Lecture 8 Active stereo & Volumetric stereo

Size: px
Start display at page:

Download "Lecture 8 Active stereo & Volumetric stereo"

Transcription

1 Lecture 8 Active stereo & Volumetric stereo Active stereo Structured lighting Depth sensing Volumetric stereo: Space carving Shadow carving Voxel coloring Reading: [Szelisky] Chapter 11 Multi-view stereo S. Savarese, M. Andreetto, H. Rushmeier, F. Bernardini and P. Perona, 3D Reconstruction by Shadow Carving: Theory and Practical Evaluation, International Journal of Computer Vision (IJCV), 71(3), , 2006 Seitz, S. M., & Dyer, C. R. (1999). Photorealistic scene reconstruction by voxel coloring.international Journal of Computer Vision, 35(2), Silvio Savarese Lecture 7-12-Feb-18

2 Traditional stereo P p p O 1 Camera O 2 Camera What s the main problem in traditional stereo? We need to find correspondences!

3 Active stereo (point) P image projector virtual image p p Projector (e.g. DLP) O 2 Camera Replace one of the two cameras by a projector - Projector geometry calibrated - What s the advantage of having the projector? Any limitation?? Correspondence problem solved!

4 Active stereo (stripe) P projector virtual image p S l p image s s Projector (e.g. DLP) - Projector and camera are parallel - Correspondence problem is solved! O Camera

5 Calibrating the system projector virtual image image Projector (e.g. DLP) - Use calibration rig to calibrate camera and localize rig in 3D - Project patterns on rig and calibrate projector O Camera

6 Laser scanning Digital Michelangelo Project (1990) Optical triangulation Project a single stripe of laser light Scan it across the surface of the object This is a very precise version of structured light scanning Source: S. Seitz

7 Laser scanning The Digital Michelangelo Project, Levoy et al. Source: S. Seitz

8 Active stereo (shadows) J. Bouguet & P. Perona, 99 Light source O - 1 camera,1 light source - very cheap setup - calibrated the light source

9 Active stereo (shadows)

10 Limitations of Laser scanning Slow Cannot capture deformations in time Source: S. Seitz

11 Active stereo (color-coded stripes) L. Zhang, B. Curless, and S. M. Seitz 2002 S. Rusinkiewicz & Levoy 2002 projector LCD or DLP displays - Dense reconstruction - Correspondence problem again - Get around it by using color codes O

12 L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multipass Dynamic Programming. 3DPVT 2002 Active stereo (color-coded stripes) Rapid shape acquisition: Projector + stereo cameras

13 Active stereo the kinect sensor Infrared laser projector combined with a CMOS sensor Captures video data in 3D under any ambient light conditions. Pattern of projected infrared points to generate a dense 3D image Depth map Source: wikipedia

14 Lecture 8 Active stereo & Volumetric stereo Active stereo Structured lighting Depth sensing Volumetric stereo: Space carving Shadow carving Voxel coloring Silvio Savarese Lecture 7-12-Feb-18

15 Traditional Stereo P p p O 1 O 2 Goal: estimate the position of P given the observation of P from two view points Assumptions: known camera parameters and position (K, R, T)

16 Traditional Stereo P p p O 1 O 2 Subgoals: 1. Solve the correspondence problem 2. Use corresponding observations to triangulate

17 Volumetric stereo Working volume P O O Hypothesis: pick up a point within the volume 2. Project this point into 2 (or more) images 3. Validation: are the observations consistent? Assumptions: known camera parameters and position (K, R, T)

18 Consistency based on cues such as: - Contours/silhouettes à Space carving - Shadows à Shadow carving - Colors à Voxel coloring

19 Lecture 8 Active stereo & Volumetric stereo Active stereo Structured lighting Depth sensing Volumetric stereo: Space carving Shadow carving Voxel coloring Reading: [Szelisky] Chapter 11 Multi-view stereo Silvio Savarese Lecture 7-12-Feb-18

20 Contours/silhouettes Contours are a rich source of geometric information

21 Apparent Contours Projection of the locus of points on the object surface which separate the visible and occluded parts on the surface [sato & cipolla] apparent contour Camera Image

22 Silhouettes A silhouette is defined as the area enclosed by the apparent contours silhouette Camera Image

23 Detecting silhouettes Object Easy contour segmentation Image Camera

24 Detecting silhouettes

25 How can we use contours? Silhouette Object Visual cone Camera Camera Center Image Object apparent contour

26 How can we use contours? Silhouette Object Visual cone Camera Image Object apparent contour Object s silhouette Visual cone 2D slice: Object Camera Image line

27 How can we use contours? View point 1 Object Object Camera intrinsics are known We know location and pose of the camera as it moves around the object Object estimate (visual hull) View point 2

28 How to perform visual cones intersection? Decompose visualcone inpolygonalsurfaces (amongothers: Reed andallen 99)

29 Space carving [ Martin and Aggarwal (1983) ] Using contours/silhouettes in volumetric stereo, also called space carving Voxel à empty or full

