Index C, D, E, F I, J

Size: px
Start display at page:

Download "Index C, D, E, F I, J"

Transcription

1 Index A Ambient light, 12 B Blurring algorithm, 68 Brightness thresholding algorithm float testapp::blur, 70 kinect.update(), 69 void testapp::draw(), 70 void testapp::exit(), 70 void testapp::setup(), 69 void testapp::update(), 69 C, D, E, F Computer vision image anatomy, 65 image comparison, 74 background subtraction, black and white image creation, double image, 85 frame differencing, image storage, 87 tolerance, image processing. see Image processing G Gesture recognition, 89 definiton, 89 multitouch detection assigning and tracking component IDs, camera image, background storing and subtracting, 92 connected components algorithm, fingertip touching, 90 image processing, H infrared emitter and detector, 89 Kinect s depth image, 101 LCD display, 89 minority report style interface, motion, 97 multitouch-capable devices, 96 rotation, scale, 99 shape, 101 threshold filter, 90, Hardware accelerometer, depth sensing, RGB camera. see RGB camera tilting head, volumetric sensing Arduino Sketch, 35, 36, 38 binary distributions, 26 block wiring, 37 //BufferedAsync Setup, 32, 34 CMakeLists.txt file, ///Keyboard Event Tracking, 29, 30 ///Kinect hardware connection class, 27 lit alarm light, 39 ///Mutex Class, 26, 27 //~MyFreenectDevice(), 27 parts, 25 //PCL, 29 //Percentage Change, 30, 32 relay wiring, 35, 36 ///Start the PCL/OK Bridging, I, J Image processing brightest pixel tracking, brightness thresholding algorithm. see Brightness thresholding algorithm 247

2 Image processing (cont.) data simplifying, noise and blurring, situation contriving, 69 Infrared emitter and detector, 89 K Kinect drivers installation:. see OpenKinect driver hardware requirements, 1 2 installation testing, 9 L Linux, 6 7 M, N Mac OS X, 8 9 Mesh Models:, 128 Multiple kinects calibration, 209 calib.yaml file, 229 camera frame, 228 eigen.hpp, 243 OKStereo.cpp, stereo calibration, 228 world frame, 228 depth shadows, occlusions, 208 field of view, 207 hardware requirements, 209 interference, 209 angle and distance, 213, 214 box fan test, 217 calib.yaml file, 226 cloud 1 update, 227 cloud 2 update, 227 combined point clouds, 226 hardware shutter system, 218 holes, 209, 212 IR camera, 218 IR pattern, laser diodes, 217 mechanical shutters, 217 noise, 209 OKShutter.cpp, scene, 213 splotches, 209, 213 single direction, 207 Multitouch detection, gesture recognition assigning and tracking component IDs, camera image, background storing and subtracting, 92 connected components algorithm, fingertip touching, 90 image processing, infrared emitter and detector, 89 Kinect s depth image, 101 LCD display, 89 minority report style interface, motion, 97 multitouch-capable devices, 96 rotation, scale, 99 shape, 101 threshold filter, 90, O Object detection global descriptors CloudRecognizer Class, 201, 202 database model, 202 VFH descriptor computation, pose estimation, Object modeling 3-D camera space, 191 cleaning and cropping, partial views, high-resolution models, 199 Kinect pose estimation, marker-based scanner, Point clouds merging, support builiding, 191 definition, 173 single Kinect image. see Single Kinect image OpenGL drawing points, 135 initialization code, OpenKinect driver Linux, 6 7 Mac OS X, 8 9 Red Hat/Fedora, 7 Ubuntu, 7 Windows, 2 CMake preconfiguration, 5 Git Commands, 3 libfreenect, 3 248

