DELIVERABLE 2 SPECIALIZED NOVEL SOFTWARE FOR THE ACQUISITION AND ANALYSIS OF 6 DIFFERENT LIDAR SIGNALS IN REAL TIME

Size: px
Start display at page:

Download "DELIVERABLE 2 SPECIALIZED NOVEL SOFTWARE FOR THE ACQUISITION AND ANALYSIS OF 6 DIFFERENT LIDAR SIGNALS IN REAL TIME"

Transcription

1 DELIVERABLE 2 SPECIALIZED NOVEL SOFTWARE FOR THE ACQUISITION AND ANALYSIS OF 6 DIFFERENT LIDAR SIGNALS IN REAL TIME Project Title : Development of a 6-wavelength LIDAR system for the retrieval of the microphysical and chemical aerosol particle parameters in the troposphere: Application in the calibration of the satelliteborne CALIPSO LIDAR system Project code : 05-NON-EU-95 [ΟΠΣ: 27δ] Affiliated Institution : NATIONAL TECHNICAL UNIVERSITY OF ATHENS PHYSICS DEPARTMENT LASER REMOTE SENSING LABORATORY» Project Leader : Dr. Alexandros PAPAYANNIS Assistant Professor Action : Scientific & Technological Cooperation between Greece and Non-EU countries Research Field : Environmental and Space Technologies GSRT Directorate : International S & T Cooperation Directorate Bilateral Relations Division GSRT Officer : V. KERASSIOTI

2 DELIVERABLE 2: Specialized novel software for the acquisition and analysis of 6 different lidar signals in real time Coordinator: NTUA, Partners: NTUA (40%), Raymetrics SA (60%) Abstract A specialized software code has been developed for the acquisition and analysis of 6 different lidar signals in real time. This code is based on the LabView 6.1 software code using the appropriate Graphical Unit Interface (GUI) modules. The code is able to handle, in real time, 6 different lidar signals and to perform analog and photon counting detection. Several user-friendly interfaces are available, showing the temporal evolution of various aerosol optical parameters (extinction and backscatter coefficients, refractive index, single scattering albedo, volume concentration). This deliverable has been prepared by Raymetrics SA using the relative experience of the NTUA lidar team in the design and development of similar software packages. DELIVERABLE 2: Specialized novel software for the acquisition and analysis of 6 different lidar signals in real time During the 2 nd phase (Phase II) of the project, a specialized software code has been developed for the acquisition and analysis of 6 different lidar signals in real time (355, 387, 407, 532, 607 and 1064 nm). The code is based on the LabView 6.1 software code using the appropriate Graphical Unit Interface (GUI) modules. The code is able to handle, in real time, 6 different lidar signals and to perform analog and photon counting detection. The software code handles both the acquisition of up to 6 lidar signals and the analysis (in real time) of the acquired digitized signals. 1) Software code for the acquisition of up to 6 lidar signals This software code is able to handle simultaneously up to 6 different lidar signal acquired in both analog and photon counting modes. The code initially starts with a screen (Fig. 1) where the option of the Alignment (Coarse or Fine) of the laser beam or the Data Acquisition is required from the user. 2

3 Figure 1. The first window (option) of the Acquisition Software. Once the Data Acquisition option is chosen the next window appears (Fig. 2), where the user selects the desired wavelength to visualize. In the current snap-shot the wavelength 532 nm Analogue Mode is chosen (red circle). Figure 2. The Data Acquisition window of the Acquisition Software. Then, the user pushes the Start button and the acquisition in all 6 wavelengths starts, automatically. Once the acquisition of the lidar signals is complete, the user switches to the Analysis software code, which is presented in detail in the following paragraph. 3

4 2) Analysis software of the acquired digitized lidar signals This software initially starts with the presentation of the currently available lidar signals data-sets (organized in a database) to be processed. When the Preview button (upper left) is active (green button) all the available lidar data are presented in a form of a database. In the example shown (Fig. 3) the lidar signal acquired at 532 nm (photon counting) is shown from 0 up to 10 km height. In this way all the available lidar signals are visualized so that the user can select those in which is interested. In addition, the number of files (per day) and the acquisition time (start end) at all six wavelengths is presented. Figure 3. A typical example of lidar signal acquired at 532 nm (photon counting) on 25/01/2007. The next step of the Analysis software is the processing of each lidar signal separately (The Worksheet button is now acrtive). For instance, in Fig. 4 (upper part) we present the acquired signal processed (e.g. the digitally filtered logarithm of the range- and background-corrected lidar signal) at 355 nm and the corresponding one at 387 nm (Raman- 4

