UMBC. space and introduced backtrace. Fujiwara s FAN efficiently constrained the backtrace to speed up search and further limited the search space.

Size: px
Start display at page:

Download "UMBC. space and introduced backtrace. Fujiwara s FAN efficiently constrained the backtrace to speed up search and further limited the search space."

Transcription

1 ATPG Algorithms Characteristics of the three main algorithms: Roth s -Algorithm (-ALG) defined the calculus and algorithms for ATPG using -cubes. Goel s POEM used path propagation constraints to limit the ATPG search space and introduced backtrace. Fujiwara s FAN efficiently constrained the backtrace to speed up search and further limited the search space. -Calculus and -Algorithm efinitions: Singular cover: efined to be the minimal set of input signal assignments needed to represent essential prime implicants in Karnaugh map. A B C d e F AN a b d NOR d e F X 4 X 2 X 5 X 3 6 (/2/4)

2 -Calculus and -Algorithm -cube: A collapsed truth table entry. For example, combine rows 3 and of the AN gate singular cover, and express it in Roth s 5-valued algebra (row 3 is good machine). Rows 3 and 2 yield the propagation -cube: A third is. Inverting to in each of these yields the 6 -cubes for the AN gate. 3 of the NOR gate -cubes are: -intersection: efine how different -cubes can coexist for different gates in a logic circuit. = X = X = Rule: If one cube assigns a specific = X = X = signal value, the other cubes must X X = X assign either the same signal or X 2 (/2/4)

3 -Calculus and -Algorithm -intersection (cont.): For example, " X X" intersect " X X" is the empty cube (incompatible). -intersection X φ ψ ψ φ ψ ψ X X ψ ψ µ λ ψ ψ λ µ The greek symbols φ and ψ represent incompatible assignments. If the values are incompatible during propagation or implications, the assignment is called inconsistent and backtracking is necessary. Greek symbols µ and λ indicate incompatibilities if both are present in -cubes with multiple input and. For example, if only λ occurs, invert the s in the second cube and perform intersection. 3 (/2/4)

4 -Calculus and -Algorithm -contains: A cube A -contains cube B if the set of A cube vertices contains (is a superset of) the B cube vertices. Primitive -cubes of failure (PF): These model faults including: (a) SA (represented by ) (b) SA (represented by ) (c) Bridging faults (short circuits) (d) Arbitrary change in logic gate function (e.g., from AN to OR). For the AN gate, the PF for output SA is " " Here the good machine generates a when both inputs are, while the bad machine generates a. The PFs for the AN gate output SA are " X " and "X ". Note the PF are distinct from the propagation -cubes. The former models a failure at the gate. The latter models the conditions for fault effect propagation. 4 (/2/4)

5 -Calculus and -Algorithm Implication procedure: Consists of the following steps: (a) Model the fault with the appropriate PF. (b) Select propagation -cubes to propagate fault-effect to PO(s)(-drive). (c) Select singular cover cubes to justify internal circuit signals (consistency procedure). The -algorithm s main problem is that it selects cubes and singular covers arbitrarily during test generation. 5 (/2/4)

6 -ALG Start Select a fault Generate a PF Pattern More lines to justify? yes Is there or on PO? yes Select a line to justify. Propagate -cube and intersect Mark the lines to be justified Inconsistency? Inconsistency? Consistency yes Alt path for justification? yes yes yes Alt gate for propagation? -rive Backup one level select ather path Backup one level select ather path Revisiting a de? yes No pattern exists Options exhausted? yes 6 (/2/4)

7 -ALG Examples A B C Assign PF SA d e 3 Consistency Truth Table F 2 Propagate Singular Cover A B C d e F A B C F Propagation -cubes A B C d e F 7 (/2/4)

8 -ALG Examples The following procedure is carried out for d SA in the previous circuit: Step A B C d e F Type of cube PF for AN gate 2 Propagation -cube for NOR gate 3 Singular cover of NAN gate Example #2: Consistency X C g k 4 5 B f e 6 7 h A 2 SA Assign PF Propagate 3 8 (/2/4)

9 -ALG Examples Steps followed to generate test cube (tc): Step A B C e f g h k L -drive 2 3 Consistency 4 or 5 t 6 or 7 and tc -chain dies This example and table is given in Roth s paper. Several other examples are covered in the paper. Note that all implications are performed in the consistency procedure here. A later example by our authors indicates the implications are carried out after each propagation step in the -drive? 9 (/2/4)

10 -ALG Examples Example #3: E C B A Consistency F 5 SA 6 2 Assign PF 4 3 Propagate (/2/4)

11 -ALG Examples Example #4: A B e f r n d g SA 6 m k 4 p q s t 5 2 X Y C 9 h i 3 u 7 v 8 Z Assign PF Propagate Consistency (/2/4)

12 -ALG Examples Example #5: e f n 7 FAIL (backtrack) r X A B d g 3 m k 4 h i p 5 q s SA u t 2 6 v Y C Z Assign PF Propagate Implications The B = choice is eventually discovered as a bad choice. One backtrack to step 2, which sets B = and leads to the successful generation of a test. Note here that implications carried out before the -drive is completed. 2 (/2/4)

