esac PACS Spectrometer: forward model tool for science use

Size: px
Start display at page:

Download "esac PACS Spectrometer: forward model tool for science use"

Transcription

1 esac European Space Astronomy Centre (ESAC) P.O. Box, Villanueva de la Cañada, Madrid Spain PACS Spectrometer: forward model tool for science use Prepared by Elena Puga Reference HERSCHEL-HSC-TN-2131 Issue 1 Revision 0 Date of Issue 25 Jan 2017 Status For review Document Type Technical note Distribution PACS-ICC, HSC

2 Title Document template for HPDP release notes Issue 1 Revision 0 Author E. Puga Date 27 January 2017 Approved by: Date Reason for change Draft Issue Revision Date First version of document January 2017

3 1 Table of Contents 2 INTRODUCTION RELEVANT CONNECTED DOCUMENTS FORWARD MODEL TOOL... 4 HIPE task description... 5 Science validation strategy Input HSA products Source model Projection algorithm consistency Final product for raster-mode observations Appendix material Appendix A... 12

4 2 INTRODUCTION The uneven illumination of the PACS IFU field-of-view is produced by the non-perfectly uniform detector s response at all PACS-S wavelengths. The reduction of the spaxel s active area (~8 x8, instead of the idealized detector with a nominal size 9.4 x9.4 and a uniform response) leads to a flux loss comparable to that observed in reality. This flux loss is accounted for in the calibration schemes for well-centred point and fully-extended sources, via the central (or central 3x3) spaxels calibration in total flux density and surface brightness, respectively. However, the specific correction is science-case dependent. In particular, the level2 pacsrebinnedcubes and spectral mosaic cubes may render imperfect extracted spectra (via aperture extraction on spectral mosaic cubes in the latter) for: Off-centred point sources Crowded fields Semi-extended structures In the case of single-pointed observations of sources centred in the IFU field-of-view, the E2P HIPE task can be applied for semi-extended sources, as an additional correction step to the total flux density calibration of the central or central 3x3 spaxels from the pacsrebinnedcubes,. Provided that an analytical model is representative of the source flux distribution, the following document details the use of a forward model tool, to simulate a PACS observation, in order to estimate the proper calibration correction on the surface brightness. 3 RELEVANT CONNECTED DOCUMENTS PACS Spectrometer Simulation and the Extended to Point Correction, Jeroen de Jong, Feb 11, 2016 (no TN number) Technical Note on Cube Interpolation Validation, Elena Puga, Nov (no TN number) 4 FORWARD MODEL TOOL Chapter 5 of the PACS Spectrometer Handbook explains the surface brightness calibration

5 performed by the Standard Generation Processing (SPG) pipeline. f!"#$%& Jy beam = x! f!"#"$%&'" Jy beam The pipeline includes an additional extended-source correction (ESCF) to account for losses between the beams in the case of a fully extended source, which corresponds to the solid angle ratio between the beam efficiency of the central spaxel and the nominal size of 9.4 x9.4. This effectively changes the units of surface brightness from [Jy/beam] to [Jy/spaxel] in the following way f!"#$%& Jy spaxel = x! f!"#"$%&'" Jy beam ESCF spaxel beam The Forward Model Tool (FMT) is available in HIPE 15.0, it generalizes the calculation of the coupling factor for each detector (s) Jy f!"# beam = ξ! = S!,! B!,!;!!,! with S!,! being the source model surface brightness distribution in units of [Jy/pixel], and B!,!;! the synthetic beam efficiency. The point- and extended-source corrections are recovered when considering a very small spatially extended source (delta function), as ξ!" = PSCF, and a fully extended source of S!,! = 1 Jy/pixel, for which ξ!" = ESCF (9.4)!. HIPE task description The task pacsspecfrommodel simulates PACS cubes according to user- provided source flux distribution model (spatially and spectrally) folding in the imperfect response via the multiplication by the beam efficiencies of each detector on every pointing (mapping) pattern. ξ! Jy beam = S!,!!,! Jy arcsec! 0.5! arcsec! pixel B!,!;! pixel beam The task requires a reference observation to obtain the raster pattern information. Reference products can be either a pacsrebinnedcubes or a pacscubes (and their sliced versions). It also needs a source model, which extends the class ExtendedSpectralSource via the ExtendedSpectralSourceAdaptor. The task utilizes the task BeamsProjector, shared with E2P. 5

6 Correspondent tests are also provided within HIPE. Science validation strategy Two usefult scripts are provided, with an end-to-end comparisons of a point source spectrum extraction. The example observation is of RDor in a 5x5 oversampled raster of the H2O line, obsid number The selection of the slices mimics observations in the different observing modes applicable to the task (single pointing, undersampled rasters using specproject, and oversampled rasters using drizzle): ForwardModelToolSinglePointingUnderRasters.py ForwardModelToolOverRasters_drizzle.py Using a centred point-like source simplifies the source-modelling effort and constitutes a good sanity check as can be easily compared with the PSCF (see result in Figure 1). Additionally, the total observed source flux can be estimated from the central spaxel s spectrum (in the central raster position, for rastered cases) corrected to the total source flux, via the PSCF, as it is done by the task extractcentralspectrum. For non point-like sources, this estimate of the total flux may come from photometry maps Input HSA products ESCF removal In order to compare the simulations with the observed cube pipeline product, the latter must be transformed back to units of [Jy/beam]. The removal of the ESCF involves application two different functions depending on the input products: pacsrebinnedcubes or slicedpacsrebinnedcubes: undoextendedsourcecorrection (needs to be imported from herschel.pacs.spg.spec.extractcentralspectrumtask) slicedpacscubes: undoextendedsourcecorrectionslicedcube. This function is at the same location in HIPE 16.0, but it is not available in HIPE 15.0 and therefore its definition must be run in the useful script for oversampled rasters. See Appendix A. The ESCF correction is of the order of 30% in the blue and 5% in the red Pointing effects pacsspecfrommodel calculates the simulated observation using the pointing information at 6