5 shifted by the atmospheric N 2 ) in Fig. 4 (lower part). We see that the 355 nm signal has a high signal-to-noise ratio (SNR) up to km height, while the one at 387 nm reaches lower altitudes (typically up to 6-8 km height). Figure 4. Typical example of the digitally filtered logarithm of the range- and backgroundcorrected lidar signals at 355 nm (upper graph) and 387 nm (lower graph). The next step involves the final processing of the various lidar signals and the retrieval of the aerosol optical properties (aerosol extinction and backscatter coefficients, lidar ratio, etc.). After application of various digital filters and use of the Raman and Klett retrieval algorithms, the above mentioned aerosol optical properties can be finally retrieved. 5

6 A typical example of the retrieval of the aerosol backscatter coefficient - versus altitude at 355 nm using the Raman algorithm is presented in Fig. 5. Figure 5. Typical example of the retrieval of the aerosol backscatter coefficient - versus altitude at 355 nm using the Raman algorithm. Therefore, the software code developed is able to handle up to 6 different lidar signals and to retrieve the various aerosol optical properties (aerosol extinction and backscatter coefficients, lidar ratio, etc.) in real time. Conclusions-Next steps According to the work described before, the Deliverable (D.2) has been fully accomplished, regarding the acquisition and analysis software code of the 6-wavelength NTUA Raman-lidar system in real time for the retrieval of the various aerosol optical properties. In addition, during Phase II, the aerosol post-analysis software code has started to be modified by Georgia Institute of Technology (GIT), for the retrieval of the aerosol chemical composition in relation to the water mass content using as input real lidar data, using the ISORROPIA II code. Currently, this code is tested with lidar inverted data at 355, 532 and 1064 nm, along with water vapor data (at 407 nm) and thus, the Deliverable (D.3) is in good 6

7 progress. Therefore, the project is performing very well, and always in accordance with the scheduled time-table. I certify that the above-described work has been correctly accomplished. The Project Leader Date: 15/02/2007 Dr. Alex. PAPAYANNIS Assistant Professor at NTUA 7

Using LiDAR for Classification and

Using LiDAR for Classification and Using LiDAR for Classification and Recognition of Particulate Matter in the Atmosphere M. Elbakary, K. Iftekharuddin, and K. AFRIFA ECE Dept., Old Dominion University, Norfolk, VA Outline Goals of the

More information

CALIPSO Version 3 Data Products: Additions and Improvements

CALIPSO Version 3 Data Products: Additions and Improvements CALIPSO Version 3 Data Products: Additions and Improvements Dave Winker and the CALIPSO team CALIPSO/CloudSat Science Team Meeting 28-31 July, Madison, WI 1 Version 3 Status Version 3 algorithms now used

More information

Aerosol profiling by combination of lidar and lunar/star-photometry

Aerosol profiling by combination of lidar and lunar/star-photometry Aerosol profiling by combination of lidar and lunar/star-photometry Lucas Alados Arboledas (Task 11.2), UGR CNR, CNRS, UGR, UNIVLEEDS ACTRIS-2 1 st WP3 Workshop Athens, Greece November 10-12, 2015 Task

More information

Lecture 13. Lidar Data Inversion

Lecture 13. Lidar Data Inversion Lecture 13. Lidar Data Inversion Review Doppler lidar architecture Daytime capability of Na Doppler lidar Introduction Common raw data format Basic ideas (clues) for data inversion Preprocess Main process

More information

The University of Wisconsin Arctic High-Spectral Resolution Lidar: General Information and Data Examples

The University of Wisconsin Arctic High-Spectral Resolution Lidar: General Information and Data Examples The University of Wisconsin Arctic High-Spectral Resolution Lidar: General Information and Data Examples Gijs de Boer, Edwin Eloranta The University of Wisconsin Madison, Madison, WI USA 1. Introduction

More information

Lecture 14. Lidar Data Inversion and Sensitivity Analysis

Lecture 14. Lidar Data Inversion and Sensitivity Analysis Lecture 14. Lidar Data Inversion and Sensitivity Analysis Data inversion process Nonlinearity of PMT and discriminator More considerations for Na Doppler lidar Definition of sensitivity Summary Office