30 Computing Visual Hull in 2D

31 Computing Visual Hull in 2D

32 Computing Visual Hull in 2D

33 Computing Visual Hull in 2D Visual hull: an upper bound estimate Consistency: A voxel must be projected into a silhouette in each image

34 Space carving has complexity O(N 3 ) N Any suggestion for speeding this process up? Octrees! (Szeliski 93) N N

35 Complexity Reduction: Octrees 1 1 1

36 Complexity Reduction: Octrees Subdiving volume in sub-volumes of progressive smaller size 2 2 2

37 Complexity Reduction: Octrees 2 2 2

38 Complexity Reduction: Octrees

39 Complexity reduction: 2D example 4 elements analyzed in this step

40 Complexity reduction: 2D example 16 elements analyzed in this step

41 Complexity reduction: 2D example 52 elements are analyzed in this step

42 Complexity reduction: 2D example 16x34=544 voxels are analyzed in this step = 617 voxels have been analyzed in total (rather than 32x32 = 1024)

43 Advantages of Space carving Robust and simple No need to solve for correspondences

44 Limitations of Space carving Accuracy function of number of views Not a good estimate What else?

45 Limitations of Space carving Concavities are notmodeled Concavity For 3D objects: Are all types of concavities problematic?

46 Limitations of Space carving Concavities are notmodeled Concavity Visual hull (hyperbolic regions are ok) -- see Laurentini (1995)

47 Space carving: A Classic Setup Camera Object Courtesy of Seitz & Dyer Turntable

48 Space carving: A Classic Setup

49 Space carving: Experiments 30 cm 24 poses (15 O ) voxel size = 1mm

50 Space carving: Experiments 24 poses (15 O ) voxel size = 2mm 6cm 10cm

51 Space carving: Conclusions Robust Produce conservative estimates Concavities can be a problem Low-end commercial 3D scanners blue backdrop turntable

52 Lecture 8 Active stereo & Volumetric stereo Active stereo Structured lighting Depth sensing Volumetric stereo: Space carving Shadow carving Voxel coloring Silvio Savarese Lecture 7-12-Feb-18

53 Shape from Shadows Self-shadows are visual cues for shape recovery Self-shadows indicate concavities (no modeled by contours)

54 Shadow carving: The Setup Camera Object Array of lights Turntable

55 Shadow carving: The Setup Camera Object Array of lights Turntable

56 Shadow carving: The Setup [Savarese et al 01] Camera Object Array of lights Turntable

57 Shadow carving [Savarese et al. 2001] Self-shadows + Object s upper bound

58 Algorithm: Step k Camera Image line Light source Image Image shadow virtual light image Upper-bound from step k-1 Object

59 Algorithm: Step k Camera projection of the shadow points in the image to the upper bound estimate of the object Image line virtual image shadow Light source Image? Image shadow virtual light image Upper-bound from step k-1 Theorem: A voxel that projects into an image shadow AND an virtual Object image shadow cannot belong to the object.

60 Algorithm: Step k Camera Image line Virtual image shadow Light source Image Properties: No further volume can be removed Carving process always conservative Image shadow virtual light image Upper-bound from step k-1 Proof of correctness Consistency: In order for a voxel to be removed it must project Object into both image shadow and virtual image shadow

61 Algorithm: Step k Camera Image line Virtual image shadow Light source Image Image shadow virtual light image Upper-bound from step k-1 Complexity? O(2N 3 ) Object

62 Simulating the System - 24 positions - 4 lights - 72 positions - 8 lights

63 Results - 16 positions - 4 lights Space carving Shadow carving

64 Results Space carving Shadow carving

65 Shadow carving: Summary Produces a conservative volume estimate Accuracy dependingon viewpointand lightsource number Limitations with reflective & lowalbedoregions

66 Lecture 8 Active stereo & Volumetric stereo Active stereo Structured lighting Depth sensing Volumetric stereo: Space carving Shadow carving Voxel coloring Silvio Savarese Lecture 7-12-Feb-18

67 Voxel Coloring [Seitz & Dyer ( 97)] [R. Collins (Space Sweep, 96)] Color/photo-consistency Jointly model structure and appearance

68 Basic Idea Is this voxel in or out? View1 View2 View3

69 Basic Idea View1 View2 View3

70 Uniqueness

71 Uniqueness Multiple consistent scenes How to fix this? Need to use a visibility constraint

72 Algorithm for enforcing visibility constraints C

73 The previous ambiguity is removed!

74 The previous ambiguity is removed!

75 Algorithm Complexity Voxel coloring visits each N 3 voxels only once Project each voxel into L images à O(L N 3 ) NOTE: not function of the number of colors