3 P, Q Microsoft Visual Studio 2010 and MinGW, 5 6 updation, 3 Person tracking, Point cloud library (PCL), 129 OpenKinect binary distributions, 57 // Create and setup the viewer, 60 C++ file creation, 56 CMakeLists.txt, 62 ///Kinect Hardware Connection Class, 58 ///Mutex Class, 58 //~MyFreenectDevice(), 58 //More Kinect Setup, 60 ///Start the PCL/OK Bridging, 59 Windows installation cmake-guifor FLANN, 49 CMinPack, 49 Linux, Mac OS X, Qhull, 51 VTK installer, 51 Point clouds coloring depth to color reference frame, 131 image plane, 132 Depth Map, D registration affine transformation, 154 matched features, 152 transformation parameters, 153 translation, 153, D data representation Mesh Models, 128 rendering, 129 scaling pixel count, 127, 128 Voxels, D registration absolute orientation, rigid transformation, 155 rotation computation, 155 outliers, PCL creation, SLAM. See Simultaneous Localization and Mapping surface reconstruction normal estimation, 162 R triangulation method, visualization with OpenGL, with PCL, 133 wind application blue-red gradient, 136 Freenect Thread Code, intensity field, 142 is_frozen, 142 Kinect depth image, libraries, main() function, 139 OpenGL Code, radiohead s video, 136 screenshot, 149 show_visualizer(), 142 structure of, 136 TMyPoint, 142 Random sample consensus (RANSAC), 174 Red Hat/Fedora, 7 RGB camera build/bin/calibrate_kinect_ir execution, 18 calibration target, 13, Capture directory, Combined R T matrix, 23 kinect_calibration.yml file, Linux, 15 Mac OS X, 16 output image, 18, 19 pinhole model, 21, 22 rgb_distortion and depth_distortion, 21, 22 rgb_intrinsics/depth_intrinsics, 21 rgbd-viewer, 17 Windows installation, S Shape gestures, 101 Simultaneous localization and mapping (SLAM) advantages of, 160 conventional camera, 159 Kinect, real-time considerations, 161 simple Kinect C++ classes, 164 camera pose estimation, CTrackingSharedData class,

4 SLAM, simple kinect (cont.) main classes of, median feature computation, 168 Point Map construction, screenshot, 164 SURF, Single Kinect image 3-D Model extruder class, 180 Mesh building, surface point cloud, 181, unseen Voxels, Voxelized representation, parametric model, tabletop object detector background removal, 176 individual object clusters extraction, points lying, prism, 177 sample scene, 174 table plane extraction, Software Kinect drivers Microsoft Kinect SDK, 41 OpenKinect, 41 OpenNI, 41 OpenCV installation Linux, Mac OS X, Windows, point cloud library (PCL) installation // Create and setup the viewer, 60 ///Kinect Hardware Connection Class, 58 ///Mutex Class, 58 ///Start the PCL/OK Bridging, 59 //~MyFreenectDevice(), 58 //More Kinect Setup, 60 binary distributions, 57 C++ file creation, 56 CMakeLists.txt, 62 Structured light pattern, 12 T Tabletop object detector background removal, 176 individual object clusters extraction, points lying, prism, 177 sample scene, 174 table plane extraction, Threshold filter, U Ubuntu, 7 V Volumetric sensing OKFlower.cpp Arduino Sketch, 35, 36, 38 binary distributions, 26 block wiring, 37 //BufferedAsync Setup, 32, 34 CMakeLists.txt file, ///Keyboard Event Tracking, 29, 30 ///Kinect hardware connection class, 27 lit alarm light, 39 ///Mutex Class, 26, 27 //~MyFreenectDevice(), 27 //PCL, 29 //Percentage Change, 30, 32 relay wiring, 35, 36 ///Start the PCL/OK Bridging, parts, 25 Voxelization, 103 clustering voxels, 122 cluster_indices, D flood fill technique, 120 EuclideanClusterExtraction, 121 KdTree line, 122 PCL, setclustertolerance, 122 setminclustersize and setmaxclustersize, 122 dataset, 104 definition, manipulating voxels background cloud, 118 background subtraction, drawing voxel boxes, 108 foreground cloud, 117, 120 full scene cloud, 117, 119 function, background subtraction, getpointindicesfromnewvoxels, 117 leaf nodes, 107 octrees, PCL,

5 tracking people and fitting rectangular prism, Voxels, 128 W, X, Y, Z Wind application animation code, blue-red gradient, 136 Freenect Thread Code, intensity field, 142 is_frozen, 142 Kinect depth image, libraries, main() function, 139 OpenGL Code, screenshot, 149 show_visualizer(), 142 structure of, 136 TMyPoint,

A consumer level 3D object scanning device using Kinect for web-based C2C business

A consumer level 3D object scanning device using Kinect for web-based C2C business A consumer level 3D object scanning device using Kinect for web-based C2C business Geoffrey Poon, Yu Yin Yeung and Wai-Man Pang Caritas Institute of Higher Education Introduction Internet shopping is popular

More information

3D object recognition used by team robotto

3D object recognition used by team robotto 3D object recognition used by team robotto Workshop Juliane Hoebel February 1, 2016 Faculty of Computer Science, Otto-von-Guericke University Magdeburg Content 1. Introduction 2. Depth sensor 3. 3D object