7 every rebinned wavelength slice (pacsrebinnedcube) or at every sample in the dot-cloud (pacscubes). This means that any average pointing offset, or even the pointing jitter throughout the observation is accounted for in the simulated data. The global offset can be estimated from the distance between ranominal,decnominal and the averaged a-posteriorireconstructed pointing product in ra,dec metadata. In the case of , it corresponds to 2.27 (HSA javascript). As a first approach, we compare a centred point source with a perfectly pointed reference observation. For that purpose, we create a function removeoffset, that subtracts from the reference product (datasets ra,dec) the global offset of the central spaxel (in the central raster position) and the jitter. Figure 1 PSCF Recovery check using the simulated central spaxel of the pacsrebinnedcube for the central raster position in RDor. Here, the assumption is that the source is perfectly centred and we have removed the global pointing offset and jitter Source model 7

8 Figure 2 Total flux density conservation with respect to Gaussian FWHM computed using the FMT algorithm (open squares) and the jython function visualization methods (filled circles). Jython function definition in Appendix A, input flux density is 144 Jy. The source model in units of [Jy/arcsecs 2 ] can be input via: an existing HIPE task SmallExtendedSpectralSource that models spatially a centred symmetric Gaussian function and spectrally a continuum with a first order polynomial and a line with a Gaussian profile, whose amplitude is scaled to the continuum. a user-provided jython class that extends the class ExtendedSpectralSourceAdapter. It must contain a method named getflux. An example of such a function is provided in Appendix XX, including the necessary methods to ensure proper visualization of the input model. The model is constructed within the task pacsspecfrommodel (BeamsProjector) in a twostep fashion: first on a finer grid (5 times smaller than the beam grid) and then rebinned into the final 0.5 grid of the synthetic beams with a dedicated averaging function. The algorithm, being flux conservative by a scaling factor (0.1)! (0.5)!, imposes a minimum size FWHM for a Gaussian equivalent to 0.2 (see Figure 2). The surface brightness is normalized to the source s total flux density using the integral of the 2D-Gaussian (2π σ! ). WARNING: the source diameter can only be estimated from the PACS observation ifself only in the case of an oversampled map on a large-enough field-of-view that comprises the source. In the case of undersampled rasters or single pointings, the source size cannot the measured on the PACS observations, as the PSF is convolved with the squared 9.4 x9.4 spaxel size. 8

9 4.1.3 Projection algorithm consistency Figure 3 Central spaxel comparison for RDor undersampled raster (central raster position rpos=4) As stated in Sect. 4, the simulated PACS observations at the pacsrebinnedcubes or pacscubes level are in units of [Jy/beam] (see Figure 3). However, all three projection algorithms available to construct PACS spectral mosaic cubes have a flux-conserving scaling factor, in order to allow for aperture extraction in the final spectral mosaic cube. In all three cases this factor corresponds to the ratio between the nominal size of the idealized detector 9.4 x9.4 and the grid pixel size of the mosaic cube: s = 9.4! pixsize! Hence, it is necessary to modify this scaling factor and remove the dependency on the spaxel nominal size. This is precisely ESCF, which is the ratio between the beam s solid angle and the spaxel nominal size. The result of the simulation is depicted in Figure 4. 9

10 Figure 4 Aperture extracted line spectrum of RDor. C1 is the extracted central spaxel spectrum from the central raster position (source model). The spectra extracted from the observed cube (blue) shows a line flux 20% lower than C1. The simulated spectrum, once corrected from flux scaling, recovers the initial flux density of the continuum and line flux Final product for raster-mode observations In the case of raster maps, we can construct the ratio of the observed and the simulated spectral mosaic cubes. The resulting simulation efficiency map provides a coverage map to aid the user to identify areas in which the spectral aperture extraction is feasible with respect to the source s flux distribution. The simulation efficiency provides a pixel-to-pixel correction that must be applied to the observed mosaic cube (see Figure 5). However, the task does not model the wavelength shift and skew effects in the line emission that the IFU has (see Calibration and Performance document PICCKLTN041 ), and thus the ratio values at the wings of the lines should not be over-interpreted. This effect is averaged out when considering spatially symmetric apertures on the spectral mosaic cube. 10

11 Figure 5 Simulation Efficiecy at um for the RDor undersampled raster rasterline=[1,3,5], rastercol=[1,3,5]. Produced by useful script ForwardModelToolSinglePointingUnderRasters.py. 5 Appendix material 11

12 Appendix A Remove ESCF correction function for pacscubes (used as input for drizzle in oversampled mosaic cubes) caltree=getcaltree() def undoextendedsourcecorrectionslicedcubes(slicedcubes,caltree=caltree,verbose=1): verbose=verbose) slicedcubesout = slicedcubes.copy() for slice in range(len(slicedcubes.refs)): if verbose: print 'slice',slice cubout = undoextendedsourcecorrectioncube(slicedcubes.get(slice), caltree=caltree, slicedcubesout.replace(slice,cubout) slicedcubesout.meta["extendedsourcecorrected"].value = False return slicedcubesout def undoextendedsourcecorrectioncube(cube, caltree=none, verbose=0): """undoextendedsourcecorrection(cube, caltree=none, verbose=0) At Level 2 (Final rebinned cubes), PACS abs. flux calibration is established for a perfectly extended point source (flat surface brightness). This calibration contains a specific "Extended Source Correction" step to account for the spatial beam inefficiency, i.e. to account for the fact that the spaxels don't have a perfect and flat response over 9.4"x9.4", but that some flux is 'lost between the spaxels' """ if (("extendedsourcecorrected" in cube.meta.keyset()) and (cube.meta["extendedsourcecorrected"].value == 1)): cube=cube.copy() if not caltree: caltree= getcaltree() if caltree.version < 70: print "Please update your calibration tree version "+str(caltree.version) +" to version >= 70" extloss = caltree.spectrometer.extendedsourceloss extipol = LinearInterpolator(extLoss.getWavelength(), extloss.getsignalfraction(), True) wave, flux = cube.getwave(), cube.getflux() # else: for x in range(5): for y in range(5): interpolatedfractions = extipol(wave[:,x,y]) flux[:,x,y] *= interpolatedfractions cube.setflux(flux) cube.setfluxdescription("flux") cube.meta["extendedsourcecorrected"].value = False print "The extended source correction was not applied to these data," print "It will hence not be undone here!" return cube 12

