- Volume Rendering -

Size: px
Start display at page:

Download "- Volume Rendering -"

Transcription

1 Computer Graphics - Volume Rendering - Pascal Grittmann Using pictures from: Monte Carlo Methods for Physically Based Volume Rendering; SIGGRAPH 2018 Course; Jan Novák, Iliyan Georgiev, Johannes Hanika, Jaroslav Křivánek, Wojciech Jarosz

2 Overview So far: Light interactions with surfaces Assume vacuum in and around ojects This lecture: Participating media How to represent volumetric data How to compute volumetric lighting effects How to implement a very asic volume renderer CG - Volume Rendering - Pascal Grittmann 2

3

4

5

6

7

8 Fundamentals CG - Volume Rendering - Pascal Grittmann 8

9 Volumetric Effects Light interacts not only with surfaces ut everywhere inside! Volumes scatter, emit, or asor light CG - Volume Rendering - Pascal Grittmann 9

10 Approximation: Model Particle Density Modeling individual particles of a volume is, of course, not practical Instead, represent statistically using the average density (Same idea as, e.g., microfacet BSDFs) CG - Volume Rendering - Pascal Grittmann 10

11 Volume Representation Many possiilities (particles, voxel octrees, procedural, ) A common approach: Scene ojects can contain a volume CG - Volume Rendering - Pascal Grittmann 11

12 Volume Representation Homogeneous: Constant density Constant asorption, scattering, emission, Constant phase function (later) Heterogeneous: Coefficients and/or phase function vary across the volume Can e represented using 3D textures (e.g., voxel grid, procedural) CG - Volume Rendering - Pascal Grittmann 12

13 Data Acquisition Real-world measurements via tomography Simulation, e.g., Fluids, Fire and smoke, Fog CG - Volume Rendering - Pascal Grittmann 13

14 Simulating Volumes Mathematical Formulation of Volumetric Light Transport CG - Volume Rendering - Pascal Grittmann 14

15 So far: Assume Vacuum Compute L o (x, ω o ) using the rendering equation x CG - Volume Rendering - Pascal Grittmann 15

16 Volume Asors and Scatters Light Compute L o (x, ω o ) using the rendering equation Only a fraction T a, L o x, ω o arrives at the eye a x CG - Volume Rendering - Pascal Grittmann 16

17 Volume Emits Light Compute L o (x, ω o ) using the rendering equation Only a fraction T a, L o x, ω o arrives at the eye Every point z etween a and might emit light a z x CG - Volume Rendering - Pascal Grittmann 17

18 Volume Scatters Light Compute L o (x, ω o ) using the rendering equation Only a fraction T a, L o x, ω o arrives at the eye Every point z etween a and might emit light Every point z might e illuminated through the volume a z x CG - Volume Rendering - Pascal Grittmann 18

19 L i =? L 0 x a x Attenuation Computing Asorption and Out-Scattering CG - Volume Rendering - Pascal Grittmann 19

20 Attenuation = Asorption + Out-Scattering Every point in the volume might asor light or scatter it in other directions Modeled y asorption and scattering densities: μ a z and μ s z Might depend on position, direction, time, wavelength, For simplicity: we assume only positional dependence a z x CG - Volume Rendering - Pascal Grittmann 20

21 Computing Asorption Intuition Consider a small segment Δz Along that segment, radiance is reduced from L to L L = L μ a L Δz Where μ a is the percentage of radiance that is asored (per unit distance) a L Δz L CG - Volume Rendering - Pascal Grittmann 21

22 Computing Asorption Intuition Consider a small segment Δz Along that segment, radiance is reduced from L to L L = L μ a L Δz Where μ a is the percentage of radiance that is asored (per unit distance) Lets rewrite this: ΔL = L L = μ a L Δz a L Δz L CG - Volume Rendering - Pascal Grittmann 22

23 Computing Asorption Exponential Decay ΔL = μ a L Δz For infinitely small Δz, this ecomes dl = μ a L dz A differential equation that models exponential decay! Solution: L a = L o x e a μa t dt L = L o x L a a L Δz L x CG - Volume Rendering - Pascal Grittmann 23

24 Computing Out-Scattering Same as asorption, only different factor! μ s z : percentage of light scattered at point z L a = L o x e a μs t dt a z x CG - Volume Rendering - Pascal Grittmann 24

25 Computing Attenuation Fraction of light that is neither asored nor out-scattered μ t = μ a + μ s L a = L o x e a (μa t +μ s t ) dt Attenuation: T a, = e a μt t dt a z x CG - Volume Rendering - Pascal Grittmann 25

26 Computing Attenuation Homogeneous Simple case: constant density / attenuation μ t z = μ t z T a, = e a μt t dt = e (a )μ t a z x CG - Volume Rendering - Pascal Grittmann 26