More information

Facoltà di Ingegneria. Kinect calibration. Ilya Afanasyev Trento, /01/2012 1/20

Facoltà di Ingegneria. Kinect calibration. Ilya Afanasyev Trento, /01/2012 1/20 Facoltà di Ingegneria Kinect calibration Ilya Afanasyev Trento, 2012 25/01/2012 1/20 Content 1. The description. 2. About the existing software. 3. Tests of Nicolas Burrus software binaries. 4. Open Kinect

More information

3D Computer Vision 1

3D Computer Vision 1 3D Computer Vision 1 Multiview Stereo Multiview Stereo Multiview Stereo https://www.youtube.com/watch?v=ugkb7itpnae Shape from silhouette Shape from silhouette Shape from silhouette Shape from silhouette

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods L2 Data Acquisition Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods 1 Coordinate Measurement Machine Touch based Slow Sparse Data Complex planning Accurate 2

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Q K 1 u v 1 What is pose estimation?

More information

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation Alexander Andreopoulos, Hirak J. Kashyap, Tapan K. Nayak, Arnon Amir, Myron D. Flickner IBM Research March 25,

More information

High-Fidelity Augmented Reality Interactions Hrvoje Benko Researcher, MSR Redmond

High-Fidelity Augmented Reality Interactions Hrvoje Benko Researcher, MSR Redmond High-Fidelity Augmented Reality Interactions Hrvoje Benko Researcher, MSR Redmond New generation of interfaces Instead of interacting through indirect input devices (mice and keyboard), the user is interacting

More information

3D Object Representations. COS 526, Fall 2016 Princeton University

3D Object Representations. COS 526, Fall 2016 Princeton University 3D Object Representations COS 526, Fall 2016 Princeton University 3D Object Representations How do we... Represent 3D objects in a computer? Acquire computer representations of 3D objects? Manipulate computer

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

USAGE OF MICROSOFT KINECT FOR AUGMENTED PROTOTYPING SPEED-UP

USAGE OF MICROSOFT KINECT FOR AUGMENTED PROTOTYPING SPEED-UP ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume LX 23 Number 2, 2012 USAGE OF MICROSOFT KINECT FOR AUGMENTED PROTOTYPING SPEED-UP J. Landa, D. Procházka Received: November

More information

Calibrated Image Acquisition for Multi-view 3D Reconstruction

Calibrated Image Acquisition for Multi-view 3D Reconstruction Calibrated Image Acquisition for Multi-view 3D Reconstruction Sriram Kashyap M S Guide: Prof. Sharat Chandran Indian Institute of Technology, Bombay April 2009 Sriram Kashyap 3D Reconstruction 1/ 42 Motivation

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov CS 378: Autonomous Intelligent Robotics Instructor: Jivko Sinapov http://www.cs.utexas.edu/~jsinapov/teaching/cs378/ Visual Registration and Recognition Announcements Homework 6 is out, due 4/5 4/7 Installing

More information

Removing Moving Objects from Point Cloud Scenes

Removing Moving Objects from Point Cloud Scenes Removing Moving Objects from Point Cloud Scenes Krystof Litomisky and Bir Bhanu University of California, Riverside krystof@litomisky.com, bhanu@ee.ucr.edu Abstract. Three-dimensional simultaneous localization

More information

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1 Last update: May 4, 200 Vision CMSC 42: Chapter 24 CMSC 42: Chapter 24 Outline Perception generally Image formation Early vision 2D D Object recognition CMSC 42: Chapter 24 2 Perception generally Stimulus

More information

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa 3D Scanning Qixing Huang Feb. 9 th 2017 Slide Credit: Yasutaka Furukawa Geometry Reconstruction Pipeline This Lecture Depth Sensing ICP for Pair-wise Alignment Next Lecture Global Alignment Pairwise Multiple

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

ENHANCING PCL USABILITY: A GUI FRONT-END, INTERFACING WITH VTK, IMAGE PROCESSING ON POINT CLOUDS, AND MORE! David Doria

ENHANCING PCL USABILITY: A GUI FRONT-END, INTERFACING WITH VTK, IMAGE PROCESSING ON POINT CLOUDS, AND MORE! David Doria ENHANCING PCL USABILITY: A GUI FRONT-END, INTERFACING WITH VTK, IMAGE PROCESSING ON POINT CLOUDS, AND MORE! David Doria GSOC PROJECTS Object Reconstruction Web-based applications Recognition module improvements

More information

CS231A Midterm Review. Friday 5/6/2016

CS231A Midterm Review. Friday 5/6/2016 CS231A Midterm Review Friday 5/6/2016 Outline General Logistics Camera Models Non-perspective cameras Calibration Single View Metrology Epipolar Geometry Structure from Motion Active Stereo and Volumetric