More information

Lecture 24. Lidar Simulation

Lecture 24. Lidar Simulation Lecture 24. Lidar Simulation q Introduction q Lidar Modeling via Lidar Simulation & Error Analysis q Functions of Lidar Simulation and Error Analysis q How to Build up Lidar Simulation? q Range-resolved

More information

NATIONAL TECHNICAL UNIVERSITY OF ATHENS PERMANENT COMMITTEE FOR BASIC RESEARCH NTUA BASIC RESEARCH SUPPORT PROGRAMME THALES 2001

NATIONAL TECHNICAL UNIVERSITY OF ATHENS PERMANENT COMMITTEE FOR BASIC RESEARCH NTUA BASIC RESEARCH SUPPORT PROGRAMME THALES 2001 NATIONAL TECHNICAL UNIVERSITY OF ATHENS PERMANENT COMMITTEE FOR BASIC RESEARCH NTUA BASIC RESEARCH SUPPORT PROGRAMME THALES 001 «USE OF LIDAR TECHNOLOGY FOR ATMOSPHERIC CORRECTION OF DIGITAL REMOTE SENSING

More information

Lecture 09. Lidar Simulation and Error Analysis Overview (1)

Lecture 09. Lidar Simulation and Error Analysis Overview (1) Lecture 09. Lidar Simulation and Error Analysis Overview (1) Introduction Lidar Modeling via Lidar Simulation & Error Analysis Functions of Lidar Simulation and Error Analysis How to Build up Lidar Simulation?

More information

Measurements Of Atmospheric Water Vapor using the Raman Lidar Technique: Summary and status within NDACC

Measurements Of Atmospheric Water Vapor using the Raman Lidar Technique: Summary and status within NDACC Measurements Of Atmospheric Water Vapor using the Raman Lidar Technique: Summary and status within NDACC Thierry Leblanc Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA. USA

More information

UV Remote Sensing of Volcanic Ash

UV Remote Sensing of Volcanic Ash UV Remote Sensing of Volcanic Ash Kai Yang University of Maryland College Park WMO Inter-comparison of Satellite-based Volcanic Ash Retrieval Algorithms Workshop June 26 July 2, 2015, Madison, Wisconsin

More information

Retrieving aerosol microphysical properties. by Lidar-Radiometer Inversion Code (LIRIC) for different aerosol types

Retrieving aerosol microphysical properties. by Lidar-Radiometer Inversion Code (LIRIC) for different aerosol types PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Points: Microphysical properties are retrieved with LIRIC from lidar and Sun photometer Uncertainties of LIRIC algorithm are

More information

Lecture 13.1: Airborne Lidar Systems

Lecture 13.1: Airborne Lidar Systems Lecture 13.1: Airborne Lidar Systems 1. Introduction v The main advantages of airborne lidar systems are that they expand the geographical range of studies beyond those possible by surface-based fixed

More information

More Thoughts on Total Propagated Uncertainty for Bathymetric Lidar

More Thoughts on Total Propagated Uncertainty for Bathymetric Lidar More Thoughts on Total Propagated Uncertainty for Bathymetric Lidar Grady Tuell, Ph.D. GTRI Electro-Optical Systems Lab June 11, 2014 1 30 Years of Atmospheric Lidar Integrated Atmospheric Characterization

More information

Direct radiative forcing of aerosol

Direct radiative forcing of aerosol Direct radiative forcing of aerosol 1) Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2) Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter) 3) Challenges for remote sensing retrieval:

More information

Claus Weitkamp Editor. Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere. Foreword by Herbert Walther. With 162 Ulustrations.

Claus Weitkamp Editor. Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere. Foreword by Herbert Walther. With 162 Ulustrations. Claus Weitkamp Editor Lidar Range-Resolved Optical Remote Sensing of the Atmosphere Foreword by Herbert Walther With 162 Ulustrations 4Q Springer Contents Foreword Preface List of Contributors v vii xix

More information

Application of statistical methods to the determination of slope in lidar data

Application of statistical methods to the determination of slope in lidar data Application of statistical methods to the determination of slope in lidar data David N. Whiteman Assumptions made in the analysis of both Raman lidar measurements of aerosol extinction and differential

More information

Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements

Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements Markus Pahlow, Detlef Müller, Matthias Tesche, Heike Eichler, Graham Feingold, Wynn L. Eberhard, and Ya-Fang

