Abstract The problem of understanding

More information

Region-based Segmentation and Object Detection

Region-based Segmentation and Object Detection Region-based Segmentation and Object Detection Stephen Gould Tianshi Gao Daphne Koller Presented at NIPS 2009 Discussion and Slides by Eric Wang April 23, 2010 Outline Introduction Model Overview Model

More information

Scalable Cascade Inference for Semantic Image Segmentation

Scalable Cascade Inference for Semantic Image Segmentation STURGESS et al.: SCALABLE CASCADE INFERENCE 1 Scalable Cascade Inference for Semantic Image Segmentation Paul Sturgess 1 paul.sturgess@brookes.ac.uk L ubor Ladický 2 lubor@robots.ox.ac.uk Nigel Crook 1

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Multi-Class Image Labeling with Top-Down Segmentation and Generalized Robust P N Potentials

Multi-Class Image Labeling with Top-Down Segmentation and Generalized Robust P N Potentials FLOROS ET AL.: MULTI-CLASS IMAGE LABELING WITH TOP-DOWN SEGMENTATIONS 1 Multi-Class Image Labeling with Top-Down Segmentation and Generalized Robust P N Potentials Georgios Floros 1 floros@umic.rwth-aachen.de

More information

Mesh Based Semantic Modelling for Indoor and Outdoor Scenes

Mesh Based Semantic Modelling for Indoor and Outdoor Scenes 2013 IEEE Conference on Computer Vision and Pattern Recognition Mesh Based Semantic Modelling for Indoor and Outdoor Scenes Julien P. C. Valentin 1,3 Sunando Sengupta 1,3 Jonathan Warrell 1 Ali Shahrokni

More information

POST PROCESSING VOTING TECHNIQUES FOR LOCAL STEREO MATCHING

POST PROCESSING VOTING TECHNIQUES FOR LOCAL STEREO MATCHING STUDIA UNIV. BABEŞ BOLYAI, INFORMATICA, Volume LIX, Number 1, 2014 POST PROCESSING VOTING TECHNIQUES FOR LOCAL STEREO MATCHING ALINA MIRON Abstract. In this paper we propose two extensions to the Disparity

More information

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah Graph Cuts Srikumar Ramalingam School o Computing University o Utah Outline Introduction Pseudo-Boolean Functions Submodularity Max-low / Min-cut Algorithm Alpha-Expansion Segmentation Problem [Boykov

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Decomposing a Scene into Geometric and Semantically Consistent Regions

Decomposing a Scene into Geometric and Semantically Consistent Regions Decomposing a Scene into Geometric and Semantically Consistent Regions Stephen Gould sgould@stanford.edu Richard Fulton rafulton@cs.stanford.edu Daphne Koller koller@cs.stanford.edu IEEE International

More information

Joint Semantic and Geometric Segmentation of Videos with a Stage Model

Joint Semantic and Geometric Segmentation of Videos with a Stage Model Joint Semantic and Geometric Segmentation of Videos with a Stage Model Buyu Liu ANU and NICTA Canberra, ACT, Australia buyu.liu@anu.edu.au Xuming He NICTA and ANU Canberra, ACT, Australia xuming.he@nicta.com.au

More information

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah Graph Cuts Srikumar Ramalingam School o Computing University o Utah Outline Introduction Pseudo-Boolean Functions Submodularity Max-low / Min-cut Algorithm Alpha-Expansion Segmentation Problem [Boykov

More information

Joint 2D-3D Temporally Consistent Semantic Segmentation of Street Scenes

Joint 2D-3D Temporally Consistent Semantic Segmentation of Street Scenes Joint 2D-3D Temporally Consistent Semantic Segmentation of Street Scenes Georgios Floros and Bastian Leibe UMIC Research Centre RWTH Aachen University, Germany {floros,leibe}@umic.rwth-aachen.de Abstract

More information

Acquiring Semantics Induced Topology in Urban Environments

Acquiring Semantics Induced Topology in Urban Environments 2012 IEEE International Conference on Robotics and Automation RiverCentre, Saint Paul, Minnesota, USA May 14-18, 2012 Acquiring Semantics Induced Topology in Urban Environments Gautam Singh and Jana Košecká