13 13

PACS Spectrometer Simulation and the Extended to Point Correction

PACS Spectrometer Simulation and the Extended to Point Correction PACS Spectrometer Simulation and the Extended to Point Correction Jeroen de Jong February 11, 2016 Abstract This technical note describes simulating a PACS observation with a model source and its application

More information

PACS SPECTROMETER SPATIAL CALIBRATION

PACS SPECTROMETER SPATIAL CALIBRATION PACS SPECTROMETER SPATIAL CALIBRATION A. Contursi Herschel Calibration workshop 18-20 January ESAC Spatial Calibration Observations summary 40x40 chopped raster at chopper position 0 on Neptune, step size

More information

PACS Launchpad: Spectroscopy

PACS Launchpad: Spectroscopy PACS Launchpad: Spectroscopy Katrina Exter HERSCHEL-HSC-DOC-2168 V1.1 27 April 2017 Build 15.0.3262 Chapter 1. PACS Spectroscopy Launch Pad I 1.1. Introduction Welcome to the PACS data reduction guide

More information

PACS Data Reduction Guide: Spectroscopy. Issue user Version 15.0 March 2017

PACS Data Reduction Guide: Spectroscopy. Issue user Version 15.0 March 2017 PACS Data Reduction Guide: Spectroscopy Issue user Version 15.0 March 2017 PACS Data Reduction Guide: Spectroscopy Table of Contents 1. PACS Spectroscopy Launch Pad I... 1 1.1. Introduction... 1 1.1.1.

More information

PACS Data Reduction Guide: Spectroscopy. Issue user. Version 13.0 Mar 2015

PACS Data Reduction Guide: Spectroscopy. Issue user. Version 13.0 Mar 2015 PACS Data Reduction Guide: Spectroscopy Issue user. Version 13.0 Mar 2015 PACS Data Reduction Guide: Spectroscopy Table of Contents 1. PACS Spectroscopy Launch Pad I... 1 1.1. Introduction... 1 1.1.1.

More information

NHSC/PACS Web Tutorials Running PACS spectrometer pipelines

NHSC/PACS Web Tutorials Running PACS spectrometer pipelines NHSC/PACS s Running PACS spectrometer pipelines PACS- 302 Level 1 to Level 2 and beyond: From Sliced Cubes to Rebinned and Projected Spectral Line Cubes, and 1- D Spectra Original Tutorial by Philip Appleton

More information

PACS Data Reduction Guide. issue: user, Version: 9 Nov 2011

PACS Data Reduction Guide. issue: user, Version: 9 Nov 2011 PACS Data Reduction Guide issue: user, Version: 9 Nov 2011 PACS Data Reduction Guide Table of Contents 1. PACS Launch Pads... 1 1.1. Introduction... 1 1.2. PACS Data Launch Pad... 1 1.2.1. A quick on terminology...

More information

NHSC/PACS Web Tutorials Running PACS spectrometer pipelines

NHSC/PACS Web Tutorials Running PACS spectrometer pipelines NHSC/PACS s Running PACS spectrometer pipelines PACS- 302 Level 1 to Level 2 and beyond: From Sliced Cubes to Rebinned and Projected Spectral Line Cubes, and 1- D Spectra Original Tutorial by Philip Appleton

More information

PACS Products Explained

PACS Products Explained PACS Products Explained Katrina Exter Zoltan Balog Issue User. Version 1.0 --> Mar 2015 PACS Products Explained Katrina Exter Zoltan Balog Build 13.0.5130 Build 13.0.5130 Table of Contents 1. Introduction...

More information

esac User Requirements for the Querying and Serving of Highly Processed Data Products and Ancillary Data Products by the HSA

esac User Requirements for the Querying and Serving of Highly Processed Data Products and Ancillary Data Products by the HSA esac European Space Astronomy Centre (ESAC) P.O. Box, 78 28691 Villanueva de la Cañada, Madrid Spain User Requirements for the Querying and Serving of Highly Processed Data Products and Ancillary Data

More information

PACS Products Explained

PACS Products Explained PACS Products Explained Katrina Exter Zoltan Balog Issue User Version HIPE 15 March 2017 PACS Products Explained Katrina Exter Zoltan Balog Table of Contents 1. Introduction... 1 1.1. The scope... 1 1.2.

More information

Data products. Dario Fadda (USRA) Pipeline team Bill Vacca Melanie Clarke Dario Fadda

Data products. Dario Fadda (USRA) Pipeline team Bill Vacca Melanie Clarke Dario Fadda Data products Dario Fadda (USRA) Pipeline team Bill Vacca Melanie Clarke Dario Fadda Pipeline (levels 1 à 2) The pipeline consists in a sequence of modules. For each module, files are created and read

More information

PACS Data Reduction Guide: Photometry. Issue user. Version 10 Apr. 2012

PACS Data Reduction Guide: Photometry. Issue user. Version 10 Apr. 2012 PACS Data Reduction Guide: Photometry Issue user. Version 10 Apr. 2012 PACS Data Reduction Guide: Photometry Table of Contents 1. PACS Launch Pads... 1 1.1. Introduction... 1 1.2. PACS Data Launch Pad...