76 A Critical Assumption: Lambertian Surfaces

77 Non Lambertian Surfaces

78 Photoconsistency Test C = corr (, ) w w C = If C > l= threshold è voxel consistent (w w)( w " w ") (w w) ( w" w ") w = mean(w) w! = mean(w')

79 Experimental Results Dinosaur 72 k voxels colored 7.6 M voxels tested 7 min to compute on a 250MHz Image source:

80 Experimental Results Flower 70 k voxels colored 7.6 M voxels tested 7 min to compute on a 250MHz Image source:

81 Experimental Results Room + weird people Image source:

82 Voxel Coloring: Conclusions Good things Model intrinsic scene colors and texture No assumptions on scene topology Limitations: Constrained camera positions Lambertian assumption

83 Further Contributions A Theory of Space carving Voxel coloring in more general framework No restrictions on camera position [Kutulakos & Seitz 99] Probabilistic Space carving [Broadhurst & Cipolla, ICCV 2001] [Bhotika, Kutulakos et. al, ECCV 2002]

84 Next lecture Intro to visual recognition

EECS 442 Computer vision. Announcements

EECS 442 Computer vision. Announcements EECS 442 Computer vision Announcements Midterm released after class (at 5pm) You ll have 46 hours to solve it. it s take home; you can use your notes and the books no internet must work on it individually

More information

Lecture 8 Active stereo & Volumetric stereo

Lecture 8 Active stereo & Volumetric stereo Lecture 8 Active stereo & Volumetric stereo In this lecture, we ll first discuss another framework for describing stereo systems called active stereo, and then introduce the problem of volumetric stereo,

More information

Image Based Reconstruction II

Image Based Reconstruction II Image Based Reconstruction II Qixing Huang Feb. 2 th 2017 Slide Credit: Yasutaka Furukawa Image-Based Geometry Reconstruction Pipeline Last Lecture: Multi-View SFM Multi-View SFM This Lecture: Multi-View

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Some books on linear algebra

Some books on linear algebra Some books on linear algebra Finite Dimensional Vector Spaces, Paul R. Halmos, 1947 Linear Algebra, Serge Lang, 2004 Linear Algebra and its Applications, Gilbert Strang, 1988 Matrix Computation, Gene H.

More information

Multiview Reconstruction

Multiview Reconstruction Multiview Reconstruction Why More Than 2 Views? Baseline Too short low accuracy Too long matching becomes hard Why More Than 2 Views? Ambiguity with 2 views Camera 1 Camera 2 Camera 3 Trinocular Stereo

More information

Volumetric Scene Reconstruction from Multiple Views

Volumetric Scene Reconstruction from Multiple Views Volumetric Scene Reconstruction from Multiple Views Chuck Dyer University of Wisconsin dyer@cs cs.wisc.edu www.cs cs.wisc.edu/~dyer Image-Based Scene Reconstruction Goal Automatic construction of photo-realistic

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems EECS 442 Computer vision Stereo systems Stereo vision Rectification Correspondence problem Active stereo vision systems Reading: [HZ] Chapter: 11 [FP] Chapter: 11 Stereo vision P p p O 1 O 2 Goal: estimate

More information

Multi-View 3D-Reconstruction

Multi-View 3D-Reconstruction Multi-View 3D-Reconstruction Cedric Cagniart Computer Aided Medical Procedures (CAMP) Technische Universität München, Germany 1 Problem Statement Given several calibrated views of an object... can we automatically

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Lecture 10: Multi-view geometry

Lecture 10: Multi-view geometry Lecture 10: Multi-view geometry Professor Stanford Vision Lab 1 What we will learn today? Review for stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Prof. Trevor Darrell Lecture 18: Multiview and Photometric Stereo

Prof. Trevor Darrell Lecture 18: Multiview and Photometric Stereo C280, Computer Vision Prof. Trevor Darrell trevor@eecs.berkeley.edu Lecture 18: Multiview and Photometric Stereo Today Multiview stereo revisited Shape from large image collections Voxel Coloring Digital

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

3D Photography: Stereo Matching

3D Photography: Stereo Matching 3D Photography: Stereo Matching Kevin Köser, Marc Pollefeys Spring 2012 http://cvg.ethz.ch/teaching/2012spring/3dphoto/ Stereo & Multi-View Stereo Tsukuba dataset http://cat.middlebury.edu/stereo/ Stereo

More information

3D Photography: Active Ranging, Structured Light, ICP

3D Photography: Active Ranging, Structured Light, ICP 3D Photography: Active Ranging, Structured Light, ICP Kalin Kolev, Marc Pollefeys Spring 2013 http://cvg.ethz.ch/teaching/2013spring/3dphoto/ Schedule (tentative) Feb 18 Feb 25 Mar 4 Mar 11 Mar 18 Mar

More information

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from?