More information

Environment Capturing with Microsoft Kinect

Environment Capturing with Microsoft Kinect 1 Environment Capturing with Microsoft Kinect Kevin Mackay 1, Hubert P. H. Shum 2, and Taku Komura 1 1 The University of Edinburgh, UK 2 The Northumbria University, UK Constructing virtual scenes that

More information

3D Modeling of Objects Using Laser Scanning

3D Modeling of Objects Using Laser Scanning 1 3D Modeling of Objects Using Laser Scanning D. Jaya Deepu, LPU University, Punjab, India Email: Jaideepudadi@gmail.com Abstract: In the last few decades, constructing accurate three-dimensional models

More information

SANGAM PROJECT BROCHURE:

SANGAM PROJECT BROCHURE: SANGAM PROJECT BROCHURE: Real-Time 3D Object Reconstruction using Kinect By: Sudharshan Suresh Narendar Sriram Senthil Hariharan Anjana Gayathri Spider R & D Introduction In a year where astronauts in

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Robot vision review. Martin Jagersand

Robot vision review. Martin Jagersand Robot vision review Martin Jagersand What is Computer Vision? Computer Graphics Three Related fields Image Processing: Changes 2D images into other 2D images Computer Graphics: Takes 3D models, renders

More information

CSE 145/237D FINAL REPORT. 3D Reconstruction with Dynamic Fusion. Junyu Wang, Zeyangyi Wang

CSE 145/237D FINAL REPORT. 3D Reconstruction with Dynamic Fusion. Junyu Wang, Zeyangyi Wang CSE 145/237D FINAL REPORT 3D Reconstruction with Dynamic Fusion Junyu Wang, Zeyangyi Wang Contents Abstract... 2 Background... 2 Implementation... 4 Development setup... 4 Real time capturing... 5 Build

More information

Computer and Machine Vision

Computer and Machine Vision Computer and Machine Vision Lecture Week 12 Part-2 Additional 3D Scene Considerations March 29, 2014 Sam Siewert Outline of Week 12 Computer Vision APIs and Languages Alternatives to C++ and OpenCV API

More information

Information page for written examinations at Linköping University TER2

Information page for written examinations at Linköping University TER2 Information page for written examinations at Linköping University Examination date 2016-08-19 Room (1) TER2 Time 8-12 Course code Exam code Course name Exam name Department Number of questions in the examination

More information

Active Segmentation in 3D using Kinect Sensor

Active Segmentation in 3D using Kinect Sensor Active Segmentation in 3D using Kinect Sensor Zoltan Tomori Inst. of Experimental Physics Slovak Academy of Sciences Watsonova 47 tomori@saske.sk Radoslav Gargalik Inst. of Computer Science P.J. Safarik

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Maya tutorial. 1 Camera calibration

Maya tutorial. 1 Camera calibration Maya tutorial In this tutorial we will augment a real scene with virtual objects. This tutorial assumes that you have downloaded the file Maya.zip from the course web page and extracted it somewhere. 1

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements

Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements M. Lourakis and E. Hourdakis Institute of Computer Science Foundation for Research and Technology Hellas

More information

CSc Topics in Computer Graphics 3D Photography

CSc Topics in Computer Graphics 3D Photography CSc 83010 Topics in Computer Graphics 3D Photography Tuesdays 11:45-1:45 1:45 Room 3305 Ioannis Stamos istamos@hunter.cuny.edu Office: 1090F, Hunter North (Entrance at 69 th bw/ / Park and Lexington Avenues)

More information

Image Based Reconstruction II

Image Based Reconstruction II Image Based Reconstruction II Qixing Huang Feb. 2 th 2017 Slide Credit: Yasutaka Furukawa Image-Based Geometry Reconstruction Pipeline Last Lecture: Multi-View SFM Multi-View SFM This Lecture: Multi-View

More information

Computer and Machine Vision

Computer and Machine Vision Computer and Machine Vision Lecture Week 10 Part-2 Skeletal Models and Face Detection March 21, 2014 Sam Siewert Outline of Week 10 Lab #4 Overview Lab #5 and #6 Extended Lab Overview SIFT and SURF High

More information

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook Stony Brook University The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. Alll Rigghht tss

More information

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics CS 4495 Computer Vision Kelsey Hawkins Robotics Motivation What do animals, people, and robots want to do with vision? Detect and recognize objects/landmarks Find location of objects with respect to themselves