More information

VERY LARGE TELESCOPE 3D Visualization Tool Cookbook

VERY LARGE TELESCOPE 3D Visualization Tool Cookbook European Organisation for Astronomical Research in the Southern Hemisphere VERY LARGE TELESCOPE 3D Visualization Tool Cookbook VLT-SPE-ESO-19500-5652 Issue 1.0 10 July 2012 Prepared: Mark Westmoquette

More information

Imaging and Deconvolution

Imaging and Deconvolution Imaging and Deconvolution Urvashi Rau National Radio Astronomy Observatory, Socorro, NM, USA The van-cittert Zernike theorem Ei E V ij u, v = I l, m e sky j 2 i ul vm dldm 2D Fourier transform : Image

More information

Software tools for ACS: Geometrical Issues and Overall Software Tool Development

Software tools for ACS: Geometrical Issues and Overall Software Tool Development Software tools for ACS: Geometrical Issues and Overall Software Tool Development W.B. Sparks, R. Jedrzejewski, M. Clampin, R.C. Bohlin. June 8, 2000 ABSTRACT We describe the issues relating to internal

More information

FIFI-LS: Basic Cube Analysis using SOSPEX

FIFI-LS: Basic Cube Analysis using SOSPEX FIFI-LS: Basic Cube Analysis using SOSPEX Date: 1 Oct 2018 Revision: - CONTENTS 1 INTRODUCTION... 1 2 INGREDIENTS... 1 3 INSPECTING THE CUBE... 3 4 COMPARING TO A REFERENCE IMAGE... 5 5 REFERENCE VELOCITY

More information

WSDC Subsystem Peer Review

WSDC Subsystem Peer Review WSDC Subsystem Peer Review Multiband DETector () Ken Marsh (IPAC/Caltech) 1 Outline Relationship of to other WSDS pipeline modules Why multiband? Theoretical basis Procedure - Steps involved - Allowance

More information

The Herschel Data Processing System: History, Status and latest Developments

The Herschel Data Processing System: History, Status and latest Developments The Herschel Data Processing System: History, Status and latest Developments Stephan Ott Herschel Science Data Processing Development Manager Herschel Science Data Processing Coordinator Herschel Science

More information

Visualization & the CASA Viewer

Visualization & the CASA Viewer Visualization & the Viewer Juergen Ott & the team Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Visualization Goals:

More information

From multiple images to catalogs

From multiple images to catalogs Lecture 14 From multiple images to catalogs Image reconstruction Optimal co-addition Sampling-reconstruction-resampling Resolving faint galaxies Automated object detection Photometric catalogs Deep CCD

More information

Basic Imaging and Self- Calibration (T4 + T7)

Basic Imaging and Self- Calibration (T4 + T7) Basic Imaging and Self- Calibration (T4 + T7) John McKean Visibilities Fourier Transform Deconvolution AIM: 1. To make an image by taking the fast Fourier transform of the visibility data. 2. Carry out

More information

Document Number: SC2/FTS/SOF/020

Document Number: SC2/FTS/SOF/020 SCUBA-2 FTS Project Office University of Lethbridge Physics Department 4401 University Drive Lethbridge, Alberta CANADA T1K 3M4 Tel: 1-403-329-2771 Fax: 1-403-329-2057 Email: brad.gom@uleth.ca WWW: http://research.uleth.ca/scuba2/

More information

PACS. Considerations for PACS Mapping. Herschel. PACS Mapping Page 1. Babar Ali,David Frayer,Pierre Chanial

PACS. Considerations for PACS Mapping. Herschel. PACS Mapping Page 1. Babar Ali,David Frayer,Pierre Chanial PACS Mapping Page 1 Considerations for PACS Mapping Babar Ali,David Frayer,Pierre Chanial PACS Mapping Page 2 Req. I Mapping considerations for PACS data reduction pipelines I - A. History Version Date

More information

OM data reduction using SAS

OM data reduction using SAS XMM-Newton Optical-UV Monitor: data reduction OM data reduction using SAS Antonio Talavera XMM-Newton Science Operation Centre, ESAC, ESA Simon Rosen, Chris Brindle & Vladimir Yershov MSSL, UCL, UK OM

More information

Continuum error recognition and error analysis

Continuum error recognition and error analysis Continuum error recognition and error analysis Robert Laing (ESO) 1 Outline Error recognition: how do you recognise and diagnose residual errors by looking at images? Image analysis: how do you extract

More information

Data Processing Status

Data Processing Status Data Processing Status William Vacca Assoc. Director, Science Data Systems USRA-SOFIA SOFIA Users Group Meeting #10 November 2016 SOFIA Pipeline Products Defined in the Data Processing Plan for SOFIA SIs

More information

Lecture 17 Reprise: dirty beam, dirty image. Sensitivity Wide-band imaging Weighting

Lecture 17 Reprise: dirty beam, dirty image. Sensitivity Wide-band imaging Weighting Lecture 17 Reprise: dirty beam, dirty image. Sensitivity Wide-band imaging Weighting Uniform vs Natural Tapering De Villiers weighting Briggs-like schemes Reprise: dirty beam, dirty image. Fourier inversion

More information

PINGSoft 2: an IDL Integral Field Spectroscopy Software

PINGSoft 2: an IDL Integral Field Spectroscopy Software arxiv:1211.0277v1 [astro-ph.im] 1 Nov 2012 PINGSoft 2: an IDL Integral Field Spectroscopy Software F. Fabián Rosales-Ortega Departamento de Física Teórica, Universidad Autónoma de Madrid, Spain Instituto

More information

IVOA Spectral Energy Distribution (SED) Data Model

IVOA Spectral Energy Distribution (SED) Data Model International Virtual Observatory Alliance IVOA Spectral Energy Distribution (SED) Data Model Version 1.0 IVOA Working Draft, 2012 October 15 This version: WD-SEDDM-1.0-20121015 Previous version(s): http://www.ivoa.net/internal/ivoa/interopmay2011sed/seddm-20110515.pdf