27 Estimating Attenuation We need to solve another integral: T a, = e a μt t dt Many solutions, e.g., Monte Carlo integration (next semester) Simple solution: Quadrature CG - Volume Rendering - Pascal Grittmann 27

28 Estimating Attenuation Ray Marching We need to solve another integral: T a, = e a μt t dt Simple solution: Quadrature Ray marching: evaluate at discrete positions (fixed stepsize Δz) a μt t dt σ i μ t (z i ) Δz a Δz Δz Δz Δz z 1 z 2 z 3 x CG - Volume Rendering - Pascal Grittmann 28

29 a z Emission Explosions! CG - Volume Rendering - Pascal Grittmann 29

30 Every Point Might Emit Light Assume z emits L e z towards a Some of that light might e asored or out-scattered: It is attenuated L a = L e z T z, a a z CG - Volume Rendering - Pascal Grittmann 30

31 Every Point Might Emit Light Assume z emits L e z towards a Some of that light might e asored or out-scattered: It is attenuated L a = L e z T z, a Happens at every point along the ray! L a = a Le z T z, a dz Another integral a z CG - Volume Rendering - Pascal Grittmann 31

32 Ray Marching for Emission Same as efore: integrate via quadrature a Le z T z, a dz σ i L e z i T z i, a Δz Attenuation T z i, a estimated as efore a Δz Δz Δz Δz z 1 z 2 z 3 x CG - Volume Rendering - Pascal Grittmann 32

33 Ray Marching for Emission Same as efore: integrate via quadrature a Le z T z, a dz σ i L e z i T z i, a Δz Attenuation T z i, a estimated as efore Attenuation can e incrementally updated: T z i, a = T z i 1, a T z i, z i 1 (ecause it is an exponential function) a Δz Δz Δz Δz z 1 z 2 z 3 x CG - Volume Rendering - Pascal Grittmann 33

34 a z In-Scattering Accounting for Reflections Inside the Volume CG - Volume Rendering - Pascal Grittmann 34

35 Direct Illumination Account for the (attenuated) direct illumination at every point z Similar to the rendering equation: L o z, ω o = Ω L i x, ω i f p ω i, ω o dω i Integration over the whole sphere Ω The phase function f p takes on the role of the BSDF a ω o z ω i CG - Volume Rendering - Pascal Grittmann 35

36 Phase Functions L o z, ω o = Ω L i x, ω i f p ω i, ω o dω i Descrie what fraction of light is reflected from ω i to ω o Similar to BSDF for surface scattering Simplest example: isotropic phase function f p ω i, ω o = 1 4π (energy conservation: Ω 1 4π dω = 1) CG - Volume Rendering - Pascal Grittmann 36

37 Phase Functions: Henyey-Greenstein Widely used Easy to fit to measured data f p ω i, ω o = 1 4π 1 g 2 1+g 2 +2g cos ω i,ω o 3 2 g: asymmetry (scalar) cos ω i, ω o : cosine of the angle formed y ω i and ω o CG - Volume Rendering - Pascal Grittmann 37

38 Henyey-Greenstein: Asymmetry Parameter g = 0: isotropic Negative g: ack scattering Positive g: forward scattering Back Scattering Forward Scattering CG - Volume Rendering - Pascal Grittmann 38

39 How to Estimate Volume Direct Illumination Reflected radiance at a point z: L o z, ω o = Ω L i x, ω i f p ω i, ω o dω i In our framework: Sum over all point lights (as for surfaces) Trace shadow ray (as for surfaces) Estimate attenuation along the shadow ray (as for surfaces) a ω o z ω i CG - Volume Rendering - Pascal Grittmann 39

40 Ray Marching to Compute In-Scattering Same as for emission Goal: estimate the integral a T z, a μs z L i z f p dz Quadrature: a T z, a μs z L i z f p dz σ i T z i, a μ s z L i z i f p Δz a Δz Δz Δz Δz z 1 z 2 z CG - Volume Rendering - Pascal Grittmann 40

41 Ray Marching to Compute In-Scattering Same as for emission Goal: estimate the integral a T z, a Li z f p dz Quadrature: a T z, a Li z f p dz σ i T z i, a L i z i f p Δz Attenuation T z i, a estimated as efore Attenuation can e incrementally updated: T z i, a = T z i 1, a T z i, z i 1 (ecause it is an exponential function) a Δz Δz Δz Δz z 1 z 2 z CG - Volume Rendering - Pascal Grittmann 41

42 Putting it all Together A Simple Volume Integrator CG - Volume Rendering - Pascal Grittmann 42

43 A Simple Volume Integrator Estimate direct illumination at x (as efore) If volume: continue straight ahead until no volume (yields intersections y, z) x y z CG - Volume Rendering - Pascal Grittmann 43