More information

DrawData() function, 295 Draw() function, , , 259, 265, 294, 297, DrawHand() function, 237 DrawVector() function, 220

DrawData() function, 295 Draw() function, , , 259, 265, 294, 297, DrawHand() function, 237 DrawVector() function, 220 Index A AddLine() function, 303 AddPoint() function, 298, 303 AddShape() function, 304 Arduino Arduino Uno, 1, 2 breadboard, 61 circuit diagram description, 18 electronic symbols, 20 fritzing, 18 19 communication

More information

Efficient Surface and Feature Estimation in RGBD

Efficient Surface and Feature Estimation in RGBD Efficient Surface and Feature Estimation in RGBD Zoltan-Csaba Marton, Dejan Pangercic, Michael Beetz Intelligent Autonomous Systems Group Technische Universität München RGB-D Workshop on 3D Perception

More information

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors Complex Sensors: Cameras, Visual Sensing The Robotics Primer (Ch. 9) Bring your laptop and robot everyday DO NOT unplug the network cables from the desktop computers or the walls Tuesday s Quiz is on Visual

More information

PART IV: RS & the Kinect

PART IV: RS & the Kinect Computer Vision on Rolling Shutter Cameras PART IV: RS & the Kinect Per-Erik Forssén, Erik Ringaby, Johan Hedborg Computer Vision Laboratory Dept. of Electrical Engineering Linköping University Tutorial

More information

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia MERGING POINT CLOUDS FROM MULTIPLE KINECTS Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia Introduction What do we want to do? : Use information (point clouds) from multiple (2+) Kinects

More information

Depth Sensors Kinect V2 A. Fornaser

Depth Sensors Kinect V2 A. Fornaser Depth Sensors Kinect V2 A. Fornaser alberto.fornaser@unitn.it Vision Depth data It is not a 3D data, It is a map of distances Not a 3D, not a 2D it is a 2.5D or Perspective 3D Complete 3D - Tomography

More information

From Structure-from-Motion Point Clouds to Fast Location Recognition

From Structure-from-Motion Point Clouds to Fast Location Recognition From Structure-from-Motion Point Clouds to Fast Location Recognition Arnold Irschara1;2, Christopher Zach2, Jan-Michael Frahm2, Horst Bischof1 1Graz University of Technology firschara, bischofg@icg.tugraz.at

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 15 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

The Kinect Sensor. Luís Carriço FCUL 2014/15

The Kinect Sensor. Luís Carriço FCUL 2014/15 Advanced Interaction Techniques The Kinect Sensor Luís Carriço FCUL 2014/15 Sources: MS Kinect for Xbox 360 John C. Tang. Using Kinect to explore NUI, Ms Research, From Stanford CS247 Shotton et al. Real-Time

More information

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery 1 Charles TOTH, 1 Dorota BRZEZINSKA, USA 2 Allison KEALY, Australia, 3 Guenther RETSCHER,

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Scene Reconstruction from Uncontrolled Motion using a Low Cost 3D Sensor

Scene Reconstruction from Uncontrolled Motion using a Low Cost 3D Sensor Scene Reconstruction from Uncontrolled Motion using a Low Cost 3D Sensor Pierre Joubert and Willie Brink Applied Mathematics Department of Mathematical Sciences University of Stellenbosch, South Africa

More information

Visual Pose Estimation System for Autonomous Rendezvous of Spacecraft

Visual Pose Estimation System for Autonomous Rendezvous of Spacecraft Visual Pose Estimation System for Autonomous Rendezvous of Spacecraft Mark A. Post1, Junquan Li2, and Craig Clark2 Space Mechatronic Systems Technology Laboratory Dept. of Design, Manufacture & Engineering

More information

CS 231A Computer Vision (Winter 2014) Problem Set 3

CS 231A Computer Vision (Winter 2014) Problem Set 3 CS 231A Computer Vision (Winter 2014) Problem Set 3 Due: Feb. 18 th, 2015 (11:59pm) 1 Single Object Recognition Via SIFT (45 points) In his 2004 SIFT paper, David Lowe demonstrates impressive object recognition

More information

Image Analysis Lecture Segmentation. Idar Dyrdal

Image Analysis Lecture Segmentation. Idar Dyrdal Image Analysis Lecture 9.1 - Segmentation Idar Dyrdal Segmentation Image segmentation is the process of partitioning a digital image into multiple parts The goal is to divide the image into meaningful

More information

ISMAR 2010 Tracking Competition & Alvar. ScandAR 2010 Alain Boyer Augmented Reality Team VTT Technical Research Centre of Finland