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from? Binocular Stereo Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the depth information come from? Binocular stereo Given a calibrated binocular stereo

More information

Lecture 9 & 10: Stereo Vision

Lecture 9 & 10: Stereo Vision Lecture 9 & 10: Stereo Vision Professor Fei- Fei Li Stanford Vision Lab 1 What we will learn today? IntroducEon to stereo vision Epipolar geometry: a gentle intro Parallel images Image receficaeon Solving

More information

Some books on linear algebra

Some books on linear algebra Some books on linear algebra Finite Dimensional Vector Spaces, Paul R. Halmos, 1947 Linear Algebra, Serge Lang, 2004 Linear Algebra and its Applications, Gilbert Strang, 1988 Matrix Computation, Gene H.

More information

3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping

3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping 74 3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping 1 Tushar Jadhav, 2 Kulbir Singh, 3 Aditya Abhyankar 1 Research scholar, 2 Professor, 3 Dean 1 Department of Electronics & Telecommunication,Thapar

More information

Stereo. Many slides adapted from Steve Seitz

Stereo. Many slides adapted from Steve Seitz Stereo Many slides adapted from Steve Seitz Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1 image 2 Dense depth map Binocular stereo Given a calibrated

More information

3D Photography: Stereo

3D Photography: Stereo 3D Photography: Stereo Marc Pollefeys, Torsten Sattler Spring 2016 http://www.cvg.ethz.ch/teaching/3dvision/ 3D Modeling with Depth Sensors Today s class Obtaining depth maps / range images unstructured

More information

Carving from ray-tracing constraints: IRT-carving

Carving from ray-tracing constraints: IRT-carving arving from ray-tracing constraints: IRT-carving M. Andreetto, S. Savarese, P. Perona Dept. Electrical Engineering Beckman Institute alifornia Institute of Technology University of Illinois Urbana-hampaign

More information

A Statistical Consistency Check for the Space Carving Algorithm.

A Statistical Consistency Check for the Space Carving Algorithm. A Statistical Consistency Check for the Space Carving Algorithm. A. Broadhurst and R. Cipolla Dept. of Engineering, Univ. of Cambridge, Cambridge, CB2 1PZ aeb29 cipolla @eng.cam.ac.uk Abstract This paper

More information

Surround Structured Lighting for Full Object Scanning

Surround Structured Lighting for Full Object Scanning Surround Structured Lighting for Full Object Scanning Douglas Lanman, Daniel Crispell, and Gabriel Taubin Brown University, Dept. of Engineering August 21, 2007 1 Outline Introduction and Related Work

More information

COMPARISON OF PHOTOCONSISTENCY MEASURES USED IN VOXEL COLORING

COMPARISON OF PHOTOCONSISTENCY MEASURES USED IN VOXEL COLORING COMPARISON OF PHOTOCONSISTENCY MEASURES USED IN VOXEL COLORING Oğuz Özün a, Ulaş Yılmaz b, Volkan Atalay a a Department of Computer Engineering, Middle East Technical University, Turkey oguz, volkan@ceng.metu.edu.tr

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Computer Vision. 3D acquisition

Computer Vision. 3D acquisition è Computer 3D acquisition Acknowledgement Courtesy of Prof. Luc Van Gool 3D acquisition taxonomy s image cannot currently be displayed. 3D acquisition methods Thi passive active uni-directional multi-directional

More information

Project Updates Short lecture Volumetric Modeling +2 papers

Project Updates Short lecture Volumetric Modeling +2 papers Volumetric Modeling Schedule (tentative) Feb 20 Feb 27 Mar 5 Introduction Lecture: Geometry, Camera Model, Calibration Lecture: Features, Tracking/Matching Mar 12 Mar 19 Mar 26 Apr 2 Apr 9 Apr 16 Apr 23

More information

Foundations of Image Understanding, L. S. Davis, ed., c Kluwer, Boston, 2001, pp

Foundations of Image Understanding, L. S. Davis, ed., c Kluwer, Boston, 2001, pp Foundations of Image Understanding, L. S. Davis, ed., c Kluwer, Boston, 2001, pp. 469-489. Chapter 16 VOLUMETRIC SCENE RECONSTRUCTION FROM MULTIPLE VIEWS Charles R. Dyer, University of Wisconsin Abstract

More information

Stereo vision. Many slides adapted from Steve Seitz

Stereo vision. Many slides adapted from Steve Seitz Stereo vision Many slides adapted from Steve Seitz What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape What is

More information

Shape from Silhouettes

Shape from Silhouettes Shape from Silhouettes Schedule (tentative) 2 # date topic 1 Sep.22 Introduction and geometry 2 Sep.29 Invariant features 3 Oct.6 Camera models and calibration 4 Oct.13 Multiple-view geometry 5 Oct.20

More information

Geometric Reconstruction Dense reconstruction of scene geometry

Geometric Reconstruction Dense reconstruction of scene geometry Lecture 5. Dense Reconstruction and Tracking with Real-Time Applications Part 2: Geometric Reconstruction Dr Richard Newcombe and Dr Steven Lovegrove Slide content developed from: [Newcombe, Dense Visual