44 A Simple Volume Integrator Estimate direct illumination at x (as efore) If volume: continue straight ahead until no volume (yields intersections y, z) Ray marching to estimate attenuation, emission, x y z CG - Volume Rendering - Pascal Grittmann 44

45 A Simple Volume Integrator Estimate direct illumination at x (as efore) If volume: continue straight ahead until no volume (yields intersections y, z) Ray marching to estimate attenuation, emission, and in-scattering Shadow rays to the lights + ray marching to compute attenuation x y z CG - Volume Rendering - Pascal Grittmann 45

46 A Simple Volume Integrator Estimate direct illumination at x (as efore) If volume: continue straight ahead until no volume (yields intersections y, z) Ray marching to estimate attenuation, emission, and in-scattering Shadow rays to the lights + ray marching to compute attenuation Compute illumination at z (as efore) x y z CG - Volume Rendering - Pascal Grittmann 46

47 A Simple Volume Integrator Estimate direct illumination at x (as efore) If volume: continue straight ahead until no volume (yields intersections y, z) Ray marching to estimate attenuation, emission, and in-scattering Shadow rays to the lights + ray marching to compute attenuation Compute illumination at z (as efore) Add together: Attenuated illumination from z Volumetric emission along xy In-scattering along xy Direct illumination at x x y z CG - Volume Rendering - Pascal Grittmann 47

48 A Simple Volume Integrator Estimate direct illumination at x (as efore) If volume: continue straight ahead until no volume (yields intersections y, z) Ray marching to estimate attenuation, emission, and in-scattering Shadow rays to the lights + ray marching to compute attenuation Compute illumination at z (as efore) Add together: { Attenuated illumination from z Multiply Volumetric emission along xy y BTDF! In-scattering along xy Direct illumination at x x y z CG - Volume Rendering - Pascal Grittmann 48

- Volume Rendering -

- Volume Rendering - Computer Graphics - Volume Rendering - Pascal Grittmann, Jaroslav Křivánek Using pictures from: Monte Carlo Methods for Physically Based Volume Rendering; SIGGRAPH 2018 Course; Jan Novák, Iliyan Georgiev,

More information

Today. Participating media. Participating media. Rendering Algorithms: Participating Media and. Subsurface scattering

Today. Participating media. Participating media. Rendering Algorithms: Participating Media and. Subsurface scattering Today Rendering Algorithms: Participating Media and Subsurface Scattering Introduction Rendering participating media Rendering subsurface scattering Spring 2009 Matthias Zwicker Participating media Participating

More information

Participating Media. Part I: participating media in general. Oskar Elek MFF UK Prague

Participating Media. Part I: participating media in general. Oskar Elek MFF UK Prague Participating Media Part I: participating media in general Oskar Elek MFF UK Prague Outline Motivation Introduction Properties of participating media Rendering equation Storage strategies Non-interactive

More information

Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps

Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps Efficient Simulation of ight Transport in Scenes ith Participating Media using Photon Maps Paper by Henrik Wann Jensen Per H. Christensen Presented by Abhinav Golas 1 Overvie What is participative media?

More information

Importance Sampling of Area Lights in Participating Media

Importance Sampling of Area Lights in Participating Media Importance Sampling of Area Lights in Participating Media Christopher Kulla Marcos Fajardo Outline Previous Work Single Scattering Equation Importance Sampling for Point Lights Importance Sampling for

More information

782 Schedule & Notes

782 Schedule & Notes 782 Schedule & Notes Tentative schedule - subject to change at a moment s notice. This is only a guide and not meant to be a strict schedule of how fast the material will be taught. The order of material

More information

Computer Graphics. - Volume Rendering - Philipp Slusallek

Computer Graphics. - Volume Rendering - Philipp Slusallek Computer Graphics - Volume Rendering - Philipp Slusallek Overview Motivation Volume Representation Indirect Volume Rendering Volume Classification Direct Volume Rendering Applications: Bioinformatics Image

More information

Irradiance Gradients. Media & Occlusions

Irradiance Gradients. Media & Occlusions Irradiance Gradients in the Presence of Media & Occlusions Wojciech Jarosz in collaboration with Matthias Zwicker and Henrik Wann Jensen University of California, San Diego June 23, 2008 Wojciech Jarosz

More information

Multiple Importance Sampling for Emissive Effects

Multiple Importance Sampling for Emissive Effects Multiple Importance Sampling for Emissive Effects Ryusuke Villemin, Christophe Hery Pixar Technical Memo 13-02 1 Introduction With the advent of global illumination, emissive volumes interact with objects

More information

Optical Models of Direct Volume Rendering by Nelson Max

Optical Models of Direct Volume Rendering by Nelson Max Optical Models of Direct Volume Rendering by Nelson Max By Michael Shah Duration: 15~20minutes February 7, 2011 Slides and study guide available at http://www.cse.ohio-state.edu/ ~shahmi/coursework.html