ISMAR 2010 Tracking Competition & Alvar. ScandAR 2010 Alain Boyer Augmented Reality Team VTT Technical Research Centre of Finland ISMAR 2010 Tracking Competition & Alvar ScandAR 2010 Alain Boyer Augmented Reality Team VTT Technical Research Centre of Finland 2 Agenda ISMAR 2010 Tracking Competition Alvar Overview Rules Approach Calibration

More information

CS4495/6495 Introduction to Computer Vision

CS4495/6495 Introduction to Computer Vision CS4495/6495 Introduction to Computer Vision 9C-L1 3D perception Some slides by Kelsey Hawkins Motivation Why do animals, people & robots need vision? To detect and recognize objects/landmarks Is that a

More information

Efficient Point Cloud Pre-processing using The Point Cloud Library

Efficient Point Cloud Pre-processing using The Point Cloud Library Efficient Point Cloud Pre-processing using The Point Cloud Library Marius Miknis Faculty of Computing, Engineering and Science University of South Wales Pontypridd, CF37 1DL, UK Ross Davies Faculty of

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jeremy Pollock and Neil Alldrin LECTURE 14 Robust Feature Matching 14.1. Introduction Last lecture we learned how to find interest points

More information

Image correspondences and structure from motion

Image correspondences and structure from motion Image correspondences and structure from motion http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 20 Course announcements Homework 5 posted.

More information

A study of a multi-kinect system for human body scanning

A study of a multi-kinect system for human body scanning A study of a multi-kinect system for human body scanning A Seminar Report Submitted in partial fulfillment of requirements for the degree of Master of Technology by Shashwat Rohilla Roll No: 133050009

More information

Overview. Augmented reality and applications Marker-based augmented reality. Camera model. Binary markers Textured planar markers

Overview. Augmented reality and applications Marker-based augmented reality. Camera model. Binary markers Textured planar markers Augmented reality Overview Augmented reality and applications Marker-based augmented reality Binary markers Textured planar markers Camera model Homography Direct Linear Transformation What is augmented

More information

Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40

Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40 Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40 Note 1: Both the analytical problems and the programming assignments are due at the beginning of class on Nov 15,

More information

Advances in 3D data processing and 3D cameras

Advances in 3D data processing and 3D cameras Advances in 3D data processing and 3D cameras Miguel Cazorla Grupo de Robótica y Visión Tridimensional Universidad de Alicante Contents Cameras and 3D images 3D data compression 3D registration 3D feature

More information

Target Shape Identification for Nanosatellites using Monocular Point Cloud Techniques

Target Shape Identification for Nanosatellites using Monocular Point Cloud Techniques Target Shape Identification for Nanosatellites using Monocular Point Cloud Techniques 6th European CubeSat Symposium Oct. 16, 2014 Mark A. Post and Xiu.T. Yan Space Mechatronic Systems Technology (SMeSTech)

More information

The NAO Robot, a case of study Robotics Franchi Alessio Mauro

The NAO Robot, a case of study Robotics Franchi Alessio Mauro The NAO Robot, a case of study Robotics 2013-2014 Franchi Alessio Mauro alessiomauro.franchi@polimi.it Who am I? Franchi Alessio Mauro Master Degree in Computer Science Engineer at Politecnico of Milan

More information

CALIBRATION OF A MULTI-KINECT SYSTEM Master of Science Thesis

CALIBRATION OF A MULTI-KINECT SYSTEM Master of Science Thesis DAVID LEONARDO ACEVEDO CRUZ CALIBRATION OF A MULTI-KINECT SYSTEM Master of Science Thesis Examiner: Irek Defée Examiner and topic approved by the Faculty Council of Computing and Electrical Engineering

More information

Rigid ICP registration with Kinect

Rigid ICP registration with Kinect Rigid ICP registration with Kinect Students: Yoni Choukroun, Elie Semmel Advisor: Yonathan Aflalo 1 Overview.p.3 Development of the project..p.3 Papers p.4 Project algorithm..p.6 Result of the whole body.p.7

More information

3D Photography: Active Ranging, Structured Light, ICP

3D Photography: Active Ranging, Structured Light, ICP 3D Photography: Active Ranging, Structured Light, ICP Kalin Kolev, Marc Pollefeys Spring 2013 http://cvg.ethz.ch/teaching/2013spring/3dphoto/ Schedule (tentative) Feb 18 Feb 25 Mar 4 Mar 11 Mar 18 Mar

More information

Image Features: Detection, Description, and Matching and their Applications

Image Features: Detection, Description, and Matching and their Applications Image Features: Detection, Description, and Matching and their Applications Image Representation: Global Versus Local Features Features/ keypoints/ interset points are interesting locations in the image.