More information

Nonparametric Semantic Segmentation for 3D Street Scenes

Nonparametric Semantic Segmentation for 3D Street Scenes 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 2013. Tokyo, Japan Nonparametric Semantic Segmentation for 3D Street Scenes Hu He and Ben Upcroft Abstract

More information

Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley

Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction CVPR 2017 Tutorial Christian Häne UC Berkeley Dense Multi-View Reconstruction Goal: 3D Model from Images (Depth

More information

Simultaneous Multi-class Pixel Labeling over Coherent Image Sets

Simultaneous Multi-class Pixel Labeling over Coherent Image Sets Simultaneous Multi-class Pixel Labeling over Coherent Image Sets Paul Rivera Research School of Computer Science Australian National University Canberra, ACT 0200 Stephen Gould Research School of Computer

More information

2 OVERVIEW OF RELATED WORK

2 OVERVIEW OF RELATED WORK Utsushi SAKAI Jun OGATA This paper presents a pedestrian detection system based on the fusion of sensors for LIDAR and convolutional neural network based image classification. By using LIDAR our method

More information

Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images

Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images Andreas C. Müller and Sven Behnke Abstract We present a structured learning approach to semantic annotation

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Semantic Segmentation with Heterogeneous Sensor Coverages

Semantic Segmentation with Heterogeneous Sensor Coverages Semantic Segmentation with Heterogeneous Sensor Coverages Cesar Cadena and Jana Košecká (a) (b) (c) (d) Fig. 1: Our novel semantic parsing approach can seamlessly integrate evidence from multiple sensors

More information

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence CS4495/6495 Introduction to Computer Vision 3B-L3 Stereo correspondence For now assume parallel image planes Assume parallel (co-planar) image planes Assume same focal lengths Assume epipolar lines are

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL Part III Jinglu Wang Urban Scene Segmentation, Recognition and Remodeling 102 Outline Introduction Related work Approaches Conclusion and future work o o - - ) 11/7/16 103 Introduction Motivation Motivation

More information

Supplementary Material for: Road Detection using Convolutional Neural Networks

Supplementary Material for: Road Detection using Convolutional Neural Networks Supplementary Material for: Road Detection using Convolutional Neural Networks Aparajit Narayan 1, Elio Tuci 2, Frédéric Labrosse 1, Muhanad H. Mohammed Alkilabi 1 1 Aberystwyth University, 2 Middlesex

More information

Training models for road scene understanding with automated ground truth Dan Levi

Training models for road scene understanding with automated ground truth Dan Levi Training models for road scene understanding with automated ground truth Dan Levi With: Noa Garnett, Ethan Fetaya, Shai Silberstein, Rafi Cohen, Shaul Oron, Uri Verner, Ariel Ayash, Kobi Horn, Vlad Golder,

More information

What, Where & How Many? Combining Object Detectors and CRFs

What, Where & How Many? Combining Object Detectors and CRFs What, Where & How Many? Combining Object Detectors and CRFs Lubor Ladicky, Paul Sturgess, Karteek Alahari, Chris Russell, and Philip H.S. Torr Oxford Brookes University http://cms.brookes.ac.uk/research/visiongroup

More information

HOG-based Pedestriant Detector Training

HOG-based Pedestriant Detector Training HOG-based Pedestriant Detector Training evs embedded Vision Systems Srl c/o Computer Science Park, Strada Le Grazie, 15 Verona- Italy http: // www. embeddedvisionsystems. it Abstract This paper describes

More information

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5)

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5) Announcements Stereo Project 2 due today Project 3 out today Single image stereogram, by Niklas Een Readings Szeliski, Chapter 10 (through 10.5) Public Library, Stereoscopic Looking Room, Chicago, by Phillips,

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Scene Understanding From a Moving Camera for Object Detection and Free Space Estimation

Scene Understanding From a Moving Camera for Object Detection and Free Space Estimation Scene Understanding From a Moving Camera for Object Detection and Free Space Estimation Vladimir Haltakov, Heidrun Belzner and Slobodan Ilic Abstract Modern vehicles are equipped with multiple cameras

More information

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from?