More information

SOME THEORY BEHIND REAL-TIME RENDERING

SOME THEORY BEHIND REAL-TIME RENDERING SOME THEORY BEHIND REAL-TIME RENDERING Jaroslav Křivánek Charles University in Prague Off-line realistic rendering (not yet in rea-time) Ray tracing 3 4 Image created by Bertrand Benoit Rendered in Corona

More information

The Rendering Equation and Path Tracing

The Rendering Equation and Path Tracing The Rendering Equation and Path Tracing Louis Feng April 22, 2004 April 21, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics The rendering equation Original form Meaning of the terms Integration Path

More information

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008) Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in

More information

Choosing the Right Algorithm & Guiding

Choosing the Right Algorithm & Guiding Choosing the Right Algorithm & Guiding PHILIPP SLUSALLEK & PASCAL GRITTMANN Topics for Today What does an implementation of a high-performance renderer look like? Review of algorithms which to choose for

More information

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map Part I The Basic Algorithm 1 Principles of A two-pass global illumination method Pass I Computing the photon map A rough representation of the lighting in the scene Pass II rendering Regular (distributed)

More information

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination Raytracing & Epsilon intersects light @ t = 25.2 intersects sphere1 @ t = -0.01 & Monte Carlo Ray Tracing intersects sphere1 @ t = 10.6 Solution: advance the ray start position epsilon distance along the

More information

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays

More information

Lecture 7 - Path Tracing

Lecture 7 - Path Tracing INFOMAGR Advanced Graphics Jacco Bikker - November 2016 - February 2017 Lecture 7 - I x, x = g(x, x ) ε x, x + S ρ x, x, x I x, x dx Welcome! Today s Agenda: Introduction Advanced Graphics 3 Introduction

More information

6. Illumination, Lighting

6. Illumination, Lighting Jorg s Graphics Lecture Notes 6. Illumination, Lighting 1 6. Illumination, Lighting No ray tracing in OpenGL! ray tracing: direct paths COP interreflection: soft shadows, color bleeding. umbra, penumbra,

More information

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons Reflectance 1 Lights, Surfaces, and Cameras Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons 2 Light at Surfaces Many effects when light strikes a surface -- could be:

More information

Illumination Under Trees. Nelson Max University of Tokyo, and University of California, Davis

Illumination Under Trees. Nelson Max University of Tokyo, and University of California, Davis Illumination Under Trees Nelson Max University of Tokyo, and University of California, Davis Topics Hierarchical image based rendering for trees Atmospheric illumination and shadows Shadow penumbras with

More information

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple 1 In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple times) until they are absorbed. On their way, they

More information

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Path Tracing part 2 Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Monte Carlo Integration Monte Carlo Integration The rendering (& radiance) equation is an infinitely recursive integral

More information

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing by Stephen Kazmierczak Introduction Unbiased light transport algorithms can sometimes take a large number of rays to

More information

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184 Overview Lighting and shading key in computer graphics HW 2 etc. ad-hoc shading models,

More information

The Rendering Equation & Monte Carlo Ray Tracing

The Rendering Equation & Monte Carlo Ray Tracing Last Time? Local Illumination & Monte Carlo Ray Tracing BRDF Ideal Diffuse Reflectance Ideal Specular Reflectance The Phong Model Radiosity Equation/Matrix Calculating the Form Factors Aj Ai Reading for

More information

Reduced Aggregate Scattering Operators

Reduced Aggregate Scattering Operators Reduced Aggregate Scattering Operators for Path Tracing s Adrian Blumer Jan Novák Ralf Habel Derek Nowrouzezahrai Wojciech Jarosz Overview Reduced Aggregate Scattering Operators for Path Tracing 2 Overview

More information

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz Outline Jan Kautz Basic terms in radiometry Radiance Reflectance The operator form of the radiance equation Meaning of the operator form Approximations to the radiance equation 2005 Mel Slater, 2006 Céline

More information

Simulating Smoke with an Octree Data Structure and Ray Marching

Simulating Smoke with an Octree Data Structure and Ray Marching Simulating Smoke with an Octree Data Structure and Ray Marching Edward Eisenberger Maria Montenegro Abstract We present a method for simulating and rendering smoke using an Octree data structure and Monte

More information

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker Rendering Algorithms: Real-time indirect illumination Spring 2010 Matthias Zwicker Today Real-time indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant

More information

Global Illumination and the Rendering Equation

Global Illumination and the Rendering Equation CS294-13: Special Topics Lecture #3 Advanced Computer Graphics University of California, Berkeley Handout Date??? Global Illumination and the Rendering Equation Lecture #3: Wednesday, 9 September 2009