More information

Wideband Mosaic Imaging for VLASS

Wideband Mosaic Imaging for VLASS Wideband Mosaic Imaging for VLASS Preliminary ARDG Test Report U.Rau & S.Bhatnagar 29 Aug 2018 (1) Code Validation and Usage (2) Noise, Weights, Continuum sensitivity (3) Imaging parameters (4) Understanding

More information

PACS Data Reduction Guide: Photometry. Issue user. Version 15 March 2017

PACS Data Reduction Guide: Photometry. Issue user. Version 15 March 2017 PACS Data Reduction Guide: Photometry Issue user. Version 15 March 2017 PACS Data Reduction Guide: Photometry Table of Contents 1. PACS Launch Pads... 1 1.1. Introduction... 1 1.2. PACS Data Launch Pad...

More information

Imaging and non-imaging analysis

Imaging and non-imaging analysis 1 Imaging and non-imaging analysis Greg Taylor University of New Mexico Spring 2017 Plan for the lecture-i 2 How do we go from the measurement of the coherence function (the Visibilities) to the images

More information

Data Analysis Guide. Version 11.1, Document Number: HERSCHEL-HSC-DOC April 2017

Data Analysis Guide. Version 11.1, Document Number: HERSCHEL-HSC-DOC April 2017 Data Analysis Guide Version 11.1, Document Number: HERSCHEL-HSC-DOC-1199 10 April 2017 Data Analysis Guide Table of Contents Preface... xxvi 1. Conventions used in this manual... xxvi 1. Data input/output...

More information

Sky-domain algorithms to reconstruct spatial, spectral and time-variable structure of the sky-brightness distribution

Sky-domain algorithms to reconstruct spatial, spectral and time-variable structure of the sky-brightness distribution Sky-domain algorithms to reconstruct spatial, spectral and time-variable structure of the sky-brightness distribution Urvashi Rau National Radio Astronomy Observatory Socorro, NM, USA Outline : - Overview

More information

Synthesis Imaging. Claire Chandler, Sanjay Bhatnagar NRAO/Socorro

Synthesis Imaging. Claire Chandler, Sanjay Bhatnagar NRAO/Socorro Synthesis Imaging Claire Chandler, Sanjay Bhatnagar NRAO/Socorro Michelson Summer Workshop Caltech, July 24-28, 2006 Synthesis Imaging 2 Based on the van Cittert-Zernike theorem: The complex visibility

More information

ERROR RECOGNITION and IMAGE ANALYSIS

ERROR RECOGNITION and IMAGE ANALYSIS PREAMBLE TO ERROR RECOGNITION and IMAGE ANALYSIS 2 Why are these two topics in the same lecture? ERROR RECOGNITION and IMAGE ANALYSIS Ed Fomalont Error recognition is used to determine defects in the data

More information

MEGARA ONLINE ETC (v1.0.0) QUICK START AND REFERENCES GUIDE by Alexandre Y. K. Bouquin (updated June2017)

MEGARA ONLINE ETC (v1.0.0) QUICK START AND REFERENCES GUIDE by Alexandre Y. K. Bouquin (updated June2017) MEGARA ONLINE ETC (v1.0.0) QUICK START AND REFERENCES GUIDE by Alexandre Y. K. Bouquin (updated June2017) Table of Contents GETTING STARTED... 2 QUICK START... 3 Very quick start, for the truly impatient...

More information

ALMA Antenna responses in CASA imaging

ALMA Antenna responses in CASA imaging ALMA Antenna responses in CASA imaging Dirk Petry (ESO), December 2012 Outline Motivation ALBiUS/ESO work on CASA responses infrastructure and ALMA beam library First test results 1 Motivation ALMA covers

More information

PERFORMANCE REPORT ESTEC. The spectral calibration of JWST/NIRSpec: accuracy of the instrument model for the ISIM-CV3 test cycle

PERFORMANCE REPORT ESTEC. The spectral calibration of JWST/NIRSpec: accuracy of the instrument model for the ISIM-CV3 test cycle ESTEC European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands www.esa.int PERFORMANCE REPORT The spectral calibration of JWST/NIRSpec: accuracy of the instrument model

More information

CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO. Calibration Upgrade, version 2 to 3

CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO. Calibration Upgrade, version 2 to 3 CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO Calibration Upgrade, version 2 to 3 Dave Humm Applied Physics Laboratory, Laurel, MD 20723 18 March 2012 1 Calibration Overview 2 Simplified

More information

Central Slice Theorem

Central Slice Theorem Central Slice Theorem Incident X-rays y f(x,y) R x r x Detected p(, x ) The thick line is described by xcos +ysin =R Properties of Fourier Transform F [ f ( x a)] F [ f ( x)] e j 2 a Spatial Domain Spatial

More information

Diffuse Source Absolute Sensitivity and Point Source Relative Sensitivity as a Function of Extraction Slit Height for STIS First-Order Modes

Diffuse Source Absolute Sensitivity and Point Source Relative Sensitivity as a Function of Extraction Slit Height for STIS First-Order Modes Instrument Science Report STIS 98-01 Diffuse Source Absolute Sensitivity and Point Source Relative Sensitivity as a Function of Extraction Slit Height for STIS First-Order Modes Ralph Bohlin, Space Telescope

More information

JWST Pipeline & Data Products

JWST Pipeline & Data Products JWST Pipeline & Data Products Stage 1: Ramps-to-Slopes Karl D. Gordon JWST Calibration WG Lead Space Telescope Sci. Inst. Baltimore, MD, USA Stage 2: Calibrated Slopes Stage 3: Ensemble Processing Star

More information

Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions

Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions The 2010 STScI Calibration Workshop Space Telescope Science Institute, 2010 Susana Deustua and Cristina Oliveira, eds. Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions Steven V.