13 POEM In late 7s, IBM introduced error correction and translation (ECAT) to their RAM to increase reliability. 4 -ALG fails on attempts to generate tests for these circuits because the search is t directed. A H SA B 6 C E F G FAIL j k l m 3 choice 2 3 p n R 5 q choice The only valid tests require that these are opposite. -ALG will eventually determine that n = q is t realizable by this circuit. 3 (/2/4)

14 POEM POEM (Path-Oriented ecision-making) introduced several standard ATPG concepts: POEM expands the binary decision tree around the PIs and t around all circuit signals. This reduces the size of the tree from 2 n to 2 num_pis. -ALG tended to continue intersecting -cubes even when the -frontier disappeared. POEM introduced a subroutine to test if -frontier still existed. POEM introduced objectives and realized that choosing PIs to set was important in efficiently realizing objectives. Backtracing was used to obtain a PI assignment given an initial objective. POEM considered the length of the path between the objective and the POs and used controllability measures to guide the ATPG algorithm. 4 (/2/4)

15 POEM POEM starts at the PIs instead of at faulty line like -ALG. Start Assign a binary value to an unassigned PI etermine implications of all PIs Is there a or on any PO? Test possible with additional assigned PIs? Is there any untried combo on assigned PIs? yes Pattern maybe No Pattern exists Involves choosing objectives and performing backtrace. yes Set untried combo on assigned PIs. 5 (/2/4)

16 FAN Fujiwara and Shimo introduced several vel concepts to further limit the ATPG search space and accelerate backtracing: Immediate Implications: POEM misses opportunities to immediately assign values that are uniquely determined to signals. A B C E A B C E g h k j Given objective L =, POEM would backtrace and assign k=, g= and B=. This is unfortunate since B= => h= and j= which prevents objective. g h k j L FAN instead sets j, k and E to since they must all be set to justify L=. L= This leads to unique A and B=, C=. 6 (/2/4)

17 FAN and Other Advanced ATPG Algorithms Test book describes other vel features of the FAN algorithm. ominator ATPG Programs: TOPS (Kirkland and Mercer) Learning ATPG Programs: SOCRATES (Schulz et al.) EST (Giraldi and Bushnell) Recursive Learning (Kunz and Pradhan) Implication Graph ATPG Algorithms: NNATPG (Chakradhar et al.) TRAN (Chakradhar et al.) GRASP NEMESIS TEGUS A program by Tafertshofer et al. B-Based ATPG Algorithms (performance poor on multipliers): CATAPULT (Gaede at al.) TSUNAMI (Stanion Bhattacharya) 7 (/2/4)

18 Test Generation Systems An ATPG system may contain: Fault generator/collapsing program RPG program Fault simulator ATPG program Test compactor Performance criteria include: Fault coverage Fault coverage Fault efficiency Fault efficiency Vector set size CPU time = = Number of detected faults Total number of faults Number of detected faults Total number of faults Number of undetectable faults 8 (/2/4)

19 Test Generation Systems SOCRATES: Starts with RPG (optionally with weighted pattern probabilities), concurrent fault simulation and fault dropping. 32 random patterns are generated in parallel and one concurrent fault simulation is carried out. The process terminates when faults are detected after 64 random patterns have been tried. This is followed with several passes of ATPG. Pass one is done usually with only backtracks allowed per fault. Each pattern is then fault simulated against all remaining faults and detected faults are dropped. Later passes increase the number of backtracks to 5, and finally,. This process outputs a test vector file, a list of undetected faults, a list of redundant faults, a list of aborted faults and a backtrack distribution file. 9 (/2/4)

20 Test Compaction Many ATPG systems use RPG to get 6% fault coverage, followed by ATPG. However, many of the RPG patterns may t be as effective at providing "high" fault coverage. At the end of ATPG, all patterns are fault simulated in reverse order of their generation. Once fault coverage reaches %, the remaining RPG patterns are discarded. This type of compaction greatly reduces the size of the test set. An additional static compaction method is suitable for the ATPG generated patterns, where unassigned inputs are left at X. Two patterns can be combined if they are compatible, as defined by the - intersection operator given earlier. 2 (/2/4)

21 Test Compaction The degree of compaction possible depends on the order in which the vectors are processed. t = X t 2 = X t 3 = X t 4 = X t 3 = t 24 = Optimal static compaction algorithms are impractical, so heuristic algorithms are used. ynamic compaction immediately assigns s and s to the unassigned PIs after the ATPG program generates them. The secondary faults detected allows additional fault dropping. 2 (/2/4)

VLSI Test Technology and Reliability (ET4076)

VLSI Test Technology and Reliability (ET4076) VLSI Test Technology and Reliability (ET476) Lecture 5 Combinational Circuit Test Generation (Chapter 7) Said Hamdioui Computer Engineering Lab elft University of Technology 29-2 Learning aims of today

More information

l Some materials from various sources! n Current course textbook! Soma 1! Soma 3!

l Some materials from various sources! n Current course textbook! Soma 1! Soma 3! Ackwledgements! Test generation algorithms! Mani Soma! l Some materials from various sources! n r. Phil Nigh, IBM! n Principles of Testing Electronic Systems by S. Mourad & Y. Zorian! n Essentials of Electronic

More information

Pinaki Mazumder. Digital Testing 1 PODEM. PODEM Algorithm. PODEM Flow Chart

Pinaki Mazumder. Digital Testing 1 PODEM. PODEM Algorithm. PODEM Flow Chart POEM Algorithm POEM IBM introduced semiconductor RAM memory into its mainframes late 970 s Memory had error correction and translation circuits improved reliability -ALG unable to test these circuits!