More information

Lecture 7: Monte Carlo Rendering. MC Advantages

Lecture 7: Monte Carlo Rendering. MC Advantages Lecture 7: Monte Carlo Rendering CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University MC Advantages Convergence rate of O( ) Simple Sampling Point evaluation Can use black boxes General

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2016 - Lecture 10: Shading Models Welcome! Today s Agenda: Introduction Light Transport Materials Sensors Shading INFOGR Lecture 10 Shading Models 3 Introduction

More information

BRDFs. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

BRDFs. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 BRDFs Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 The Rendering Equation Radiance Radiance is a measure of the quantity of light radiation reflected (and/or emitted) from a surface within

More information

Global Illumination The Game of Light Transport. Jian Huang

Global Illumination The Game of Light Transport. Jian Huang Global Illumination The Game of Light Transport Jian Huang Looking Back Ray-tracing and radiosity both computes global illumination Is there a more general methodology? It s a game of light transport.

More information

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao GAMES Webinar: Rendering Tutorial 2 Monte Carlo Methods Shuang Zhao Assistant Professor Computer Science Department University of California, Irvine GAMES Webinar Shuang Zhao 1 Outline 1. Monte Carlo integration

More information

To Do. Advanced Computer Graphics. Course Outline. Course Outline. Illumination Models. Diffuse Interreflection

To Do. Advanced Computer Graphics. Course Outline. Course Outline. Illumination Models. Diffuse Interreflection Advanced Computer Graphics CSE 163 [Spring 017], Lecture 11 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment due May 19 Should already be well on way. Contact us for difficulties etc. This

More information

Assignment 3: Path tracing

Assignment 3: Path tracing Assignment 3: Path tracing EDAN30 April 2, 2011 In this assignment you will be asked to extend your ray tracer to support path tracing. In order to pass the assignment you need to complete all tasks. Make

More information

COMPUTER GRAPHICS COURSE. LuxRender. Light Transport Foundations

COMPUTER GRAPHICS COURSE. LuxRender. Light Transport Foundations COMPUTER GRAPHICS COURSE LuxRender Light Transport Foundations Georgios Papaioannou - 2015 Light Transport Light is emitted at the light sources and scattered around a 3D environment in a practically infinite

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 480 Computer Graphics Lecture 18 Global Illumination BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] March 28, 2012 Jernej Barbic University of Southern California

More information

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces

More information

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials

More information

BRDF Computer Graphics (Spring 2008)

BRDF Computer Graphics (Spring 2008) BRDF Computer Graphics (Spring 2008) COMS 4160, Lecture 20: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Reflected Radiance proportional to Irradiance Constant proportionality: BRDF [CW

More information

Simple Lighting/Illumination Models

Simple Lighting/Illumination Models Simple Lighting/Illumination Models Scene rendered using direct lighting only Photograph Scene rendered using a physically-based global illumination model with manual tuning of colors (Frederic Drago and

More information

Reflection models and radiometry Advanced Graphics

Reflection models and radiometry Advanced Graphics Reflection models and radiometry Advanced Graphics Rafał Mantiuk Computer Laboratory, University of Cambridge Applications To render realistic looking materials Applications also in computer vision, optical

More information

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping Advanced Graphics Path Tracing and Photon Mapping Part 2 Path Tracing and Photon Mapping Importance Sampling Combine importance sampling techniques Reflectance function (diffuse + specular) Light source

More information

rendering equation computer graphics rendering equation 2009 fabio pellacini 1

rendering equation computer graphics rendering equation 2009 fabio pellacini 1 rendering equation computer graphics rendering equation 2009 fabio pellacini 1 physically-based rendering synthesis algorithms that compute images by simulation the physical behavior of light computer

More information

Global Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Global Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Global Illumination CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Foley, van Dam (better): Chapter 16.7-13 Angel: Chapter 5.11, 11.1-11.5 2 Limitation of local illumination A concrete

More information

Implementation of Dispersion Rendering Capabilities in the Advanced Rendering Toolkit

Implementation of Dispersion Rendering Capabilities in the Advanced Rendering Toolkit Technische Universität Wien Departamento de Engenharia Informática, Universidade de Coimbra Implementation of Dispersion Rendering Capabilities in the Advanced Rendering Toolkit Nuno Daniel Raposo Subtil

More information

Interactive Methods in Scientific Visualization

Interactive Methods in Scientific Visualization Interactive Methods in Scientific Visualization GPU Volume Raycasting Christof Rezk-Salama University of Siegen, Germany Volume Rendering in a Nutshell Image Plane Eye Data Set Back-to-front iteration

More information

The Rendering Equation. Computer Graphics CMU /15-662

The Rendering Equation. Computer Graphics CMU /15-662 The Rendering Equation Computer Graphics CMU 15-462/15-662 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area perpendicular