More information

Progress Report. Ian Evans On behalf of the Chandra Source Catalog Project Team. Chandra Users Committee Meeting October 25, 2010

Progress Report. Ian Evans On behalf of the Chandra Source Catalog Project Team. Chandra Users Committee Meeting October 25, 2010 Progress Report Ian Evans On behalf of the Chandra Source Catalog Project Team Chandra Users Committee Meeting October 25, 2010 Executive Summary Summary Catalog version 1.1 was released on 2010 Aug 10

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

The Italian LBT spectroscopic data reduction pipeline

The Italian LBT spectroscopic data reduction pipeline LBTO 2017 Users' Meeting The Italian LBT spectroscopic data reduction pipeline Alida Marchetti INAF-IASF Milano Firenze, June 20th-23rd reduction pipeline SOME NUMBERS INAF nights 46 Effective observing

More information

Overview of SPIRE Photometer Pipeline

Overview of SPIRE Photometer Pipeline 8 th Feb 2012 Overview of SPIRE Photometer Pipeline C. Kevin Xu (NHSC/IPAC) page 1 8 th Feb 2012 Goals: Show how SPIRE Photometer pipeline works (functionalities of major modules). Explain what is new

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., www.atmos-meas-tech-discuss.net/5/c741/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement Techniques Discussions

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., 5, C741 C750, 2012 www.atmos-meas-tech-discuss.net/5/c741/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.70 Optics Spring 09 Solutions to Problem Set # Posted Wednesday, Feb. 8, 009 Problem : Spherical waves and energy conservation In class we mentioned that the radiation

More information

JWST Pipeline & Data Products

JWST Pipeline & Data Products JWST Pipeline & Data Products Stage 1: Ramps-to-Slopes Karl D. Gordon JWST Calibration WG Lead Space Telescope Sci. Inst. Baltimore, MD, USA Stage 2: Calibrated Slopes Stage 3: Ensemble Processing 18 May

More information

NAME :... Signature :... Desk no. :... Question Answer

NAME :... Signature :... Desk no. :... Question Answer Written test Tuesday 19th of December 2000. Aids allowed : All usual aids Weighting : All questions are equally weighted. NAME :................................................... Signature :...................................................

More information

Simulation and Auxiliary Data Management

Simulation and Auxiliary Data Management Simulation and Auxiliary Data Management Paola Sartoretti GEPI Meudon Simulation/Test and Auxiliary data! Test data are the simulated RVS data needed to test the data reduction algorithms. They are produced

More information

Using the Herschel Science Archive

Using the Herschel Science Archive Using the Herschel Science Archive 2015 SOFIA Observers' Workshop Bernhard Schulz (NHSC/IPAC) The Herschel Space Observatory 3.5-m cryogenically cooled telescope, located in L2 Range: 55 650 mic Telescope

More information

( ) = First Bessel function, x = π Dθ

( ) = First Bessel function, x = π Dθ Observational Astronomy Image formation Complex Pupil Function (CPF): (3.3.1) CPF = P( r,ϕ )e ( ) ikw r,ϕ P( r,ϕ ) = Transmittance of the aperture (unobscured P = 1, obscured P = 0 ) k = π λ = Wave number

More information

TECHNICAL REPORT. Doc #: Date: Rev: Phone:

TECHNICAL REPORT. Doc #: Date: Rev: Phone: When there is a discrepancy between the information in this technical report and information in JDox, assume JDox is correct. TECHNICAL REPORT Title: Simulations of Target Acquisition with MIRI Four-Quadrant

More information

Virtual Reality for Human Computer Interaction

Virtual Reality for Human Computer Interaction Virtual Reality for Human Computer Interaction Appearance: Lighting Representation of Light and Color Do we need to represent all I! to represent a color C(I)? No we can approximate using a three-color

More information

EO-1 Stray Light Analysis Report No. 3

EO-1 Stray Light Analysis Report No. 3 EO-1 Stray Light Analysis Report No. 3 Submitted to: MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02173 P.O. # AX-114413 May 4, 1998 Prepared by: Lambda Research Corporation 80 Taylor Street P.O.

More information

IASI spectral calibration monitoring on MetOp-A and MetOp-B

IASI spectral calibration monitoring on MetOp-A and MetOp-B IASI spectral calibration monitoring on MetOp-A and MetOp-B E. Jacquette (1), B. Tournier (2), E. Péquignot (1), J. Donnadille (2), D. Jouglet (1), V. Lonjou (1), J. Chinaud (1), C. Baque (3), L. Buffet

More information

Files Used in this Tutorial

Files Used in this Tutorial Generate Point Clouds and DSM Tutorial This tutorial shows how to generate point clouds and a digital surface model (DSM) from IKONOS satellite stereo imagery. You will view the resulting point clouds

More information

IMAGING SPECTROMETER DATA CORRECTION

IMAGING SPECTROMETER DATA CORRECTION S E S 2 0 0 5 Scientific Conference SPACE, ECOLOGY, SAFETY with International Participation 10 13 June 2005, Varna, Bulgaria IMAGING SPECTROMETER DATA CORRECTION Valentin Atanassov, Georgi Jelev, Lubomira

More information

Synthesis imaging using CASA

Synthesis imaging using CASA Synthesis imaging using CASA Kuo-Song Wang ( 國松) and ARC-Taiwan team (ASIAA) UCAT Summer Student Program 2016 2016/06/30 Recap Radio interferometric observations The products from the array are Visibilities

More information

MRO CRISM TRR3 Hyperspectral Data Filtering

MRO CRISM TRR3 Hyperspectral Data Filtering MRO CRISM TRR3 Hyperspectral Data Filtering CRISM Data User's Workshop 03/18/12 F. Seelos, CRISM SOC CRISM PDS-Delivered VNIR TRR3 I/F 3-Panel Plot False Color RGB Composite Composite band distribution