More information

VLSI System Testing. Outline

VLSI System Testing. Outline ECE 538 VLSI System Testing Krish Chakrabarty Test Generation: 2 ECE 538 Krish Chakrabarty Outline Problem with -Algorithm POEM FAN Fault-independent ATPG Critical path tracing Random test generation Redundancy

More information

Origins of Stuck-Faults. Combinational Automatic Test-Pattern Generation (ATPG) Basics. Functional vs. Structural ATPG.

Origins of Stuck-Faults. Combinational Automatic Test-Pattern Generation (ATPG) Basics. Functional vs. Structural ATPG. Combinational Automatic Test-Pattern Generation (ATPG) Basics Algorithms and representations Structural vs functional test efinitions Search spaces Completeness Algebras Types of Algorithms Origins of

More information

CPE 628 Chapter 4 Test Generation. Dr. Rhonda Kay Gaede UAH. CPE Introduction Conceptual View. UAH Chapter 4

CPE 628 Chapter 4 Test Generation. Dr. Rhonda Kay Gaede UAH. CPE Introduction Conceptual View. UAH Chapter 4 Chapter 4 Test Generation Dr. Rhonda Kay Gaede UAH 1 4.1 Introduction Conceptual View Generate an input vector that can the - circuit from the one Page 2 1 4.1 Introduction Simple Illustration Consider

More information

Preizkušanje elektronskih vezij

Preizkušanje elektronskih vezij Laboratorij za načrtovanje integriranih vezij Univerza v Ljubljani Fakulteta za elektrotehniko Preizkušanje elektronskih vezij Generacija testnih vzorcev Test pattern generation Overview Introduction Theoretical

More information

IMPLEMENTATION OF AN ATPG USING PODEM ALGORITHM

IMPLEMENTATION OF AN ATPG USING PODEM ALGORITHM IMPLEMENTATION OF AN ATPG USING PODEM ALGORITHM SACHIN DHINGRA ELEC 7250: VLSI testing OBJECTIVE: Write a test pattern generation program using the PODEM algorithm. ABSTRACT: PODEM (Path-Oriented Decision

More information

VLSI System Testing. Introduction

VLSI System Testing. Introduction ECE 538 VLSI System Testing Krish Chakraarty Test Generation: Part ECE 538 Krish Chakraarty Introduction Classification of test generation methods Fault tale analysis Boolean difference method Propagation,

More information

Advanced Digital Logic Design EECS 303

Advanced Digital Logic Design EECS 303 Advanced igital Logic esign EECS 33 http://ziyang.eecs.northwestern.edu/eecs33/ Teacher: Robert ick Office: L477 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298 Outline. 2. 2 Robert ick Advanced

More information

Testing Digital Systems I

Testing Digital Systems I Testing Digital Systems I Lecture 6: Fault Simulation Instructor: M. Tahoori Copyright 2, M. Tahoori TDS I: Lecture 6 Definition Fault Simulator A program that models a design with fault present Inputs:

More information

Functional extension of structural logic optimization techniques

Functional extension of structural logic optimization techniques Functional extension of structural logic optimization techniques J. A. Espejo, L. Entrena, E. San Millán, E. Olías Universidad Carlos III de Madrid # e-mail: { ppespejo, entrena, quique, olias}@ing.uc3m.es

More information

Fault Simulation. Problem and Motivation

Fault Simulation. Problem and Motivation Fault Simulation Problem and Motivation Fault Simulation Problem: Given A circuit A sequence of test vectors A fault model Determine Fault coverage Fraction (or percentage) of modeled faults detected by

More information

Sequential Circuit Testing 3

Sequential Circuit Testing 3 Sequential Circuit Testing 3 Recap: Approaches State table analysis Machine identification (checking sequence) method Time-frame expansion Misc. Issues Controlling and observing internal states of a sequential

More information

Upper Bounding Fault Coverage by Structural Analysis and Signal Monitoring

Upper Bounding Fault Coverage by Structural Analysis and Signal Monitoring Upper Bounding Fault Coverage by Structural Analysis and Signal Monitoring Abstract A new algorithm for determining stuck faults in combinational circuits that cannot be detected by a given input sequence

More information

Circuit versus CNF Reasoning for Equivalence Checking

Circuit versus CNF Reasoning for Equivalence Checking Circuit versus CNF Reasoning for Equivalence Checking Armin Biere Institute for Formal Models and Verification Johannes Kepler University Linz, Austria Equivalence Checking Workshop 25 Madonna di Campiglio,

More information

Upper Bounding Fault Coverage by Structural Analysis and Signal Monitoring

Upper Bounding Fault Coverage by Structural Analysis and Signal Monitoring Upper Bounding Fault Coverage by Structural Analysis and Signal Monitoring Vishwani D. Agrawal Auburn Univerity, Dept. of ECE Soumitra Bose and Vijay Gangaram Intel Corporation, Design Technology Auburn,