More information

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa 3D Scanning Qixing Huang Feb. 9 th 2017 Slide Credit: Yasutaka Furukawa Geometry Reconstruction Pipeline This Lecture Depth Sensing ICP for Pair-wise Alignment Next Lecture Global Alignment Pairwise Multiple

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

A BENCHMARK DATASET FOR PERFORMANCE EVALUATION OF SHAPE-FROM-X ALGORITHMS

A BENCHMARK DATASET FOR PERFORMANCE EVALUATION OF SHAPE-FROM-X ALGORITHMS A BENCHMARK DATASET FOR PERFORMANCE EVALUATION OF SHAPE-FROM-X ALGORITHMS Bellmann Anke, Hellwich Olaf, Rodehorst Volker, Yilmaz Ulas Berlin University of Technology, Sekr. 3-1, Franklinstr. 28/29, 10587

More information

External Anatomical Shapes Reconstruction from Turntable Image Sequences using a Single off-the-shelf Camera

External Anatomical Shapes Reconstruction from Turntable Image Sequences using a Single off-the-shelf Camera External Anatomical Shapes Reconstruction from Turntable Image Sequences using a Single off-the-shelf Camera Teresa C. S. Azevedo INEGI Inst. de Eng. Mecânica e Gestão Industrial, LOME Lab. Óptica e Mecânica

More information

Multi-View 3D-Reconstruction

Multi-View 3D-Reconstruction Multi-View 3D-Reconstruction Slobodan Ilic Computer Aided Medical Procedures (CAMP) Technische Universität München, Germany 1 3D Models Digital copy of real object Allows us to - Inspect details of object

More information

Surround Structured Lighting for Full Object Scanning

Surround Structured Lighting for Full Object Scanning Surround Structured Lighting for Full Object Scanning Douglas Lanman, Daniel Crispell, and Gabriel Taubin Department of Engineering, Brown University {dlanman,daniel crispell,taubin}@brown.edu Abstract

More information

What Do N Photographs Tell Us About 3D Shape?

What Do N Photographs Tell Us About 3D Shape? What Do N Photographs Tell Us About 3D Shape? Kiriakos N. Kutulakos kyros@cs.rochester.edu Steven M. Seitz sseitz@microsoft.com Abstract In this paper we consider the problem of computing the 3D shape

More information

Shadow Carving. zibm T. J. Watson Research Center P.O. Box 704, Yorktown Heights, NY 10598

Shadow Carving. zibm T. J. Watson Research Center P.O. Box 704, Yorktown Heights, NY 10598 Shadow Carving Silvio Savaresey Holly Rushmeierz Fausto Bernardiniz ietro eronay ycalifornia Institute of Technology Mail stop 36-93, asadena, CA 95 fsavarese,peronag@vision.caltech.edu zibm T. J. Watson

More information

3D Dynamic Scene Reconstruction from Multi-View Image Sequences

3D Dynamic Scene Reconstruction from Multi-View Image Sequences 3D Dynamic Scene Reconstruction from Multi-View Image Sequences PhD Confirmation Report Carlos Leung Supervisor : A/Prof Brian Lovell (University Of Queensland) Dr. Changming Sun (CSIRO Mathematical and

More information

Multiview Photometric Stereo

Multiview Photometric Stereo 548 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 3, MARCH 2008 Multiview Photometric Stereo Carlos Hernández, Member, IEEE, George Vogiatzis, Member, IEEE, and Roberto Cipolla,

More information

PHOTOREALISTIC OBJECT RECONSTRUCTION USING VOXEL COLORING AND ADJUSTED IMAGE ORIENTATIONS INTRODUCTION

PHOTOREALISTIC OBJECT RECONSTRUCTION USING VOXEL COLORING AND ADJUSTED IMAGE ORIENTATIONS INTRODUCTION PHOTOREALISTIC OBJECT RECONSTRUCTION USING VOXEL COLORING AND ADJUSTED IMAGE ORIENTATIONS Yasemin Kuzu, Olaf Sinram Photogrammetry and Cartography Technical University of Berlin Str. des 17 Juni 135, EB

More information

Recap from Previous Lecture

Recap from Previous Lecture Recap from Previous Lecture Tone Mapping Preserve local contrast or detail at the expense of large scale contrast. Changing the brightness within objects or surfaces unequally leads to halos. We are now

More information

3D photography. Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/5/15

3D photography. Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/5/15 3D photography Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/5/15 with slides by Szymon Rusinkiewicz, Richard Szeliski, Steve Seitz and Brian Curless Announcements Project #3 is due on 5/20.

More information

Multi-view photometric stereo

Multi-view photometric stereo 1 Multi-view photometric stereo Carlos Hernández, George Vogiatzis, Roberto Cipolla 2 Abstract This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects.