More information

OIW-EX 1000 Oil in Water Monitors

OIW-EX 1000 Oil in Water Monitors OIW-EX 1000 Oil in Water Monitors Spectrometer Handbook Document code: OIW-HBO-0005 Version: EX-002 www.advancedsensors.co.uk Tel: +44(0)28 9332 8922. FAX +44(0)28 9332 8669 Page 1 of 33 Document History

More information

NIRSpec Technical Note NTN / ESA-JWST-TN Author(s): G. Giardino Date of Issue: November 11, 2013 Version: 1.0

NIRSpec Technical Note NTN / ESA-JWST-TN Author(s): G. Giardino Date of Issue: November 11, 2013 Version: 1.0 NIRSpec Technical Note NTN-013-011/ ESA-JWST-TN-093 Author(s): G. Giardino Date of Issue: November 11, 013 Version: 1.0 estec European Space Research and Technology Centre Keplerlaan 1 01 AZ Noordwijk

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

ALMA Memo 386 ALMA+ACA Simulation Tool J. Pety, F. Gueth, S. Guilloteau IRAM, Institut de Radio Astronomie Millimétrique 300 rue de la Piscine, F-3840

ALMA Memo 386 ALMA+ACA Simulation Tool J. Pety, F. Gueth, S. Guilloteau IRAM, Institut de Radio Astronomie Millimétrique 300 rue de la Piscine, F-3840 ALMA Memo 386 ALMA+ACA Simulation Tool J. Pety, F. Gueth, S. Guilloteau IRAM, Institut de Radio Astronomie Millimétrique 300 rue de la Piscine, F-38406 Saint Martin d'h eres August 13, 2001 Abstract This

More information

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces

More information

Reflection seismic Method - 2D

Reflection seismic Method - 2D Reflection seismic Method - 2D Acoustic Impedance Seismic events Wavelets Convolutional model Resolution Stacking and Signal/Noise Data orders Reading: Sheriff and Geldart, Chapters 6, 8 Acoustic Impedance

More information

Lens Design I. Lecture 11: Imaging Herbert Gross. Summer term

Lens Design I. Lecture 11: Imaging Herbert Gross. Summer term Lens Design I Lecture 11: Imaging 2015-06-29 Herbert Gross Summer term 2015 www.iap.uni-jena.de 2 Preliminary Schedule 1 13.04. Basics 2 20.04. Properties of optical systrems I 3 27.05. 4 04.05. Properties

More information

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved Van de Loosdrecht Machine Vision Computer Vision Fourier Transform 20 January 2017 Copyright 2001 2017 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved j.van.de.loosdrecht@nhl.nl,

More information

WFC3/IR: Time Dependency - of Linear Geometric Distortion

WFC3/IR: Time Dependency - of Linear Geometric Distortion WFC3/IR: Time Dependency - of Linear Geometric Distortion M. McKay, & V. Kozhurina-Platais July 03, 2018 Abstract Over eight years, the globular cluster Omega Centauri (ω Cen) has been observed with the

More information

Lighting. Figure 10.1

Lighting. Figure 10.1 We have learned to build three-dimensional graphical models and to display them. However, if you render one of our models, you might be disappointed to see images that look flat and thus fail to show the

More information

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek Computer Graphics Sampling Theory & Anti-Aliasing Philipp Slusallek Dirac Comb (1) Constant & δ-function flash Comb/Shah function 2 Dirac Comb (2) Constant & δ-function Duality f(x) = K F(ω) = K (ω) And

More information

OPTICAL TECHNOLOGIES FOR TSV INSPECTION Arun A. Aiyer, Frontier Semiconductor 2127 Ringwood Ave, San Jose, California 95131

OPTICAL TECHNOLOGIES FOR TSV INSPECTION Arun A. Aiyer, Frontier Semiconductor 2127 Ringwood Ave, San Jose, California 95131 OPTICAL TECHNOLOGIES FOR TSV INSPECTION Arun A. Aiyer, Frontier Semiconductor 2127 Ringwood Ave, San Jose, California 95131 ABSTRACT: In this paper, Frontier Semiconductor will introduce a new technology

More information

High Resolution Imaging by Wave Equation Reflectivity Inversion

High Resolution Imaging by Wave Equation Reflectivity Inversion High Resolution Imaging by Wave Equation Reflectivity Inversion A. Valenciano* (Petroleum Geo-Services), S. Lu (Petroleum Geo-Services), N. Chemingui (Petroleum Geo-Services) & J. Yang (University of Houston)

More information

Working with M 3 Data. Jeff Nettles M 3 Data Tutorial at AGU December 13, 2010

Working with M 3 Data. Jeff Nettles M 3 Data Tutorial at AGU December 13, 2010 Working with M 3 Data Jeff Nettles M 3 Data Tutorial at AGU December 13, 2010 For Reference Slides and example data from today s workshop available at http://m3dataquest.jpl.nasa.gov See Green et al. (2010)

More information

GBT Memo #300: Correcting ALMA 12-m Array Data for Missing Short Spacings Using the Green Bank Telescope

GBT Memo #300: Correcting ALMA 12-m Array Data for Missing Short Spacings Using the Green Bank Telescope GBT Memo #300: Correcting ALMA 12-m Array Data for Missing Short Spacings Using the Green Bank Telescope Melissa Hoffman and Amanda Kepley 28 September 2018 Contents 1 Introduction 1 2 Data 2 2.1 Observations

More information

Cornell Spectrum Imager (CSI) Open Source Spectrum Analysis with ImageJ Tutorial

Cornell Spectrum Imager (CSI) Open Source Spectrum Analysis with ImageJ Tutorial Cornell Spectrum Imager (CSI) Open Source Spectrum Analysis with ImageJ Tutorial Electron Microscopy Summer School 2017 Why CSI Current Software Black box Expensive Steep learning curve Cornell Spectrum