More information

VLSI System Testing. Fault Simulation

VLSI System Testing. Fault Simulation ECE 538 VLSI System Testing Krish Chakrabarty Fault Simulation ECE 538 Krish Chakrabarty Fault Simulation Problem and motivation Fault simulation algorithms Serial Parallel Deductive Concurrent Random

More information

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Midterm Examination CLOSED BOOK

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Midterm Examination CLOSED BOOK Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 553: Testing and Testable Design of Digital Systems Fall 2013-2014 Midterm Examination CLOSED BOOK Kewal K. Saluja

More information

12. Use of Test Generation Algorithms and Emulation

12. Use of Test Generation Algorithms and Emulation 12. Use of Test Generation Algorithms and Emulation 1 12. Use of Test Generation Algorithms and Emulation Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin

More information

An Efficient Test Relaxation Technique for Synchronous Sequential Circuits

An Efficient Test Relaxation Technique for Synchronous Sequential Circuits An Efficient Test Relaxation Technique for Synchronous Sequential Circuits Aiman El-Maleh and Khaled Al-Utaibi King Fahd University of Petroleum and Minerals Dhahran 326, Saudi Arabia emails:{aimane, alutaibi}@ccse.kfupm.edu.sa

More information

Overview ECE 753: FAULT-TOLERANT COMPUTING 1/23/2014. Recap. Introduction. Introduction (contd.) Introduction (contd.)

Overview ECE 753: FAULT-TOLERANT COMPUTING 1/23/2014. Recap. Introduction. Introduction (contd.) Introduction (contd.) ECE 753: FAULT-TOLERANT COMPUTING Kewal K.Saluja Department of Electrical and Computer Engineering Test Generation and Fault Simulation Lectures Set 3 Overview Introduction Basics of testing Complexity

More information

MODULE 5 - COMBINATIONAL LOGIC

MODULE 5 - COMBINATIONAL LOGIC Introduction to Digital Electronics Module 5: Combinational Logic 1 MODULE 5 - COMBINATIONAL LOGIC OVERVIEW: For any given combination of input binary bits or variables, the logic will have a specific

More information

(Refer Slide Time 6:48)

(Refer Slide Time 6:48) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about

More information

Test Generation for Asynchronous Sequential Digital Circuits

Test Generation for Asynchronous Sequential Digital Circuits Test Generation for Asynchronous Sequential Digital Circuits Roland Dobai Institute of Informatics Slovak Academy of Sciences Dúbravská cesta 9, 845 07 Bratislava, Slovakia roland.dobai@savba.sk Abstract

More information

REDI: An Efficient Fault Oriented Procedure to Identify Redundant Faults in Combinational Logic Circuits *

REDI: An Efficient Fault Oriented Procedure to Identify Redundant Faults in Combinational Logic Circuits * REDI: An Efficient Fault Oriented Procedure to Identify Redundant Faults in Combinational Logic Circuits * Chen Wang, Irith Pomeranz and Sudhakar M. Reddy Electrical and Computer Engineering Department

More information

Conflict Driven Techniques for Improving Deterministic Test Pattern Generation

Conflict Driven Techniques for Improving Deterministic Test Pattern Generation Conflict Driven Techniques for Improving Deterministic Test Pattern Generation Chen Wang & Sudhakar M. Reddy. Elec. & Comp. Eng. Department University of Iowa, Iowa City, IA ~rith ~omeranz~ School of Elec.

More information

Simplification of two-level combinational logic

Simplification of two-level combinational logic ombinational logic optimization! lternate representations of oolean functions " cubes " karnaugh maps! Simplification " two-level simplification " exploiting don t cares " algorithm for simplification

More information

Collapsing for Multiple Output Circuits. Diagnostic and Detection Fault. Raja K. K. R. Sandireddy. Dept. Of Electrical and Computer Engineering,

Collapsing for Multiple Output Circuits. Diagnostic and Detection Fault. Raja K. K. R. Sandireddy. Dept. Of Electrical and Computer Engineering, Diagnostic and Detection Fault Collapsing for Multiple Output Circuits Raja K. K. R. Sandireddy Dept. Of Electrical and Computer Engineering, Auburn University, Auburn AL-36849 USA Outline Introduction

More information

GRASP A New Search Algorithm for Satisfiability

GRASP A New Search Algorithm for Satisfiability Thi d d i h F M k 4 0 4 GRASP A New Search Algorithm for Satisfiability João P. Marques Silva Karem A. Sakallah Cadence European Laboratories Department of EECS IST/INESC University of Michigan 1000 Lisboa,

More information

2.6 BOOLEAN FUNCTIONS

2.6 BOOLEAN FUNCTIONS 2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses

More information

Metodologie di progetto HW Il test di circuiti digitali

Metodologie di progetto HW Il test di circuiti digitali Metodologie di progetto HW Il test di circuiti digitali Introduzione Versione del 9/4/8 Metodologie di progetto HW Il test di circuiti digitali Introduction VLSI Realization Process Customer s need Determine

More information

Metodologie di progetto HW Il test di circuiti digitali

Metodologie di progetto HW Il test di circuiti digitali Metodologie di progetto HW Il test di circuiti digitali Introduzione Versione del 9/4/8 Metodologie di progetto HW Il test di circuiti digitali Introduction Pag. 2 VLSI Realization Process Customer s need