More information

Aerosol Remote Sensing from PARASOL and the A-Train

Aerosol Remote Sensing from PARASOL and the A-Train Aerosol Remote Sensing from PARASOL and the A-Train J.-F. Léon, D. Tanré, J.-L. Deuzé, M. Herman, P. Goloub, P. Lallart Laboratoire d Optique Atmosphérique, France A. Lifermann Centre National d Etudes

More information

EARLINET Single Calculus Chain overview on methodology and strategy

EARLINET Single Calculus Chain overview on methodology and strategy doi:10.5194/amt-8-4891-2015 Author(s) 2015. CC Attribution 3.0 License. EARLINET Single Calculus Chain overview on methodology and strategy G. D Amico 1, A. Amodeo 1, H. Baars 2, I. Binietoglou 1,3, V.

More information

Data Requirements for Aerosol Observations

Data Requirements for Aerosol Observations Data Requirements for Aerosol Observations Ellsworth J. Welton NASA Goddard Space Flight Center Will focus on contributing networks Namely GALION (I am the co-chair) MPLNET/AERONET Site: Windpoort, Namibia

More information

Analysis of Marine Boundary Layer Aerosol Fields Obtained Using Multi- Wavelength Scanning Lidar Systems

Analysis of Marine Boundary Layer Aerosol Fields Obtained Using Multi- Wavelength Scanning Lidar Systems Analysis of Marine Boundary Layer Aerosol Fields Obtained Using Multi- Wavelength Scanning Lidar Systems Shiv K. Sharma Hawaii Institute of Geophysics & Planetology 2525 Correa Rd., Honolulu HI 96822 phone:

More information

Retrievals of Profiles of Fine and Coarse Aerosols Using Lidar and Radiometric Space Measurements

Retrievals of Profiles of Fine and Coarse Aerosols Using Lidar and Radiometric Space Measurements IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 8, AUGUST 2003 1743 Retrievals of Profiles of Fine and Coarse Aerosols Using Lidar and Radiometric Space Measurements Yoram J. Kaufman,

More information

A Survey of Modelling and Rendering of the Earth s Atmosphere

A Survey of Modelling and Rendering of the Earth s Atmosphere Spring Conference on Computer Graphics 00 A Survey of Modelling and Rendering of the Earth s Atmosphere Jaroslav Sloup Department of Computer Science and Engineering Czech Technical University in Prague

More information

A LabVIEW Program for the Particle Analysis by Laser Mass Spectrometry Instrument

A LabVIEW Program for the Particle Analysis by Laser Mass Spectrometry Instrument A LabVIEW Program for the Particle Analysis by Laser Mass Spectrometry Instrument by David Thomson Research Scientist - Systems Integrator NOAA Aeronomy Laboratory - Original Code Consulting and Richard

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO June 20 th, 2014 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point clouds.

More information

Development of Portable and Mobile Aerosol Lidars

Development of Portable and Mobile Aerosol Lidars Development of Portable and Mobile Aerosol Lidars Zhongmin Zhu National Engineering Research Center for Multimedia Software Wuhan University Wuhan, Hubei, China zzmwh@sohu.com Wei Gong State Key Laboratory

More information

Towards a robust model of planetary thermal profiles

Towards a robust model of planetary thermal profiles Towards a robust model of planetary thermal profiles RT Equation: General Solution: RT Equation: General Solution: Extinction coefficient Emission coefficient How would you express the Source function

More information

Kohei Arai 1 1Graduate School of Science and Engineering Saga University Saga City, Japan. Kenta Azuma 2 2 Cannon Electronics Inc.

Kohei Arai 1 1Graduate School of Science and Engineering Saga University Saga City, Japan. Kenta Azuma 2 2 Cannon Electronics Inc. Method for Surface Reflectance Estimation with MODIS by Means of Bi-Section between MODIS and Estimated Radiance as well as Atmospheric Correction with Skyradiometer Kohei Arai 1 1Graduate School of Science

More information

Lecture 05. First Example: A Real Lidar

Lecture 05. First Example: A Real Lidar Lecture 05. First Example: A Real Lidar Brief review of lidar basics K Doppler lidar system architecture K lidar signal estimate from lidar equation Comparison of estimate to reality Summary Review of