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from? Binocular Stereo Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the depth information come from? Binocular stereo Given a calibrated binocular stereo

More information

Measuring the World: Designing Robust Vehicle Localization for Autonomous Driving. Frank Schuster, Dr. Martin Haueis

Measuring the World: Designing Robust Vehicle Localization for Autonomous Driving. Frank Schuster, Dr. Martin Haueis Measuring the World: Designing Robust Vehicle Localization for Autonomous Driving Frank Schuster, Dr. Martin Haueis Agenda Motivation: Why measure the world for autonomous driving? Map Content: What do

More information

Semantic Motion Segmentation Using Dense CRF Formulation

Semantic Motion Segmentation Using Dense CRF Formulation Semantic Motion Segmentation Using Dense CRF Formulation N Dinesh Reddy Robotics Research Center IIIT Hyderabad, India Prateek Singhal Robotics Research Center IIIT Hyderabad, India K Madhava Krishna Robotics

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Semantic Video Segmentation From Occlusion Relations Within a Convex Optimization Framework

Semantic Video Segmentation From Occlusion Relations Within a Convex Optimization Framework Semantic Video Segmentation From Occlusion Relations Within a Convex Optimization Framework Brian Taylor, Alper Ayvaci, Avinash Ravichandran, and Stefano Soatto University of California, Los Angeles Honda

More information

Segmentation Based Stereo. Michael Bleyer LVA Stereo Vision

Segmentation Based Stereo. Michael Bleyer LVA Stereo Vision Segmentation Based Stereo Michael Bleyer LVA Stereo Vision What happened last time? Once again, we have looked at our energy function: E ( D) = m( p, dp) + p I < p, q > We have investigated the matching

More information

Convex Optimization for Scene Understanding

Convex Optimization for Scene Understanding Convex Optimization for Scene Understanding Mohamed Souiai 1, Claudia Nieuwenhuis 2, Evgeny Strekalovskiy 1 and Daniel Cremers 1 1 Technical University of Munich 2 UC Berkeley, ICSI, USA Abstract In this

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

Exploiting Sparsity for Real Time Video Labelling

Exploiting Sparsity for Real Time Video Labelling 2013 IEEE International Conference on Computer Vision Workshops Exploiting Sparsity for Real Time Video Labelling Lachlan Horne, Jose M. Alvarez, and Nick Barnes College of Engineering and Computer Science,

More information

Turgay Senlet ALL RIGHTS RESERVED

Turgay Senlet ALL RIGHTS RESERVED 2015 Turgay Senlet ALL RIGHTS RESERVED VISUAL LOCALIZATION, SEMANTIC VIDEO SEGMENTATION AND LABELING USING SATELLITE MAPS by TURGAY SENLET A Dissertation submitted to the Graduate School-New Brunswick

More information

EFFICIENT SEMANTIC SEGMENTATION OF MAN-MADE SCENES USING FULLY-CONNECTED CONDITIONAL RANDOM FIELD

EFFICIENT SEMANTIC SEGMENTATION OF MAN-MADE SCENES USING FULLY-CONNECTED CONDITIONAL RANDOM FIELD EFFICIENT SEMANTIC SEGMENTATION OF MAN-MADE SCENES USING FULLY-CONNECTED CONDITIONAL RANDOM FIELD Weihao Li a, Michael Ying Yang a,b a TU Dresden, Computer Vision Lab Dresden, Dresden, Germany - weihao.li@mailbox.tu-dresden.de

More information

3D Scene Understanding by Voxel-CRF

3D Scene Understanding by Voxel-CRF 3D Scene Understanding by Voxel-CRF Byung-soo Kim University of Michigan bsookim@umich.edu Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com Silvio Savarese Stanford University ssilvio@stanford.edu