More information

Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Very Large Scale Integration (VLSI) Lecture 10 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI 1 Content Manufacturing Defects Wafer defects Chip defects Board defects system defects

More information

VLSI Testing. Lecture Fall 2003

VLSI Testing. Lecture Fall 2003 VLSI Testing Lecture 25 8-322 Fall 23 Announcement Homework 9 is due next Thursday (/2) Exam II is on Tuesday (/8) in class Review Session: When: Next Monday (/7) afternoon, 4pm 6pm Where: B3, HH 2 Outline

More information

SAT-BASED ATPG FOR DIGITAL INTEGRATED CIRCUITS BASED ON MULTIPLE OBSERVATIONS

SAT-BASED ATPG FOR DIGITAL INTEGRATED CIRCUITS BASED ON MULTIPLE OBSERVATIONS SAT-BASED ATPG FOR DIGITAL INTEGRATED CIRCUITS BASED ON MULTIPLE OBSERVATIONS SAT-BASED ATPG FOR DIGITAL INTEGRATED CIRCUITS BASED ON MULTIPLE OBSERVATIONS BY DAVID WING YIN LEUNG, B. ENG. & MGT. (COMPUTER)

More information

Incompletely Specified Functions with Don t Cares 2-Level Transformation Review Boolean Cube Karnaugh-Map Representation and Methods Examples

Incompletely Specified Functions with Don t Cares 2-Level Transformation Review Boolean Cube Karnaugh-Map Representation and Methods Examples Lecture B: Logic Minimization Incompletely Specified Functions with Don t Cares 2-Level Transformation Review Boolean Cube Karnaugh-Map Representation and Methods Examples Incompletely specified functions

More information

1. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z

1. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z CS W3827 05S Solutions for Midterm Exam 3/3/05. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.

More information

Test Set Compaction Algorithms for Combinational Circuits

Test Set Compaction Algorithms for Combinational Circuits Proceedings of the International Conference on Computer-Aided Design, November 1998 Set Compaction Algorithms for Combinational Circuits Ilker Hamzaoglu and Janak H. Patel Center for Reliable & High-Performance

More information

Independence Fault Collapsing and Concurrent Test Generation

Independence Fault Collapsing and Concurrent Test Generation Independence Fault Collapsing and Concurrent Test Generation Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory

More information

Lecture 3 - Fault Simulation

Lecture 3 - Fault Simulation Lecture 3 - Fault Simulation Fault simulation Algorithms Serial Parallel Deductive Random Fault Sampling Problem and Motivation Fault simulation Problem: Given A circuit A sequence of test vectors A fault

More information

Optimized Implementation of Logic Functions

Optimized Implementation of Logic Functions June 25, 22 9:7 vra235_ch4 Sheet number Page number 49 black chapter 4 Optimized Implementation of Logic Functions 4. Nc3xe4, Nb8 d7 49 June 25, 22 9:7 vra235_ch4 Sheet number 2 Page number 5 black 5 CHAPTER

More information

Special ATPG to Correlate Test Patterns for Low-Overhead Mixed-Mode BIST

Special ATPG to Correlate Test Patterns for Low-Overhead Mixed-Mode BIST Special ATPG to Correlate Test Patterns for Low-Overhead Mixed-Mode BIST Madhavi Karkala Nur A. Touba Hans-Joachim Wunderlich Computer Engineering Research Center Computer Architecture Lab Dept. of Electrical

More information

Digital VLSI Testing Prof. Santanu Chattopadhyay Department of Electronics and EC Engineering India Institute of Technology, Kharagpur.

Digital VLSI Testing Prof. Santanu Chattopadhyay Department of Electronics and EC Engineering India Institute of Technology, Kharagpur. Digital VLSI Testing Prof. Santanu Chattopadhyay Department of Electronics and EC Engineering India Institute of Technology, Kharagpur Lecture 05 DFT Next we will look into the topic design for testability,

More information

Chapter 2. Boolean Expressions:

Chapter 2. Boolean Expressions: Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean

More information

Lecture 7 Fault Simulation

Lecture 7 Fault Simulation Lecture 7 Fault Simulation Problem and motivation Fault simulation algorithms Serial Parallel Deductive Concurrent Random Fault Sampling Summary Copyright 2, Agrawal & Bushnell VLSI Test: Lecture 7 Problem

More information

VLSI Test Technology and Reliability (ET4076)

VLSI Test Technology and Reliability (ET4076) VLSI Test Technology and Reliability (ET4076) Lecture 4(part 2) Testability Measurements (Chapter 6) Said Hamdioui Computer Engineering Lab Delft University of Technology 2009-2010 1 Previous lecture What

More information

Introduction. The Quine-McCluskey Method Handout 5 January 24, CSEE E6861y Prof. Steven Nowick

Introduction. The Quine-McCluskey Method Handout 5 January 24, CSEE E6861y Prof. Steven Nowick CSEE E6861y Prof. Steven Nowick The Quine-McCluskey Method Handout 5 January 24, 2013 Introduction The Quine-McCluskey method is an exact algorithm which finds a minimum-cost sum-of-products implementation