More information

rendering equation computer graphics rendering equation 2009 fabio pellacini 1

rendering equation computer graphics rendering equation 2009 fabio pellacini 1 rendering equation computer graphics rendering equation 2009 fabio pellacini 1 phsicall-based rendering snthesis algorithms that compute images b simulation the phsical behavior of light computer graphics

More information

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] 1 Global Illumination

More information

Introduction to Radiosity

Introduction to Radiosity Introduction to Radiosity Produce photorealistic pictures using global illumination Mathematical basis from the theory of heat transfer Enables color bleeding Provides view independent representation Unfortunately,

More information

Volumetric Path Tracing

Volumetric Path Tracing Volumetric Path Tracing Steve Marschner Cornell University CS 6630 Fall 2015, 29 October Using Monte Carlo integration is a good, easy way to get correct solutions to the radiative transfer equation. It

More information

Today. Anti-aliasing Surface Parametrization Soft Shadows Global Illumination. Exercise 2. Path Tracing Radiosity

Today. Anti-aliasing Surface Parametrization Soft Shadows Global Illumination. Exercise 2. Path Tracing Radiosity Today Anti-aliasing Surface Parametrization Soft Shadows Global Illumination Path Tracing Radiosity Exercise 2 Sampling Ray Casting is a form of discrete sampling. Rendered Image: Sampling of the ground

More information

Final Project: Real-Time Global Illumination with Radiance Regression Functions

Final Project: Real-Time Global Illumination with Radiance Regression Functions Volume xx (200y), Number z, pp. 1 5 Final Project: Real-Time Global Illumination with Radiance Regression Functions Fu-Jun Luan Abstract This is a report for machine learning final project, which combines

More information

Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere

Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere I.T. Dimov 1,A.A.Penzov 2, and S.S. Stoilova 3 1 Institute for Parallel Processing, Bulgarian Academy of Sciences Acad. G. Bonchev Str., bl.

More information

Rendering. Mike Bailey. Rendering.pptx. The Rendering Equation

Rendering. Mike Bailey. Rendering.pptx. The Rendering Equation 1 Rendering This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License Mike Bailey mjb@cs.oregonstate.edu Rendering.pptx d i d 0 P P d i The Rendering

More information

Korrigeringar: An introduction to Global Illumination. Global Illumination. Examples of light transport notation light

Korrigeringar: An introduction to Global Illumination. Global Illumination. Examples of light transport notation light An introduction to Global Illumination Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Korrigeringar: Intel P4 (200): ~42M transistorer Intel P4 EE (2004): 78M

More information

Biased Monte Carlo Ray Tracing

Biased Monte Carlo Ray Tracing Biased Monte Carlo Ray Tracing Filtering, Irradiance Caching, and Photon Mapping Henrik Wann Jensen Stanford University May 23, 2002 Unbiased and Consistent Unbiased estimator: E{X} =... Consistent estimator:

More information

x ~ Hemispheric Lighting

x ~ Hemispheric Lighting Irradiance and Incoming Radiance Imagine a sensor which is a small, flat plane centered at a point ~ x in space and oriented so that its normal points in the direction n. This sensor can compute the total

More information

Ambien Occlusion. Lighting: Ambient Light Sources. Lighting: Ambient Light Sources. Summary

Ambien Occlusion. Lighting: Ambient Light Sources. Lighting: Ambient Light Sources. Summary Summary Ambien Occlusion Kadi Bouatouch IRISA Email: kadi@irisa.fr 1. Lighting 2. Definition 3. Computing the ambient occlusion 4. Ambient occlusion fields 5. Dynamic ambient occlusion 1 2 Lighting: Ambient

More information

Illumination Algorithms

Illumination Algorithms Global Illumination Illumination Algorithms Digital Lighting and Rendering CGT 340 The goal of global illumination is to model all possible paths of light to the camera. Global Illumination Global illumination

More information

Advanced Computer Graphics CS 563: Real Time Volumetric Shadows using 1D Min Max Mipmaps

Advanced Computer Graphics CS 563: Real Time Volumetric Shadows using 1D Min Max Mipmaps Advanced Computer Graphics CS 563: Real Time Volumetric Shadows using 1D Min Max Mipmaps Rob Martin Computer Science Dept. Worcester Polytechnic Institute (WPI) Introduction We want to model the effects

More information

Monte-Carlo modeling used to simulate propagation of photons in a medium

Monte-Carlo modeling used to simulate propagation of photons in a medium Monte-Carlo modeling used to simulate propagation of photons in a medium Nils Haëntjens Ocean Optics Class 2017 based on lectures from Emmanuel Boss and Edouard Leymarie What is Monte Carlo Modeling? Monte