More information

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods L2 Data Acquisition Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods 1 Coordinate Measurement Machine Touch based Slow Sparse Data Complex planning Accurate 2

More information

The main problem of photogrammetry

The main problem of photogrammetry Structured Light Structured Light The main problem of photogrammetry to recover shape from multiple views of a scene, we need to find correspondences between the images the matching/correspondence problem

More information

Volumetric stereo with silhouette and feature constraints

Volumetric stereo with silhouette and feature constraints Volumetric stereo with silhouette and feature constraints Jonathan Starck, Gregor Miller and Adrian Hilton Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK.

More information

A Benchmarking Dataset for Performance Evaluation of Automatic Surface Reconstruction Algorithms

A Benchmarking Dataset for Performance Evaluation of Automatic Surface Reconstruction Algorithms A Benchmarking Dataset for Performance Evaluation of Automatic Surface Reconstruction Algorithms Anke Bellmann, Olaf Hellwich, Volker Rodehorst and Ulaş Yılmaz Computer Vision & Remote Sensing, Berlin

More information

6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman. Lecture 11 Geometry, Camera Calibration, and Stereo.

6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman. Lecture 11 Geometry, Camera Calibration, and Stereo. 6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman Lecture 11 Geometry, Camera Calibration, and Stereo. 2d from 3d; 3d from multiple 2d measurements? 2d 3d? Perspective projection

More information

Department of Computer Engineering, Middle East Technical University, Ankara, Turkey, TR-06531

Department of Computer Engineering, Middle East Technical University, Ankara, Turkey, TR-06531 INEXPENSIVE AND ROBUST 3D MODEL ACQUISITION SYSTEM FOR THREE-DIMENSIONAL MODELING OF SMALL ARTIFACTS Ulaş Yılmaz, Oğuz Özün, Burçak Otlu, Adem Mulayim, Volkan Atalay {ulas, oguz, burcak, adem, volkan}@ceng.metu.edu.tr

More information

Multi-View Stereo for Community Photo Collections Michael Goesele, et al, ICCV Venus de Milo

Multi-View Stereo for Community Photo Collections Michael Goesele, et al, ICCV Venus de Milo Vision Sensing Multi-View Stereo for Community Photo Collections Michael Goesele, et al, ICCV 2007 Venus de Milo The Digital Michelangelo Project, Stanford How to sense 3D very accurately? How to sense

More information

3D Digitization of a Hand-held Object with a Wearable Vision Sensor

3D Digitization of a Hand-held Object with a Wearable Vision Sensor 3D Digitization of a Hand-held Object with a Wearable Vision Sensor Sotaro TSUKIZAWA, Kazuhiko SUMI, and Takashi MATSUYAMA tsucky@vision.kuee.kyoto-u.ac.jp sumi@vision.kuee.kyoto-u.ac.jp tm@i.kyoto-u.ac.jp

More information

Kiriakos N. Kutulakos Depts. of Computer Science & Dermatology University of Rochester Rochester, NY USA

Kiriakos N. Kutulakos Depts. of Computer Science & Dermatology University of Rochester Rochester, NY USA To appear in: Proc. 7th Int. Conf. on Computer Vision, Corfu, Greece, September 22-25, 1999 A Theory of Shape by Space Carving Kiriakos N. Kutulakos Depts. of Computer Science & Dermatology University

More information

3D shape from the structure of pencils of planes and geometric constraints

3D shape from the structure of pencils of planes and geometric constraints 3D shape from the structure of pencils of planes and geometric constraints Paper ID: 691 Abstract. Active stereo systems using structured light has been used as practical solutions for 3D measurements.

More information

3-D Shape Reconstruction from Light Fields Using Voxel Back-Projection

3-D Shape Reconstruction from Light Fields Using Voxel Back-Projection 3-D Shape Reconstruction from Light Fields Using Voxel Back-Projection Peter Eisert, Eckehard Steinbach, and Bernd Girod Telecommunications Laboratory, University of Erlangen-Nuremberg Cauerstrasse 7,

More information

VOLUMETRIC MODEL REFINEMENT BY SHELL CARVING

VOLUMETRIC MODEL REFINEMENT BY SHELL CARVING VOLUMETRIC MODEL REFINEMENT BY SHELL CARVING Y. Kuzu a, O. Sinram b a Yıldız Technical University, Department of Geodesy and Photogrammetry Engineering 34349 Beşiktaş Istanbul, Turkey - kuzu@yildiz.edu.tr

More information

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5)

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5) Announcements Stereo Project 2 due today Project 3 out today Single image stereogram, by Niklas Een Readings Szeliski, Chapter 10 (through 10.5) Public Library, Stereoscopic Looking Room, Chicago, by Phillips,

More information

Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model

Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model Shohei Nobuhara Takashi Matsuyama Graduate School of Informatics, Kyoto University Sakyo, Kyoto, 606-8501, Japan {nob, tm}@vision.kuee.kyoto-u.ac.jp

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by ) Readings Szeliski, Chapter 10 (through 10.5)

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by  ) Readings Szeliski, Chapter 10 (through 10.5) Announcements Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by email) One-page writeup (from project web page), specifying:» Your team members» Project goals. Be specific.