More information

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS 1 picoemerald Two Colors in One Box Microscopy and Spectroscopy with a Tunable Two-Color Source CARS and SRS microscopy

More information

CAMERA CONSTANT IN THE CASE OF TWO MEDIA PHOTOGRAMMETRY

CAMERA CONSTANT IN THE CASE OF TWO MEDIA PHOTOGRAMMETRY CAMERA CONSTANT IN THE CASE OF TWO MEDIA PHOTOGRAMMETRY Panagiotis Agrafiotis and Andreas Georgopoulos Laboratory Of Photogrammetry, School of Rural and Surveying Engineering National Technical University

More information

Operational use of the Orfeo Tool Box for the Venµs Mission

Operational use of the Orfeo Tool Box for the Venµs Mission Operational use of the Orfeo Tool Box for the Venµs Mission Thomas Feuvrier http://uk.c-s.fr/ Free and Open Source Software for Geospatial Conference, FOSS4G 2010, Barcelona Outline Introduction of the

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO GSA, October 20 th, 2017 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point

More information

Modeling of Collection Efficiency in Lidar Spectroscopy

Modeling of Collection Efficiency in Lidar Spectroscopy Modeling of Collection Efficiency in Lidar Spectroscopy Barry Lienert and Shiv. K. Sharma Hawaii Inst. Geophysics & Planetology, 2525 Correa Rd, Honolulu HI 96822 Teng Chen, Frank Price and John M. J.

More information

En Urga Inc A Cumberland Avenue, West Lafayette, IN

En Urga Inc A Cumberland Avenue, West Lafayette, IN En Urga Inc. 1291-A Cumberland Avenue, West Lafayette, IN 47906 http://www.enurga.com Outline Spray Characterization Methods Sample Results Quality assurance of injectors and dosers Experimental Techniques

More information

PRODUCT INFORMATION Model 1000XP Wide Range Particle Spectrometer (WPS )

PRODUCT INFORMATION Model 1000XP Wide Range Particle Spectrometer (WPS ) PRODUCT INFORMATION Model 1000XP Wide Range Particle Spectrometer (WPS ) With the lower size limit extended from 10nm to 5 nm, the WPS can now count and size aerosol particles automatically from 5nm to

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., www.atmos-meas-tech-discuss.net/5/c741/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement Techniques Discussions

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., 5, C741 C750, 2012 www.atmos-meas-tech-discuss.net/5/c741/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

User Manual. Program to generate atmospheric backscatter and attenuation coefficients using BACKSCAT 4.0 / LOWTRAN 7 aerosol models.

User Manual. Program to generate atmospheric backscatter and attenuation coefficients using BACKSCAT 4.0 / LOWTRAN 7 aerosol models. User Manual Program to generate atmospheric backscatter and attenuation coefficients using BACKSCAT 4.0 / LOWTRAN 7 aerosol models. Distributed by: Ontar Corporation 9 Village Way North Andover, MA 01845-2000

More information

MOPSMAP v1.0 user guide

MOPSMAP v1.0 user guide MOPSMAP v1.0 user guide Modelled optical properties of ensembles of aerosol particles https://mopsmap.net by Josef Gasteiger and Matthias Wiegner University of Vienna, Aerosol Physics and Environmental

More information

Lecture 04. Fundamentals of Lidar Remote Sensing (2)

Lecture 04. Fundamentals of Lidar Remote Sensing (2) Lecture 04. Fundamentals of Lidar Remote Sensing (2) Lidar Equation Introduction Physical Picture of Lidar Equation Fundamental Lidar Equation Different Forms of Lidar Equation Illustration of Lidar Equation

More information

Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements Atmos. Meas. Tech., 9,, www.atmos-meas-tech.net/9/// doi:.9/amt-9-- Authors). CC Attribution. License. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining

More information

NOTES AND CORRESPONDENCE An Automated Algorithm for Detection of Hydrometeor Returns in Micropulse Lidar Data

NOTES AND CORRESPONDENCE An Automated Algorithm for Detection of Hydrometeor Returns in Micropulse Lidar Data AUGUST 1998 NOTES AND CORRESPONDENCE 1035 NOTES AND CORRESPONDENCE An Automated Algorithm for Detection of Hydrometeor Returns in Micropulse Lidar Data E. E. CLOTHIAUX, G.G.MACE, AND T. P. ACKERMAN Department