More information

Spectral Extraction of Extended Sources Using Wavelet Interpolation

Spectral Extraction of Extended Sources Using Wavelet Interpolation The 2005 HST Calibration Workshop Space Telescope Science Institute, 2005 A. M. Koekemoer, P. Goudfrooij, and L. L. Dressel, eds. Spectral Extraction of Extended Sources Using Wavelet Interpolation Paul

More information

Single-epoch Measurement Algorithms Robert Lupton Applications Lead

Single-epoch Measurement Algorithms Robert Lupton Applications Lead Single-epoch Measurement Algorithms Robert Lupton Applications Lead 2013-09-19 CDP FINAL DESIGN REVIEW September 19-20, 2013 Name of Mee)ng Loca)on Date - Change in Slide Master 1 Outline Single-epoch

More information

Lessons learnt from implementing mosaicing and faceting in ASKAPsoft. Max Voronkov & Tim Cornwell ASKAP team 2nd April 2009

Lessons learnt from implementing mosaicing and faceting in ASKAPsoft. Max Voronkov & Tim Cornwell ASKAP team 2nd April 2009 Lessons learnt from implementing mosaicing and faceting in ASKAPsoft Max Voronkov & Tim Cornwell ASKAP team 2nd April 2009 Outline - Imaging software ASKAPsoft re-uses LOFAR design Imaging is treated as

More information

FLAMES Integral Field Unit ARGUS commissioned

FLAMES Integral Field Unit ARGUS commissioned FLAMES Integral Field Unit ARGUS commissioned A.Kaufer, L.Pasquini, R.Schmutzer, and R.Castillo Introduction The FLAMES multi fibre facility at the VLT (Pasquini et al. 2002) is equipped with two different

More information

Overview of Post-BCD Processing

Overview of Post-BCD Processing Overview of Post-BCD Processing Version 1.1 Release Date: January 7, 2004 Issued by the Spitzer Science Center California Institute of Technology Mail Code 314-6 1200 E. California Blvd Pasadena, California

More information

Imaging and Deconvolution

Imaging and Deconvolution Imaging and Deconvolution 24-28 Sept 202 Narrabri, NSW, Australia Outline : - Synthesis Imaging Concepts - Imaging in Practice Urvashi Rau - Image-Reconstruction Algorithms National Radio Astronomy Observatory

More information

NHSC Data Processing Workshop Pasadena 2 nd -9 th Feb Map-Making Basics. C. Kevin Xu (NHSC/IPAC) page 1 PACS

NHSC Data Processing Workshop Pasadena 2 nd -9 th Feb Map-Making Basics. C. Kevin Xu (NHSC/IPAC) page 1 PACS Map-Making Basics C. Kevin Xu (NHSC/IPAC) page 1 Contents SPIRE mapmakers: Naïve Mapper (default) MADMapper (more complicated but not better) De-striper (still in development, not covered here) Baseline

More information

Image Analysis. Jim Lovell

Image Analysis. Jim Lovell Image Analysis Jim Lovell ATNF Synthesis Imaging Workshop May 2003 What Do You Want to Measure? (What you want to do and how to do it.)! Flux density of components! Absolute positions! Relative positions

More information

Computational Photography

Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2010 Today Light fields Introduction Light fields Signal processing analysis Light field cameras Application Introduction Pinhole camera

More information

ALMA simulations Rosita Paladino. & the Italian ARC

ALMA simulations Rosita Paladino. & the Italian ARC ALMA simulations Rosita Paladino & the Italian ARC Two software tools available to help users simulate images resulting from an ALMA observations: Simulations with CASA tasks sim_observe & sim_analyze

More information

Workhorse ADCP Multi- Directional Wave Gauge Primer

Workhorse ADCP Multi- Directional Wave Gauge Primer Acoustic Doppler Solutions Workhorse ADCP Multi- Directional Wave Gauge Primer Brandon Strong October, 2000 Principles of ADCP Wave Measurement The basic principle behind wave the measurement, is that

More information

Extending coprime sensor arrays to achieve the peak side lobe height of a full uniform linear array

Extending coprime sensor arrays to achieve the peak side lobe height of a full uniform linear array Adhikari et al. EURASIP Journal on Advances in Signal Processing 214, 214:148 http://asp.eurasipjournals.com/content/214/1/148 RESEARCH Open Access Extending coprime sensor arrays to achieve the peak side

More information

OSKAR Settings Files Revision: 8

OSKAR Settings Files Revision: 8 OSKAR Settings Files Version history: Revision Date Modification 1 212-4-23 Creation. 2 212-5-8 Added default value column to settings tables. 3 212-6-13 Updated settings for version 2..2-beta. 4 212-7-27

More information

NHSC HIFI DP workshop Caltech, September A Tour of HIFI Data. - page 1

NHSC HIFI DP workshop Caltech, September A Tour of HIFI Data. - page 1 NHSC HIFI DP workshop Caltech, 12-13 September 2012 A Tour of HIFI Data - page 1 Outline Opening the observation context A casual look at the HIPE GUI presentation of your data How to plot the spectra

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere Sampling sensitive to choice of samples less sensitive to choice of samples

More information

Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF

Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF Prepared by Nuno Miranda, P.J. Meadows Reference ESA-EOPG-CSCOP-TN-0002 Issue 1 Revision 0 Date of Issue 21/05/2015 Status Final

More information

Limits of computational white-light holography

Limits of computational white-light holography Journal of Physics: Conference Series Limits of computational white-light holography To cite this article: Sebastian Mader et al 2013 J. Phys.: Conf. Ser. 415 012046 View the article online for updates

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Matthias Zwicker Universität Bern Herbst 2009 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation of physics Global

More information