More information

INF2270 Spring Philipp Häfliger. Lecture 4: Signed Binaries and Arithmetic

INF2270 Spring Philipp Häfliger. Lecture 4: Signed Binaries and Arithmetic INF2270 Spring 2010 Philipp Häfliger Lecture 4: Signed Binaries and Arithmetic content Karnaugh maps revisited Binary Addition Signed Binary Numbers Binary Subtraction Arithmetic Right-Shift and Bit Number

More information

VLSI System Design Part II : Logic Synthesis (1) Oct Feb.2007

VLSI System Design Part II : Logic Synthesis (1) Oct Feb.2007 VLSI System Design Part II : Logic Synthesis (1) Oct.2006 - Feb.2007 Lecturer : Tsuyoshi Isshiki Dept. Communications and Integrated Systems, Tokyo Institute of Technology isshiki@vlsi.ss.titech.ac.jp

More information

Compaction mechanism to reduce test pattern counts and segmented delay fault testing for path delay faults

Compaction mechanism to reduce test pattern counts and segmented delay fault testing for path delay faults University of Iowa Iowa Research Online Theses and Dissertations Spring 2013 Compaction mechanism to reduce test pattern counts and segmented delay fault testing for path delay faults Sharada Jha University

More information

SAT-Based ATPG Using Multilevel Compatible Don t-cares

SAT-Based ATPG Using Multilevel Compatible Don t-cares SAT-Based ATPG Using Multilevel Compatible Don t-cares 24 NIKHIL SALUJA Univerity of Colorado and KANUPRIYA GULATI and SUNIL P KHATRI TexasA&MUniversity In a typical IC design flow, circuits are optimized

More information

COPYRIGHTED MATERIAL INDEX

COPYRIGHTED MATERIAL INDEX INDEX Absorption law, 31, 38 Acyclic graph, 35 tree, 36 Addition operators, in VHDL (VHSIC hardware description language), 192 Algebraic division, 105 AND gate, 48 49 Antisymmetric, 34 Applicable input

More information

DIGITAL CIRCUIT LOGIC UNIT 7: MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES

DIGITAL CIRCUIT LOGIC UNIT 7: MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES DIGITAL CIRCUIT LOGIC UNIT 7: MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES 1 iclicker Question 13 Considering the K-Map, f can be simplified as (2 minutes): A) f = b c + a b c B) f = ab d + a b d AB CD

More information

Bit-Fixing in Pseudorandom Sequences for Scan BIST

Bit-Fixing in Pseudorandom Sequences for Scan BIST IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 4, APRIL 2001 545 Bit-Fixing in Pseudorandom Sequences for Scan BIST Nur A. Touba, Member, IEEE, and Edward J.

More information

Accurate Logic Simulation by Overcoming the Unknown Value Propagation Problem

Accurate Logic Simulation by Overcoming the Unknown Value Propagation Problem Accurate Logic Simulation by Overcoming the Unknown Value Propagation Problem Sungho Kang Yonsei University Seoul, Korea shkang@yonsei.ac.kr Stephen A. Szygenda Southern Methodist University Dallas, Texas

More information

General Methods and Search Algorithms

General Methods and Search Algorithms DM811 HEURISTICS AND LOCAL SEARCH ALGORITHMS FOR COMBINATORIAL OPTIMZATION Lecture 3 General Methods and Search Algorithms Marco Chiarandini 2 Methods and Algorithms A Method is a general framework for

More information

An Experimental Evaluation of Conflict Diagnosis and Recursive Learning in Boolean Satisfiability

An Experimental Evaluation of Conflict Diagnosis and Recursive Learning in Boolean Satisfiability An Experimental Evaluation of Conflict Diagnosis and Recursive Learning in Boolean Satisfiability Fadi A. Aloul and Karem A. Sakallah Department of Electrical Engineering and Computer Science University

More information

Combinational Logic Circuits

Combinational Logic Circuits Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization

More information

Slide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 5 for ENEL 353 Fall 207 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 207 SN s ENEL 353 Fall 207 Slide Set 5 slide

More information

HARDWARE EMULATION OF SEQUENTIAL ATPG-BASED BOUNDED MODEL CHECKING GREGORY FICK FORD. Submitted in partial fulfilment of the requirements

HARDWARE EMULATION OF SEQUENTIAL ATPG-BASED BOUNDED MODEL CHECKING GREGORY FICK FORD. Submitted in partial fulfilment of the requirements HARDWARE EMULATION OF SEQUENTIAL ATPG-BASED BOUNDED MODEL CHECKING BY GREGORY FICK FORD Submitted in partial fulfilment of the requirements for the degree of Master of Science Thesis Advisor: Dr. Daniel

More information

Design and Synthesis for Test

Design and Synthesis for Test TDTS 80 Lecture 6 Design and Synthesis for Test Zebo Peng Embedded Systems Laboratory IDA, Linköping University Testing and its Current Practice To meet user s quality requirements. Testing aims at the

More information

Sequential Circuit Test Generation Using Decision Diagram Models

Sequential Circuit Test Generation Using Decision Diagram Models Sequential Circuit Test Generation Using Decision Diagram Models Jaan Raik, Raimund Ubar Department of Computer Engineering Tallinn Technical University, Estonia Abstract A novel approach to testing sequential