More information

MICHELSON S INTERFEROMETER

MICHELSON S INTERFEROMETER MICHELSON S INTERFEROMETER Objectives: 1. Alignment of Michelson s Interferometer using He-Ne laser to observe concentric circular fringes 2. Measurement of the wavelength of He-Ne Laser and Na lamp using

More information

Improvements to the SHDOM Radiative Transfer Modeling Package

Improvements to the SHDOM Radiative Transfer Modeling Package Improvements to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center

More information

Particle Image Velocimetry Part - 1

Particle Image Velocimetry Part - 1 AerE 545X class notes #23 Particle Image Velocimetry Part - 1 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Announcement Room 1058, Sweeney Hall for Lab#4 (LDV

More information

Real time data acquisition and visualization software package for aerosol size spectrometer. T. A. Rajesh, A. A. Manke and S.

Real time data acquisition and visualization software package for aerosol size spectrometer. T. A. Rajesh, A. A. Manke and S. PRL TN 2014 106 Real time data acquisition and visualization software package for aerosol size spectrometer T. A. Rajesh, A. A. Manke and S. Ramachandran PRL Technical Note PRL-TN-2014-106 Real time data

More information

The effect of specular reflection on spaceborne lidar measurements of ice clouds

The effect of specular reflection on spaceborne lidar measurements of ice clouds The effect of specular reflection on spaceborne lidar measurements of ice clouds ROBIN J. HOGAN AND ANTHONY J. ILLINGWORTH Department of Meteorology, University of Reading, United Kingdom Report for the

More information

POL-001 Fiber-Optic In-Line Polarizer. Operation Manual

POL-001 Fiber-Optic In-Line Polarizer. Operation Manual POL-001 Fiber-Optic In-Line Polarizer Operation Manual Feb. 18, 2002 General Photonics Corp. Ph: (909) 590-5473 5228 Edison Ave. Fax: (909) 902-5536 Chino, CA 91710 USA www.generalphotonics.com Document

More information

Atmospheric correction of hyperspectral ocean color sensors: application to HICO

Atmospheric correction of hyperspectral ocean color sensors: application to HICO Atmospheric correction of hyperspectral ocean color sensors: application to HICO Amir Ibrahim NASA GSFC / USRA Bryan Franz, Zia Ahmad, Kirk knobelspiesse (NASA GSFC), and Bo-Cai Gao (NRL) Remote sensing

More information

Raman Spectrometer Installation Manual

Raman Spectrometer Installation Manual RI Raman Spectrometer Instruction Manual Application software (included in standard configuration) Connection RI RAMAN is recognized by Windows operational system as standard HID device. That is why there

More information

Increased Underwater Optical Imaging Performance Via Multiple Autonomous Underwater Vehicles

Increased Underwater Optical Imaging Performance Via Multiple Autonomous Underwater Vehicles DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Increased Underwater Optical Imaging Performance Via Multiple Autonomous Underwater Vehicles Jules S. Jaffe Scripps Institution

More information

Selective Optical Assembly of Highly Uniform. Nanoparticles by Doughnut-Shaped Beams

Selective Optical Assembly of Highly Uniform. Nanoparticles by Doughnut-Shaped Beams SUPPLEMENTARY INFORMATION Selective Optical Assembly of Highly Uniform Nanoparticles by Doughnut-Shaped Beams Syoji Ito 1,2,3*, Hiroaki Yamauchi 1,2, Mamoru Tamura 4,5, Shimpei Hidaka 4,5, Hironori Hattori

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO GSA, September 23 rd, 2016 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point

More information

Skew and Strain measurements using the Optical Backscatter Reflectometer to Support TIA FOTP Application Note

Skew and Strain measurements using the Optical Backscatter Reflectometer to Support TIA FOTP Application Note Skew and Strain measurements using the Optical Backscatter Reflectometer to Support TIA FOTP 455038 Application Note 1 Introduction Luna s Optical Backscatter Reflectometer Series 4400 and PR, (herein

More information

Synergistic cloud retrievals from radar, lidar and radiometers

Synergistic cloud retrievals from radar, lidar and radiometers Synergistic cloud retrievals from radar, lidar and radiometers Robin Hogan Julien Delanoë, Nicola Pounder, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Spaceborne radar, lidar