More information

Computer Vision at Cambridge: Reconstruction,Registration and Recognition

Computer Vision at Cambridge: Reconstruction,Registration and Recognition Computer Vision at Cambridge: Reconstruction,Registration and Recognition Roberto Cipolla Research team http://www.eng.cam.ac.uk/~cipolla/people.html Cognitive Systems Engineering Cognitive Systems Engineering

More information

Segmentation in electron microscopy images

Segmentation in electron microscopy images Segmentation in electron microscopy images Aurelien Lucchi, Kevin Smith, Yunpeng Li Bohumil Maco, Graham Knott, Pascal Fua. http://cvlab.epfl.ch/research/medical/neurons/ Outline Automated Approach to

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Advanced point cloud processing

Advanced point cloud processing Advanced point cloud processing George Vosselman ITC Enschede, the Netherlands INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Laser scanning platforms Airborne systems mounted

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Visual Perception for Autonomous Driving on the NVIDIA DrivePX2 and using SYNTHIA

Visual Perception for Autonomous Driving on the NVIDIA DrivePX2 and using SYNTHIA Visual Perception for Autonomous Driving on the NVIDIA DrivePX2 and using SYNTHIA Dr. Juan C. Moure Dr. Antonio Espinosa http://grupsderecerca.uab.cat/hpca4se/en/content/gpu http://adas.cvc.uab.es/elektra/

More information

Spatial Pattern Templates for Recognition of Objects with Regular Structure

Spatial Pattern Templates for Recognition of Objects with Regular Structure Spatial Pattern Templates for Recognition of Objects with Regular Structure Radim Tyleček and Radim Šára Center for Machine Perception Czech Technical University in Prague Abstract. We propose a method

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely, Zhengqi Li Stereo Single image stereogram, by Niklas Een Mark Twain at Pool Table", no date, UCR Museum of Photography Stereo Given two images from different viewpoints

More information

Conditional Random Fields as Recurrent Neural Networks

Conditional Random Fields as Recurrent Neural Networks BIL722 - Deep Learning for Computer Vision Conditional Random Fields as Recurrent Neural Networks S. Zheng, S. Jayasumana, B. Romera-Paredes V. Vineet, Z. Su, D. Du, C. Huang, P.H.S. Torr Introduction

More information

Contextual Classification with Functional Max-Margin Markov Networks

Contextual Classification with Functional Max-Margin Markov Networks Contextual Classification with Functional Max-Margin Markov Networks Dan Munoz Nicolas Vandapel Drew Bagnell Martial Hebert Geometry Estimation (Hoiem et al.) Sky Problem 3-D Point Cloud Classification

More information

Robust Higher Order Potentials for Enforcing Label Consistency

Robust Higher Order Potentials for Enforcing Label Consistency Robust Higher Order Potentials for Enforcing Label Consistency Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com L ubor Ladický Philip H. S. Torr Oxford Brookes University lladicky,philiptorr}@brookes.ac.uk

More information

arxiv: v1 [cs.cv] 7 Jan 2017

arxiv: v1 [cs.cv] 7 Jan 2017 Urban Scene Segmentation with Laser-Constrained CRFs Charika De Alvis Lionel Ott Fabio Ramos arxiv:1701.01892v1 [cs.cv] 7 Jan 2017 Abstract Robots typically possess sensors of different modalities, such

More information

Semantic 3D Occupancy Mapping through Efficient High Order CRFs

Semantic 3D Occupancy Mapping through Efficient High Order CRFs Semantic 3D Occupancy Mapping through Efficient High Order CRFs Shichao Yang, Yulan Huang and Sebastian Scherer Abstract Semantic 3D mapping can be used for many applications such as robot navigation and

More information

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts [Yuri Boykov, Olga Veksler, Ramin Zabih, Fast Approximation

More information

Chapters 1 7: Overview

Chapters 1 7: Overview Chapters 1 7: Overview Photogrammetric mapping: introduction, applications, and tools GNSS/INS-assisted photogrammetric and LiDAR mapping LiDAR mapping: principles, applications, mathematical model, and