More information

Chapter 9. Design for Testability

Chapter 9. Design for Testability Chapter 9 Design for Testability Testability CUT = Circuit Under Test A design property that allows: cost-effective development of tests to be applied to the CUT determining the status of the CUT (normal

More information

Unit 4: Formal Verification

Unit 4: Formal Verification Course contents Unit 4: Formal Verification Logic synthesis basics Binary-decision diagram (BDD) Verification Logic optimization Technology mapping Readings Chapter 11 Unit 4 1 Logic Synthesis & Verification

More information

Functional Fault Equivalence and Diagnostic Test Generation in Combinational Logic Circuits Using Conventional ATPG

Functional Fault Equivalence and Diagnostic Test Generation in Combinational Logic Circuits Using Conventional ATPG Functional Fault Equivalence and Diagnostic Test Generation in Combinational Logic Circuits Using Conventional ATPG Andreas Veneris, Robert Chang Magdy. Abadir ep eyedi Abstract Fault equivalence is an

More information

Optimization-based Multiple Target Test Generation for Highly Compacted Test Sets

Optimization-based Multiple Target Test Generation for Highly Compacted Test Sets Optimization-based Multiple Target Test Generation for Highly Compacted Test Sets Stephan Eggersglüß Kenneth Schmitz René Krenz-Bååth Rolf Drechsler Institute of Computer Science University of Bremen 28359

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction The advent of synthesis systems for Very Large Scale Integrated Circuits (VLSI) and automated design environments for Application Specific Integrated Circuits (ASIC) have allowed

More information

Supplement to. Logic and Computer Design Fundamentals 4th Edition 1

Supplement to. Logic and Computer Design Fundamentals 4th Edition 1 Supplement to Logic and Computer esign Fundamentals 4th Edition MORE OPTIMIZTION Selected topics not covered in the fourth edition of Logic and Computer esign Fundamentals are provided here for optional

More information

Specifying logic functions

Specifying logic functions CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last

More information

An Implicit Enumeration Algorithm to Generate

An Implicit Enumeration Algorithm to Generate IEEE TRANSACTIONS ON COMPUTERS, VOL. C-30, NO. 3, MARCH 1981 An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circuits 215 PRABHAKAR GOEL Abstract-The D-algorithm (DALG) is shown

More information

Final Examination (Open Katz, asynchronous & test notes only, Calculators OK, 3 hours)

Final Examination (Open Katz, asynchronous & test notes only, Calculators OK, 3 hours) Your Name: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO Department of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA CRUZ CS

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Minimization CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2013 Soleymani Course material: Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

A CSP Search Algorithm with Reduced Branching Factor

A CSP Search Algorithm with Reduced Branching Factor A CSP Search Algorithm with Reduced Branching Factor Igor Razgon and Amnon Meisels Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84-105, Israel {irazgon,am}@cs.bgu.ac.il

More information

Combinational Logic & Circuits

Combinational Logic & Circuits Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other

More information

Constraint Satisfaction Problems. Chapter 6

Constraint Satisfaction Problems. Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems A constraint satisfaction problem consists of three components, X, D, and C: X is a set of variables, {X 1,..., X n }. D is a

More information

On the Relation between SAT and BDDs for Equivalence Checking

On the Relation between SAT and BDDs for Equivalence Checking On the Relation between SAT and BDDs for Equivalence Checking Sherief Reda 1 Rolf Drechsler 2 Alex Orailoglu 1 1 Computer Science & Engineering Department University of California, San Diego La Jolla,

More information

Symbolic Methods. The finite-state case. Martin Fränzle. Carl von Ossietzky Universität FK II, Dpt. Informatik Abt.

Symbolic Methods. The finite-state case. Martin Fränzle. Carl von Ossietzky Universität FK II, Dpt. Informatik Abt. Symbolic Methods The finite-state case Part I Martin Fränzle Carl von Ossietzky Universität FK II, Dpt. Informatik Abt. Hybride Systeme 02917: Symbolic Methods p.1/34 What you ll learn How to use and manipulate

More information

Functional Test Generation for Delay Faults in Combinational Circuits

Functional Test Generation for Delay Faults in Combinational Circuits Functional Test Generation for Delay Faults in Combinational Circuits Irith Pomeranz and Sudhakar M. Reddy + Electrical and Computer Engineering Department University of Iowa Iowa City, IA 52242 Abstract

More information

THE UNIVERSITY OF MICHIGAN. GRASP A New Search Algorithm for Satisfiability

THE UNIVERSITY OF MICHIGAN. GRASP A New Search Algorithm for Satisfiability GRASP A New Search Algorithm for Satisfiability João P. Marques Silva Karem A. Sakallah CSE-TR-292-96 April 10, 1996 THE UNIVERSITY OF MICHIGAN Computer Science and Engineering Division Department of Electrical

More information

6 DESIGN FOR TESTABILITY I: FROM FULL SCAN TO PARTIAL SCAN

6 DESIGN FOR TESTABILITY I: FROM FULL SCAN TO PARTIAL SCAN 94 Advances in Microelectronics 6 DESIGN FOR TESTABILITY I: FROM FULL SCAN TO PARTIAL SCAN Chia Yee Ooi 6.1 CONTEXT It is important to check whether the manufactured circuit has physical defects or not.