More information

Occlusion Detection of Real Objects using Contour Based Stereo Matching

Occlusion Detection of Real Objects using Contour Based Stereo Matching Occlusion Detection of Real Objects using Contour Based Stereo Matching Kenichi Hayashi, Hirokazu Kato, Shogo Nishida Graduate School of Engineering Science, Osaka University,1-3 Machikaneyama-cho, Toyonaka,

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

CS4733 Class Notes, Computer Vision

CS4733 Class Notes, Computer Vision CS4733 Class Notes, Computer Vision Sources for online computer vision tutorials and demos - http://www.dai.ed.ac.uk/hipr and Computer Vision resources online - http://www.dai.ed.ac.uk/cvonline Vision

More information

Active Stereo Vision. COMP 4900D Winter 2012 Gerhard Roth

Active Stereo Vision. COMP 4900D Winter 2012 Gerhard Roth Active Stereo Vision COMP 4900D Winter 2012 Gerhard Roth Why active sensors? Project our own texture using light (usually laser) This simplifies correspondence problem (much easier) Pluses Can handle different

More information

1. (10 pts) Order the following three images by how much memory they occupy:

1. (10 pts) Order the following three images by how much memory they occupy: CS 47 Prelim Tuesday, February 25, 2003 Problem : Raster images (5 pts). (0 pts) Order the following three images by how much memory they occupy: A. a 2048 by 2048 binary image B. a 024 by 024 grayscale

More information

PS3 Review Session. Kuan Fang CS231A 02/16/2018

PS3 Review Session. Kuan Fang CS231A 02/16/2018 PS3 Review Session Kuan Fang CS231A 02/16/2018 Overview Space carving Single Object Recognition via SIFT Histogram of Oriented Gradients (HOG) Space Carving Objective: Implement the process of space carving.

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

ECE 172A: Introduction to Intelligent Systems: Machine Vision, Fall Midterm Examination

ECE 172A: Introduction to Intelligent Systems: Machine Vision, Fall Midterm Examination ECE 172A: Introduction to Intelligent Systems: Machine Vision, Fall 2008 October 29, 2008 Notes: Midterm Examination This is a closed book and closed notes examination. Please be precise and to the point.

More information

Lecture 8 Active stereo & Volumetric stereo

Lecture 8 Active stereo & Volumetric stereo Lecture 8 Active stereo & Volumetric stereo Active stereo Structured lighting Depth sensing Volumetric stereo: Space carving Shadow carving Voxel coloring Reading: [Szelisky] Chapter 11 Multi-view stereo

More information

An Evaluation of Volumetric Interest Points

An Evaluation of Volumetric Interest Points An Evaluation of Volumetric Interest Points Tsz-Ho YU Oliver WOODFORD Roberto CIPOLLA Machine Intelligence Lab Department of Engineering, University of Cambridge About this project We conducted the first

More information

3D Digitization of Human Foot Based on Computer Stereo Vision Combined with KINECT Sensor Hai-Qing YANG a,*, Li HE b, Geng-Xin GUO c and Yong-Jun XU d

3D Digitization of Human Foot Based on Computer Stereo Vision Combined with KINECT Sensor Hai-Qing YANG a,*, Li HE b, Geng-Xin GUO c and Yong-Jun XU d 2017 International Conference on Mechanical Engineering and Control Automation (ICMECA 2017) ISBN: 978-1-60595-449-3 3D Digitization of Human Foot Based on Computer Stereo Vision Combined with KINECT Sensor

More information

Multimedia Technology CHAPTER 4. Video and Animation

Multimedia Technology CHAPTER 4. Video and Animation CHAPTER 4 Video and Animation - Both video and animation give us a sense of motion. They exploit some properties of human eye s ability of viewing pictures. - Motion video is the element of multimedia

More information

Three Main Themes of Computer Graphics

Three Main Themes of Computer Graphics Three Main Themes of Computer Graphics Modeling How do we represent (or model) 3-D objects? How do we construct models for specific objects? Animation How do we represent the motion of objects? How do

More information

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc.