More information

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms Steven M. Seitz Brian Curless University of Washington James Diebel Stanford University Daniel Scharstein Middlebury College Richard

More information

Multi-View 3D Reconstruction of Highly-Specular Objects

Multi-View 3D Reconstruction of Highly-Specular Objects Multi-View 3D Reconstruction of Highly-Specular Objects Master Thesis Author: Aljoša Ošep Mentor: Michael Weinmann Motivation Goal: faithful reconstruction of full 3D shape of an object Current techniques:

More information

Multiview Projectors/Cameras System for 3D Reconstruction of Dynamic Scenes

Multiview Projectors/Cameras System for 3D Reconstruction of Dynamic Scenes Multiview Projectors/Cameras System for 3D Reconstruction of Dynamic Scenes Ryo Furukawa Hiroshima City University, Hiroshima, Japan ryo-f@hiroshima-cu.ac.jp Ryusuke Sagawa National Institute of Advanced

More information

Shape from Silhouettes I

Shape from Silhouettes I Shape from Silhouettes I Guido Gerig CS 6320, Spring 2015 Credits: Marc Pollefeys, UNC Chapel Hill, some of the figures and slides are also adapted from J.S. Franco, J. Matusik s presentations, and referenced

More information

Surface Model Reconstruction of 3D Objects From Multiple Views

Surface Model Reconstruction of 3D Objects From Multiple Views Surface Model Reconstruction of 3D Objects From Multiple Views Vincenzo Lippiello and Fabio Ruggiero Abstract A points surface reconstruction algorithm of 3D object models from multiple silhouettes is

More information

Making Machines See. Roberto Cipolla Department of Engineering. Research team

Making Machines See. Roberto Cipolla Department of Engineering. Research team Making Machines See Roberto Cipolla Department of Engineering Research team http://www.eng.cam.ac.uk/~cipolla/people.html Cognitive Systems Engineering Cognitive Systems Engineering Introduction Making

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Other Reconstruction Techniques

Other Reconstruction Techniques Other Reconstruction Techniques Ruigang Yang CS 684 CS 684 Spring 2004 1 Taxonomy of Range Sensing From Brain Curless, SIGGRAPH 00 Lecture notes CS 684 Spring 2004 2 Taxonomy of Range Scanning (cont.)

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

3D Reconstruction through Segmentation of Multi-View Image Sequences

3D Reconstruction through Segmentation of Multi-View Image Sequences 3D Reconstruction through Segmentation of Multi-View Image Sequences Carlos Leung and Brian C. Lovell Intelligent Real-Time Imaging and Sensing Group School of Information Technology and Electrical Engineering

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

Stereo and structured light

Stereo and structured light Stereo and structured light http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 20 Course announcements Homework 5 is still ongoing. - Make sure

More information

Epipolar geometry contd.

Epipolar geometry contd. Epipolar geometry contd. Estimating F 8-point algorithm The fundamental matrix F is defined by x' T Fx = 0 for any pair of matches x and x in two images. Let x=(u,v,1) T and x =(u,v,1) T, each match gives

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

Active Scene Capturing for Image-Based Rendering with a Light Field Setup

Active Scene Capturing for Image-Based Rendering with a Light Field Setup Active Scene Capturing for Image-Based Rendering with a Light Field Setup Cha Zhang and Tsuhan Chen Advanced Multimedia Processing Lab Technical Report AMP 03-02 March 2003 Electrical and Computer Engineering

More information

Generating 3D Meshes from Range Data

Generating 3D Meshes from Range Data Princeton University COS598B Lectures on 3D Modeling Generating 3D Meshes from Range Data Robert Kalnins Robert Osada Overview Range Images Optical Scanners Error sources and solutions Range Surfaces Mesh

More information

Talk plan. 3d model. Applications: cultural heritage 5/9/ d shape reconstruction from photographs: a Multi-View Stereo approach

Talk plan. 3d model. Applications: cultural heritage 5/9/ d shape reconstruction from photographs: a Multi-View Stereo approach Talk plan 3d shape reconstruction from photographs: a Multi-View Stereo approach Introduction Multi-View Stereo pipeline Carlos Hernández George Vogiatzis Yasutaka Furukawa Google Aston University Google

More information

Multi-view reconstruction for projector camera systems based on bundle adjustment

Multi-view reconstruction for projector camera systems based on bundle adjustment Multi-view reconstruction for projector camera systems based on bundle adjustment Ryo Furuakwa, Faculty of Information Sciences, Hiroshima City Univ., Japan, ryo-f@hiroshima-cu.ac.jp Kenji Inose, Hiroshi

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Shape from Silhouettes I CV book Szelisky

Shape from Silhouettes I CV book Szelisky Shape from Silhouettes I CV book Szelisky 11.6.2 Guido Gerig CS 6320, Spring 2012 (slides modified from Marc Pollefeys UNC Chapel Hill, some of the figures and slides are adapted from M. Pollefeys, J.S.