More information

Semantic Parsing of Street Scene Images Using 3D LiDAR Point Cloud

Semantic Parsing of Street Scene Images Using 3D LiDAR Point Cloud 2013 IEEE International Conference on Computer Vision Workshops Semantic Parsing of Street Scene Images Using 3D LiDAR Point Cloud Pouria Babahajiani Tampere University of Technology Tampere, Finland pouria.babahajiani@tut.fi

More information

Collaborative Mapping with Streetlevel Images in the Wild. Yubin Kuang Co-founder and Computer Vision Lead

Collaborative Mapping with Streetlevel Images in the Wild. Yubin Kuang Co-founder and Computer Vision Lead Collaborative Mapping with Streetlevel Images in the Wild Yubin Kuang Co-founder and Computer Vision Lead Mapillary Mapillary is a street-level imagery platform, powered by collaboration and computer vision.

More information

Pulling Things out of Perspective

Pulling Things out of Perspective Pulling Things out of Perspective L ubor Ladický ETH Zürich, Switzerland lubor.ladicky@inf.ethz.ch Jianbo Shi University of Pennsylvania, USA jshi@seas.upenn.edu Marc Pollefeys ETH Zürich, Switzerland

More information

Vehicle Dimensions Estimation Scheme Using AAM on Stereoscopic Video

Vehicle Dimensions Estimation Scheme Using AAM on Stereoscopic Video Workshop on Vehicle Retrieval in Surveillance (VRS) in conjunction with 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance Vehicle Dimensions Estimation Scheme Using

More information

Harmony Potentials for Joint Classification and Segmentation

Harmony Potentials for Joint Classification and Segmentation Harmony Potentials for Joint Classification and Segmentation Josep M. Gonfaus 1,2, Xavier Boix 1, Joost van de Weijer 1,2 Andrew D. Bagdanov 1 Joan Serrat 1,2 Jordi Gonzàlez 1,2 1 Centre de Visió per Computador

More information

Spatial Latent Dirichlet Allocation

Spatial Latent Dirichlet Allocation Spatial Latent Dirichlet Allocation Xiaogang Wang and Eric Grimson Computer Science and Computer Science and Artificial Intelligence Lab Massachusetts Tnstitute of Technology, Cambridge, MA, 02139, USA

More information

Sensor Fusion for Semantic Segmentation of Urban Scenes

Sensor Fusion for Semantic Segmentation of Urban Scenes 2015 IEEE International Conference on Robotics and Automation (ICRA) Washington State Convention Center Seattle, Washington, May 26-30, 2015 Sensor Fusion for Semantic Segmentation of Urban Scenes Richard

More information

EFFICIENT ROAD MAPPING VIA INTERACTIVE IMAGE SEGMENTATION

EFFICIENT ROAD MAPPING VIA INTERACTIVE IMAGE SEGMENTATION In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4 --- Paris, France, 3-4 September, 2009 EFFICIENT ROAD MAPPING VIA INTERACTIVE IMAGE SEGMENTATION O. Barinova, R.

More information

Scene Segmentation in Adverse Vision Conditions

Scene Segmentation in Adverse Vision Conditions Scene Segmentation in Adverse Vision Conditions Evgeny Levinkov Max Planck Institute for Informatics, Saarbrücken, Germany levinkov@mpi-inf.mpg.de Abstract. Semantic road labeling is a key component of

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

Evaluation of Different Methods for Using Colour Information in Global Stereo Matching Approaches

Evaluation of Different Methods for Using Colour Information in Global Stereo Matching Approaches Evaluation of Different Methods for Using Colour Information in Global Stereo Matching Approaches Michael Bleyer 1, Sylvie Chambon 2, Uta Poppe 1 and Margrit Gelautz 1 1 Vienna University of Technology,

More information

Undirected Graphical Models. Raul Queiroz Feitosa

Undirected Graphical Models. Raul Queiroz Feitosa Undirected Graphical Models Raul Queiroz Feitosa Pros and Cons Advantages of UGMs over DGMs UGMs are more natural for some domains (e.g. context-dependent entities) Discriminative UGMs (CRF) are better

More information

A Hierarchical Conditional Random Field Model for Labeling and Segmenting Images of Street Scenes