More information

Supplement to Lecture 16

Supplement to Lecture 16 Supplement to Lecture 16 Global Illumination: View Dependent CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Notes and figures from Ed Angel: Interactive Computer Graphics, 6 th Ed., 2012 Addison

More information

Lecture 10: Ray tracing

Lecture 10: Ray tracing Interactive Computer Graphics Lecture 10: Ray tracing Graphics Lecture 10: Slide 1 Some slides adopted from H. Pfister, Harvard Graphics Lecture 10: Slide 2 Direct and Global Illumination Direct illumination:

More information

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity Schedule Review Session: Tuesday November 18 th, 7:30 pm, Room 2-136 bring lots of questions! MIT 6.837 Monte-Carlo Ray Tracing Quiz 2: Thursday November 20 th, in class (one weeks from today) MIT EECS

More information

INFOMAGR Advanced Graphics. Jacco Bikker - February April Welcome!

INFOMAGR Advanced Graphics. Jacco Bikker - February April Welcome! INFOMAGR Advanced Graphics Jacco Bikker - February April 2016 Welcome! I x, x = g(x, x ) ε x, x + S ρ x, x, x I x, x dx Today s Agenda: Introduction Stratification Next Event Estimation Importance Sampling

More information

GPU based particle rendering system for isotropic participating media

GPU based particle rendering system for isotropic participating media Eighth Hungarian Conference on Computer Graphics and Geometry, Budapest, 2016 GPU based particle rendering system for isotropic participating media Bálint Remes, Tamás Umenhoffer and László Szécsi Budapest

More information

The feature set you are required to implement in your ray tracer is as follows (by order from easy to hard):

The feature set you are required to implement in your ray tracer is as follows (by order from easy to hard): Ray Tracing exercise TAU, Computer Graphics, 0368.3014, semester B Go to the Updates and FAQ Page Overview The objective of this exercise is to implement a ray casting/tracing engine. Ray tracing is a

More information

INTERACTIVE LIGHT SCATTERING WITH PRINCIPAL-ORDINATE PROPAGATION

INTERACTIVE LIGHT SCATTERING WITH PRINCIPAL-ORDINATE PROPAGATION Graphics Interface 2014 May 7th to 9th, Montreal, Quebec, Canada INTERACTIVE LIGHT SCATTERING WITH PRINCIPAL-ORDINATE PROPAGATION Oskar Elek (1,2,3) Tobias Ritschel (1,2,3) Carsten Dachsbacher (4) Hans-Peter

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Angel Ch. 11] 1 Global Illumination

More information

Visual Appearance and Color. Gianpaolo Palma

Visual Appearance and Color. Gianpaolo Palma Visual Appearance and Color Gianpaolo Palma LIGHT MATERIAL Visual Appearance Color due to the interaction between the lighting environment (intensity, position, ) and the properties of the object surface

More information

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces)

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) Photon Mapping 1/36 Photon Maps The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) As opposed to the radiosity method that stores information on surface

More information

Computer Graphics. Lecture 10. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura 12/03/15

Computer Graphics. Lecture 10. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura 12/03/15 Computer Graphics Lecture 10 Global Illumination 1: Ray Tracing and Radiosity Taku Komura 1 Rendering techniques Can be classified as Local Illumination techniques Global Illumination techniques Local

More information

Biased Monte Carlo Ray Tracing:

Biased Monte Carlo Ray Tracing: Biased Monte Carlo Ray Tracing: Filtering, Irradiance Caching and Photon Mapping Dr. Henrik Wann Jensen Stanford University May 24, 2001 Unbiased and consistent Monte Carlo methods Unbiased estimator:

More information

Computer Graphics. Lecture 13. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura

Computer Graphics. Lecture 13. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura Computer Graphics Lecture 13 Global Illumination 1: Ray Tracing and Radiosity Taku Komura 1 Rendering techniques Can be classified as Local Illumination techniques Global Illumination techniques Local

More information

Shading I Computer Graphics I, Fall 2008

Shading I Computer Graphics I, Fall 2008 Shading I 1 Objectives Learn to shade objects ==> images appear threedimensional Introduce types of light-material interactions Build simple reflection model Phong model Can be used with real time graphics

More information

Path Traced Subsurface Scattering using Anisotropic Phase Functions and Non-Exponential Free Flights

Path Traced Subsurface Scattering using Anisotropic Phase Functions and Non-Exponential Free Flights Path Traced Subsurface Scattering using Anisotropic Phase Functions and Non-Exponential Free Flights Magnus Wrenninge Ryusuke Villemin Christophe Hery Pixar Technical Memo 17-07 1 Abstract With the recent

More information

Spectral Color and Radiometry

Spectral Color and Radiometry Spectral Color and Radiometry Louis Feng April 13, 2004 April 13, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics Spectral Color Light and Color Spectrum Spectral Power Distribution Spectral Color

More information

Real-Time Voxelization for Global Illumination

Real-Time Voxelization for Global Illumination Lecture 26: Real-Time Voxelization for Global Illumination Visual Computing Systems Voxelization to regular grid Input: scene triangles Output: surface information at each voxel in 3D grid - Simple case:

More information

Assignment 6: Ray Tracing

Assignment 6: Ray Tracing Assignment 6: Ray Tracing Programming Lab Due: Monday, April 20 (midnight) 1 Introduction Throughout this semester you have written code that manipulated shapes and cameras to prepare a scene for rendering.