More information

Boolean Representations and Combinatorial Equivalence

Boolean Representations and Combinatorial Equivalence Chapter 2 Boolean Representations and Combinatorial Equivalence This chapter introduces different representations of Boolean functions. It then discusses the applications of these representations for proving

More information

VLSI Test Technology and Reliability (ET4076)

VLSI Test Technology and Reliability (ET4076) VLSI Test Technology and Reliability (ET4076) Lecture 8 (1) Delay Test (Chapter 12) Said Hamdioui Computer Engineering Lab Delft University of Technology 2009-2010 1 Learning aims Define a path delay fault

More information

Page 1. Outline. A Good Reference and a Caveat. Testing. ECE 254 / CPS 225 Fault Tolerant and Testable Computing Systems. Testing and Design for Test

Page 1. Outline. A Good Reference and a Caveat. Testing. ECE 254 / CPS 225 Fault Tolerant and Testable Computing Systems. Testing and Design for Test Page Outline ECE 254 / CPS 225 Fault Tolerant and Testable Computing Systems Testing and Design for Test Copyright 24 Daniel J. Sorin Duke University Introduction and Terminology Test Generation for Single

More information

Chapter 3. Gate-Level Minimization. Outlines

Chapter 3. Gate-Level Minimization. Outlines Chapter 3 Gate-Level Minimization Introduction The Map Method Four-Variable Map Five-Variable Map Outlines Product of Sums Simplification Don t-care Conditions NAND and NOR Implementation Other Two-Level

More information

Testing Embedded Cores Using Partial Isolation Rings

Testing Embedded Cores Using Partial Isolation Rings Testing Embedded Cores Using Partial Isolation Rings Nur A. Touba and Bahram Pouya Computer Engineering Research Center Department of Electrical and Computer Engineering University of Texas, Austin, TX

More information

1/28/2013. Synthesis. The Y-diagram Revisited. Structural Behavioral. More abstract designs Physical. CAD for VLSI 2

1/28/2013. Synthesis. The Y-diagram Revisited. Structural Behavioral. More abstract designs Physical. CAD for VLSI 2 Synthesis The Y-diagram Revisited Structural Behavioral More abstract designs Physical CAD for VLSI 2 1 Structural Synthesis Behavioral Physical CAD for VLSI 3 Structural Processor Memory Bus Behavioral

More information

Adaptive Techniques for Improving Delay Fault Diagnosis

Adaptive Techniques for Improving Delay Fault Diagnosis Adaptive Techniques for Improving Delay Fault Diagnosis Jayabrata Ghosh-Dastidar and Nur A. Touba Computer Engineering Research Center Department of Electrical and Computer Engineering University of Texas,

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits Lecture Jaeyong Chung System-on-Chips (SoC) Laboratory Incheon National University Design/manufacture Process Chung EPC655 2 Design/manufacture Process Chung EPC655 3 Layout

More information

What is Search For? CS 188: Artificial Intelligence. Constraint Satisfaction Problems

What is Search For? CS 188: Artificial Intelligence. Constraint Satisfaction Problems CS 188: Artificial Intelligence Constraint Satisfaction Problems What is Search For? Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space Planning:

More information

Chapter 3 working with combinational logic

Chapter 3 working with combinational logic hapter 3 working with combinational logic ombinational Logic opyright 24, Gaetano orriello and Randy H. Katz Working with combinational logic Simplification two-level simplification exploiting don t cares

More information

A B AB CD Objectives:

A B AB CD Objectives: Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3

More information

ECE260B CSE241A Winter Logic Synthesis

ECE260B CSE241A Winter Logic Synthesis ECE260B CSE241A Winter 2007 Logic Synthesis Website: /courses/ece260b-w07 ECE 260B CSE 241A Static Timing Analysis 1 Slides courtesy of Dr. Cho Moon Introduction Why logic synthesis? Ubiquitous used almost

More information

LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a

More information

Lecture 18. Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1

Lecture 18. Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1 Lecture 18 Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1 Outline Chapter 6 - Constraint Satisfaction Problems Path Consistency & Global Constraints Sudoku Example Backtracking

More information

Propositional Calculus. Math Foundations of Computer Science

Propositional Calculus. Math Foundations of Computer Science Propositional Calculus Math Foundations of Computer Science Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus so that they can use it to

More information

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

More information

Managing Don t Cares in Boolean Satisfiability

Managing Don t Cares in Boolean Satisfiability Managing on t Cares in Boolean Satisfiability Sean Safarpour 1 ndreas eneris 1,2 Rolf rechsler 3 Joanne ee 1 bstract dvances in Boolean satisfiability solvers have popularized their use in many of today

More information

Chapter 8. 8 Minimization Techniques. 8.1 Introduction. 8.2 Single-Output Minimization Design Constraints

Chapter 8. 8 Minimization Techniques. 8.1 Introduction. 8.2 Single-Output Minimization Design Constraints 8 Minimization Techniques 8.1 Introduction The emphasis is on clean, irredundant, minimal designs has been dramatically affected by the evolution of LSI [VLSI] technology. There are instances where a minimal

More information