A Hierarchical Conditional Random Field Model for Labeling and Segmenting Images of Street Scenes A Hierarchical Conditional Random Field Model for Labeling and Segmenting Images of Street Scenes Qixing Huang Stanford University huangqx@stanford.edu Mei Han Google Inc. meihan@google.com Bo Wu Google

More information

Large-Scale Traffic Sign Recognition based on Local Features and Color Segmentation

Large-Scale Traffic Sign Recognition based on Local Features and Color Segmentation Large-Scale Traffic Sign Recognition based on Local Features and Color Segmentation M. Blauth, E. Kraft, F. Hirschenberger, M. Böhm Fraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1,

More information

Image-Based Buildings and Facades

Image-Based Buildings and Facades Image-Based Buildings and Facades Peter Wonka Associate Professor of Computer Science Arizona State University Daniel G. Aliaga Associate Professor of Computer Science Purdue University Challenge Generate

More information

Energy Minimization for Segmentation in Computer Vision

Energy Minimization for Segmentation in Computer Vision S * = arg S min E(S) Energy Minimization for Segmentation in Computer Vision Meng Tang, Dmitrii Marin, Ismail Ben Ayed, Yuri Boykov Outline Clustering/segmentation methods K-means, GrabCut, Normalized

More information

Automatic occlusion removal from facades for 3D urban reconstruction

Automatic occlusion removal from facades for 3D urban reconstruction Automatic occlusion removal from facades for 3D urban reconstruction C. Engels 1, D. Tingdahl 1, M. Vercruysse 1, T. Tuytelaars 1, H. Sahli 2, and L. Van Gool 1,3 1 K.U.Leuven, ESAT-PSI/IBBT 2 V.U.Brussel,

More information

Static Scene Reconstruction

Static Scene Reconstruction GPU supported Real-Time Scene Reconstruction with a Single Camera Jan-Michael Frahm, 3D Computer Vision group, University of North Carolina at Chapel Hill Static Scene Reconstruction 1 Capture on campus

More information

A robust stereo prior for human segmentation

A robust stereo prior for human segmentation A robust stereo prior for human segmentation Glenn Sheasby, Julien Valentin, Nigel Crook, Philip Torr Oxford Brookes University Abstract. The emergence of affordable depth cameras has enabled significant

More information

Car Detecting Method using high Resolution images

Car Detecting Method using high Resolution images Car Detecting Method using high Resolution images Swapnil R. Dhawad Department of Electronics and Telecommunication Engineering JSPM s Rajarshi Shahu College of Engineering, Savitribai Phule Pune University,

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

2013 IEEE International Conference on Computer Vision. Exemplar Cut

2013 IEEE International Conference on Computer Vision. Exemplar Cut 2013 IEEE International Conference on Computer Vision Exemplar Cut Jimei Yang, Yi-Hsuan Tsai and Ming-Hsuan Yang University of California, Merced 5200 North Lake Road, Merced CA {jyang44, ytsai2, mhyang}@ucmerced.edu

More information

Semantic Segmentation of Street-Side Images

Semantic Segmentation of Street-Side Images Semantic Segmentation of Street-Side Images Michal Recky 1, Franz Leberl 2 1 Institute for Computer Graphics and Vision Graz University of Technology recky@icg.tugraz.at 2 Institute for Computer Graphics

More information

CS 231A Computer Vision (Winter 2018) Problem Set 3

CS 231A Computer Vision (Winter 2018) Problem Set 3 CS 231A Computer Vision (Winter 2018) Problem Set 3 Due: Feb 28, 2018 (11:59pm) 1 Space Carving (25 points) Dense 3D reconstruction is a difficult problem, as tackling it from the Structure from Motion

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin Learning Deep Structured Models for Semantic Segmentation Guosheng Lin Semantic Segmentation Outline Exploring Context with Deep Structured Models Guosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel;

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

4.1 Identification of Potential Water Ponding 4.2 Monitoring of Road Inventory 4.3 Monitoring of surface condition

4.1 Identification of Potential Water Ponding 4.2 Monitoring of Road Inventory 4.3 Monitoring of surface condition TRIMM is supported by funding from the 7 th Framework Programme Call: SST.2011.5.2-2. Theme: Advanced and cost effective road infrastructure construction, management and maintenance Alex Wright 4.1 Identification

More information

A New Direction in GIS Data Collection or Why Are You Still in the Field?