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc. Minimizing Noise and Bias in 3D DIC Correlated Solutions, Inc. Overview Overview of Noise and Bias Digital Image Correlation Background/Tracking Function Minimizing Noise Focus Contrast/Lighting Glare

More information

HISTOGRAMS OF ORIENTATIO N GRADIENTS

HISTOGRAMS OF ORIENTATIO N GRADIENTS HISTOGRAMS OF ORIENTATIO N GRADIENTS Histograms of Orientation Gradients Objective: object recognition Basic idea Local shape information often well described by the distribution of intensity gradients

More information

3D Computer Vision. Depth Cameras. Prof. Didier Stricker. Oliver Wasenmüller

3D Computer Vision. Depth Cameras. Prof. Didier Stricker. Oliver Wasenmüller 3D Computer Vision Depth Cameras Prof. Didier Stricker Oliver Wasenmüller Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

Computer Vision Course Lecture 04. Template Matching Image Pyramids. Ceyhun Burak Akgül, PhD cba-research.com. Spring 2015 Last updated 11/03/2015

Computer Vision Course Lecture 04. Template Matching Image Pyramids. Ceyhun Burak Akgül, PhD cba-research.com. Spring 2015 Last updated 11/03/2015 Computer Vision Course Lecture 04 Template Matching Image Pyramids Ceyhun Burak Akgül, PhD cba-research.com Spring 2015 Last updated 11/03/2015 Photo credit: Olivier Teboul vision.mas.ecp.fr/personnel/teboul

More information

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds 1 Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds Takeru Niwa 1 and Hiroshi Masuda 2 1 The University of Electro-Communications, takeru.niwa@uec.ac.jp 2 The University

More information

Introduction to ROS. Lasse Einig, Dennis Krupke, Florens Wasserfall

Introduction to ROS. Lasse Einig, Dennis Krupke, Florens Wasserfall Introduction to ROS Lasse Einig, Dennis Krupke, Florens Wasserfall University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Technical Aspects of Multimodal Systems April 6, 2015 L.

More information

Topics to be Covered in the Rest of the Semester. CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester

Topics to be Covered in the Rest of the Semester. CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester Topics to be Covered in the Rest of the Semester CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester Charles Stewart Department of Computer Science Rensselaer Polytechnic

More information

Mouse Simulation Using Two Coloured Tapes

Mouse Simulation Using Two Coloured Tapes Mouse Simulation Using Two Coloured Tapes Kamran Niyazi 1, Vikram Kumar 2, Swapnil Mahe 3 and Swapnil Vyawahare 4 Department of Computer Engineering, AISSMS COE, University of Pune, India kamran.niyazi@gmail.com

More information

3D Reconstruction of a Hopkins Landmark

3D Reconstruction of a Hopkins Landmark 3D Reconstruction of a Hopkins Landmark Ayushi Sinha (461), Hau Sze (461), Diane Duros (361) Abstract - This paper outlines a method for 3D reconstruction from two images. Our procedure is based on known

More information

CS 231A Computer Vision (Winter 2018) Problem Set 3

CS 231A Computer Vision (Winter 2018) Problem Set 3 CS 231A Computer Vision (Winter 2018) Problem Set 3 Due: Feb 28, 2018 (11:59pm) 1 Space Carving (25 points) Dense 3D reconstruction is a difficult problem, as tackling it from the Structure from Motion

More information

Hand Gesture Recognition with Microsoft Kinect A Computer Player for the Rock-paper-scissors Game

Hand Gesture Recognition with Microsoft Kinect A Computer Player for the Rock-paper-scissors Game Hand Gesture Recognition with Microsoft Kinect A Computer Player for the Rock-paper-scissors Game Vladan Jovičić, Marko Palangetić University of Primorska Faculty of Mathematics, Natural Sciences and Information

More information

Introduction to PCL: The Point Cloud Library

Introduction to PCL: The Point Cloud Library Introduction to PCL: The Point Cloud Library Basic topics Alberto Pretto Thanks to Radu Bogdan Rusu, Bastian Steder and Jeff Delmerico for some of the slides! Point clouds: a definition A point cloud is

More information

Geometric Reconstruction Dense reconstruction of scene geometry

Geometric Reconstruction Dense reconstruction of scene geometry Lecture 5. Dense Reconstruction and Tracking with Real-Time Applications Part 2: Geometric Reconstruction Dr Richard Newcombe and Dr Steven Lovegrove Slide content developed from: [Newcombe, Dense Visual

More information

Measurement of 3D Foot Shape Deformation in Motion

Measurement of 3D Foot Shape Deformation in Motion Measurement of 3D Foot Shape Deformation in Motion Makoto Kimura Masaaki Mochimaru Takeo Kanade Digital Human Research Center National Institute of Advanced Industrial Science and Technology, Japan The

More information