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

More information

COMBINING VOLUMETRIC ESTIMATORS

COMBINING VOLUMETRIC ESTIMATORS COMBINING VOLUMETRIC ESTIMATORS Jaroslav Křivánek Charles University Render Legion Chaos Group UNIFYING POINTS, BEAMS, AND PATHS IN VOLUMETRIC LIGHT TRANSPORT SIMULATION Jaroslav Křivánek Charles University

More information

Local Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Local Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Local Illumination CMPT 361 Introduction to Computer Graphics Torsten Möller Graphics Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Interaction Color Texture/ Realism

More information

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ]

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ] CSCI 420 Computer Graphics Lecture 15 Ray Tracing Ray Casting Shadow Rays Reflection and Transmission [Ch. 13.2-13.3] Jernej Barbic University of Southern California 1 Local Illumination Object illuminations

More information

Global Illumination with Glossy Surfaces

Global Illumination with Glossy Surfaces Global Illumination with Glossy Surfaces Wolfgang Stürzlinger GUP, Johannes Kepler Universität, Altenbergerstr.69, A-4040 Linz, Austria/Europe wrzl@gup.uni-linz.ac.at Abstract Photorealistic rendering

More information

CS184 LECTURE RADIOMETRY. Kevin Wu November 10, Material HEAVILY adapted from James O'Brien, Brandon Wang, Fu-Chung Huang, and Aayush Dawra

CS184 LECTURE RADIOMETRY. Kevin Wu November 10, Material HEAVILY adapted from James O'Brien, Brandon Wang, Fu-Chung Huang, and Aayush Dawra CS184 LECTURE RADIOMETRY Kevin Wu November 10, 2014 Material HEAVILY adapted from James O'Brien, Brandon Wang, Fu-Chung Huang, and Aayush Dawra ADMINISTRATIVE STUFF Project! TODAY Radiometry (Abridged):

More information

Direct Volume Rendering. Overview

Direct Volume Rendering. Overview Direct Volume Rendering Department of Computer Science University of New Hampshire Durham, NH 03824 Based on: Brodlie and Wood, Recent Advances in Visualization of Volumetric Data, Eurographics 2000 State

More information

Overview. Direct Volume Rendering. Volume Rendering Integral. Volume Rendering Integral Approximation

Overview. Direct Volume Rendering. Volume Rendering Integral. Volume Rendering Integral Approximation Overview Direct Volume Rendering Department of Computer Science University of New Hampshire Durham, NH 03824 Based on: Brodlie and Wood, Recent Advances in Visualization of Volumetric Data, Eurographics

More information

TDA361/DIT220 Computer Graphics, January 15 th 2016

TDA361/DIT220 Computer Graphics, January 15 th 2016 TDA361/DIT220 Computer Graphics, January 15 th 2016 EXAM (Same exam for both CTH- and GU students) Friday January 15 th, 2016, 8.30 12.30 Examiner Ulf Assarsson, tel. 0701-738535 Permitted Technical Aids

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis Bidirectional Path Tracing & Reciprocity Karol Myszkowski Gurprit Singh Path Sampling Techniques Different techniques of sampling paths from both sides Numbers in parenthesis

More information

COMPUTER GRAPHICS AND INTERACTION

COMPUTER GRAPHICS AND INTERACTION DH2323 DGI17 COMPUTER GRAPHICS AND INTERACTION INTRODUCTION TO RAYTRACING Christopher Peters CST, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

Lighting affects appearance

Lighting affects appearance Lighting affects appearance 1 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed

More information

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Illumination Visualisation Lecture 11 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Volume Illumination & Vector Vis. 1 Previously : Volume Rendering

More information

Practical Implementation of Light Scattering Effects Using Epipolar Sampling and 1D Min/Max Binary Trees

Practical Implementation of Light Scattering Effects Using Epipolar Sampling and 1D Min/Max Binary Trees Practical Implementation of Light Scattering Effects Using Epipolar Sampling and 1D Min/Max Binary Trees Egor Yusov Graphics Software Engineer Intel Corporation Demo 2 Agenda Introduction Light Scattering

More information

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283 Acknowledgements and many slides courtesy: Thomas Funkhouser, Szymon

More information