A New Direction in GIS Data Collection or Why Are You Still in the Field? GeoAutomation The Mobile Mapping System Survey-Enabled Imagery A New Direction in GIS Data Collection or Why Are You Still in the Field? Presentation to: URISA BC GIS Technology Showcase January 19, 2011

More information

Stereo. Many slides adapted from Steve Seitz

Stereo. Many slides adapted from Steve Seitz Stereo Many slides adapted from Steve Seitz Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1 image 2 Dense depth map Binocular stereo Given a calibrated

More information

Automated Super-Voxel Based Features Classification of Urban Environments by Integrating 3D Point Cloud and Image Content

Automated Super-Voxel Based Features Classification of Urban Environments by Integrating 3D Point Cloud and Image Content Automated Super-Voxel Based Features Classification of Urban Environments by Integrating 3D Point Cloud and Image Content Pouria Babahajiani #1, Lixin Fan *2, Joni Kamarainen #3, Moncef Gabbouj #4 # Department

More information

Mobile Mapping and Navigation. Brad Kohlmeyer NAVTEQ Research

Mobile Mapping and Navigation. Brad Kohlmeyer NAVTEQ Research Mobile Mapping and Navigation Brad Kohlmeyer NAVTEQ Research Mobile Mapping & Navigation Markets Automotive Enterprise Internet & Wireless Mobile Devices 2 Local Knowledge & Presence Used to Create Most

More information

GRMC Global Resources Management Consultancy Inc.

GRMC Global Resources Management Consultancy Inc. GRMC Global Resources Management Consultancy Inc. Rail. Road. Infrastructure. Global Resources Management Consultancy USA 333 West 39th street, 2nd Floor, Suite 202, New York NY 10018 T: 212-564-2085 F:

More information

Multiclass Pixel Labeling with Non-Local Matching Constraints

Multiclass Pixel Labeling with Non-Local Matching Constraints Multiclass Pixel Labeling with Non-Local Matching Constraints Stephen Gould Research School of Computer Science Australian National University stephen.gould@anu.edu.au Abstract A popular approach to pixel

More information

Learning CRFs using Graph Cuts

Learning CRFs using Graph Cuts Appears in European Conference on Computer Vision (ECCV) 2008 Learning CRFs using Graph Cuts Martin Szummer 1, Pushmeet Kohli 1, and Derek Hoiem 2 1 Microsoft Research, Cambridge CB3 0FB, United Kingdom

More information

Semantic Segmentation. Zhongang Qi

Semantic Segmentation. Zhongang Qi Semantic Segmentation Zhongang Qi qiz@oregonstate.edu Semantic Segmentation "Two men riding on a bike in front of a building on the road. And there is a car." Idea: recognizing, understanding what's in

More information

Recap from Previous Lecture

Recap from Previous Lecture Recap from Previous Lecture Tone Mapping Preserve local contrast or detail at the expense of large scale contrast. Changing the brightness within objects or surfaces unequally leads to halos. We are now

More information

Background Estimation for a Single Omnidirectional Image Sequence Captured with a Moving Camera

Background Estimation for a Single Omnidirectional Image Sequence Captured with a Moving Camera [DOI: 10.2197/ipsjtcva.6.68] Express Paper Background Estimation for a Single Omnidirectional Image Sequence Captured with a Moving Camera Norihiko Kawai 1,a) Naoya Inoue 1 Tomokazu Sato 1,b) Fumio Okura

More information

arxiv: v1 [cs.cv] 16 Mar 2018

arxiv: v1 [cs.cv] 16 Mar 2018 The ApolloScape Dataset for Autonomous Driving Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang arxiv:1803.06184v1 [cs.cv] 16 Mar 2018 Baidu

More information