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Shape from Silhouettes I

Shape from Silhouettes I Shape from Silhouettes I Guido Gerig CS 6320, Spring 2013 Credits: Marc Pollefeys, UNC Chapel Hill, some of the figures and slides are also adapted from J.S. Franco, J. Matusik s presentations, and referenced

More information

Overview of Active Vision Techniques

Overview of Active Vision Techniques SIGGRAPH 99 Course on 3D Photography Overview of Active Vision Techniques Brian Curless University of Washington Overview Introduction Active vision techniques Imaging radar Triangulation Moire Active

More information

Capturing 2½D Depth and Texture of Time-Varying Scenes Using Structured Infrared Light

Capturing 2½D Depth and Texture of Time-Varying Scenes Using Structured Infrared Light Capturing 2½D Depth and Texture of Time-Varying Scenes Using Structured Infrared Light Christian Frueh and Avideh Zakhor Department of Computer Science and Electrical Engineering University of California,

More information

A Probabilistic Framework for Surface Reconstruction from Multiple Images

A Probabilistic Framework for Surface Reconstruction from Multiple Images A Probabilistic Framework for Surface Reconstruction from Multiple Images Motilal Agrawal and Larry S. Davis Department of Computer Science, University of Maryland, College Park, MD 20742, USA email:{mla,lsd}@umiacs.umd.edu

More information

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix F Fundamental

More information

3D Computer Vision 1

3D Computer Vision 1 3D Computer Vision 1 Multiview Stereo Multiview Stereo Multiview Stereo https://www.youtube.com/watch?v=ugkb7itpnae Shape from silhouette Shape from silhouette Shape from silhouette Shape from silhouette

More information

Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences

Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences Modeling, Combining, and Rendering Dynamic Real-World Events From Image s Sundar Vedula, Peter Rander, Hideo Saito, and Takeo Kanade The Robotics Institute Carnegie Mellon University Abstract Virtualized

More information

Measurement of 3D Foot Shape Deformation in Motion

Measurement of 3D Foot Shape Deformation in Motion Measurement of 3D Foot Shape Deformation in Motion Makoto Kimura Masaaki Mochimaru Takeo Kanade Digital Human Research Center National Institute of Advanced Industrial Science and Technology, Japan The

More information

Automatic 3-D 3 D Model Acquisition from Range Images. Michael K. Reed and Peter K. Allen Computer Science Department Columbia University

Automatic 3-D 3 D Model Acquisition from Range Images. Michael K. Reed and Peter K. Allen Computer Science Department Columbia University Automatic 3-D 3 D Model Acquisition from Range Images Michael K. Reed and Peter K. Allen Computer Science Department Columbia University Introduction Objective: given an arbitrary object or scene, construct

More information

International Journal for Research in Applied Science & Engineering Technology (IJRASET) A Review: 3D Image Reconstruction From Multiple Images

International Journal for Research in Applied Science & Engineering Technology (IJRASET) A Review: 3D Image Reconstruction From Multiple Images A Review: 3D Image Reconstruction From Multiple Images Rahul Dangwal 1, Dr. Sukhwinder Singh 2 1 (ME Student) Department of E.C.E PEC University of TechnologyChandigarh, India-160012 2 (Supervisor)Department

More information

Multi-view Stereo via Volumetric Graph-cuts and Occlusion Robust Photo-Consistency

Multi-view Stereo via Volumetric Graph-cuts and Occlusion Robust Photo-Consistency 1 Multi-view Stereo via Volumetric Graph-cuts and Occlusion Robust Photo-Consistency George Vogiatzis, Carlos Hernández Esteban, Philip H. S. Torr, Roberto Cipolla 2 Abstract This paper presents a volumetric

More information

Announcements. Stereo Vision Wrapup & Intro Recognition

Announcements. Stereo Vision Wrapup & Intro Recognition Announcements Stereo Vision Wrapup & Intro Introduction to Computer Vision CSE 152 Lecture 17 HW3 due date postpone to Thursday HW4 to posted by Thursday, due next Friday. Order of material we ll first

More information

Shape from the Light Field Boundary

Shape from the Light Field Boundary Appears in: Proc. CVPR'97, pp.53-59, 997. Shape from the Light Field Boundary Kiriakos N. Kutulakos kyros@cs.rochester.edu Department of Computer Sciences University of Rochester Rochester, NY 4627-226

More information

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision Stereo Thurs Mar 30 Kristen Grauman UT Austin Outline Last time: Human stereopsis Epipolar geometry and the epipolar constraint Case example with parallel optical axes General case with calibrated cameras

More information