More information

Infrared Scene Simulation for Chemical Standoff Detection System Evaluation

Infrared Scene Simulation for Chemical Standoff Detection System Evaluation Infrared Scene Simulation for Chemical Standoff Detection System Evaluation Peter Mantica, Chris Lietzke, Jer Zimmermann ITT Industries, Advanced Engineering and Sciences Division Fort Wayne, Indiana Fran

More information

Algorithm Development of the Aglite-Lidar Instrument

Algorithm Development of the Aglite-Lidar Instrument Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2008 Algorithm Development of the Aglite-Lidar Instrument Christian Marchant Utah State University Follow

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

Positioning system of a metrological AFM: design considerations

Positioning system of a metrological AFM: design considerations Positioning system of a metrological AFM: design considerations AFM workshop LNE, Trappes Jan Piot K.U.Leuven Division PMA Overview Introduction General layout metrological AFM Layout of the positioning

More information

C101-E137 TALK LETTER. Vol. 14

C101-E137 TALK LETTER. Vol. 14 C101-E137 TALK LETTER Vol. 14 Diffuse Reflectance Measurement of Powder Samples and Kubelka-Munk Transformation ------- 02 Application: Measuring Food Color ------- 08 Q&A: What effect does the scan speed

More information

ERAD Proceedings of ERAD (2002): c Copernicus GmbH 2002

ERAD Proceedings of ERAD (2002): c Copernicus GmbH 2002 Proceedings of ERAD (22): 179 183 c Copernicus GmbH 22 ERAD 22 An enhanced algorithm for the retrieval of liquid water cloud properties from simultaneous radar and lidar measurements. Part II: Validation

More information

WAVELET TRANSFORM METHOD FOR DERIVING ATMOSPHERIC BOUNDARY LAYER HEIGHT FROM LIDAR SIGNALS

WAVELET TRANSFORM METHOD FOR DERIVING ATMOSPHERIC BOUNDARY LAYER HEIGHT FROM LIDAR SIGNALS WAVELET TRANSFORM METHOD FOR DERIVING ATMOSPHERIC BOUNDARY LAYER HEIGHT FROM LIDAR SIGNALS RAJITHA PALETI 1, Y.BHAVANI KUMAR, and T.KRISHNA CHAITANYA 3 1. Bapatla Engineering College, Bapatla, Email: paleti.rajitha@gmail.com.

More information

VDL-004. Miniature Manual Variable Optical Delay Line. User Guide

VDL-004. Miniature Manual Variable Optical Delay Line. User Guide VDL-004 Miniature Manual Variable Optical Delay Line User Guide Version: 1.1 Date: July 24, 2018 General Photonics Corporation is located in Chino, California. For more information visit the company's

More information

Description. Lightweight, caseless fine dust aerosol spectrometer for integration in carrier systems, battery powered(photo: Cased for flight drone)

Description. Lightweight, caseless fine dust aerosol spectrometer for integration in carrier systems, battery powered(photo: Cased for flight drone) Lightweight, caseless fine dust aerosol spectrometer for integration in carrier systems, battery powered(photo: Cased for flight drone) Description (Fig. above: in an exemplary housing) was developed as

More information

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE)

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) Malvina Silvestri Istituto Nazionale di Geofisica e Vulcanologia In the frame of the Italian Space Agency (ASI)

More information

Lecture 03. Fundamentals of Lidar Remote Sensing (1)

Lecture 03. Fundamentals of Lidar Remote Sensing (1) Lecture 03. Fundamentals of Lidar Remote Sensing (1) q Introduction q History from searchlight to modern lidar q Various modern lidars q Determination of Altitude and Range q Summary and Questions 1 Introduction:

More information

300W 1.5kW, QUBE Fiber Lasers

300W 1.5kW, QUBE Fiber Lasers Technical Specification 300W 1.5kW, QUBE Fiber Lasers CONTENTS 1.1 SCOPE 2 1.2 OPTICAL SPECIFICATION 2 1.3 BEAM DELIVERY FIBER SPECIFICATION 3 1.4 ALIGNMENT LASER 3 1.5 POWER DISTRIBUTION 3 1.6 WATER COOLING

More information

Title: Standard Operating Procedure for Measurement of Particulate Matter in Ambient Air by Orthogonal Light Scattering

Title: Standard Operating Procedure for Measurement of Particulate Matter in Ambient Air by Orthogonal Light Scattering Procedure No: SOP-014 Revision No: 0 (new document) Page No.: 1 of 10 1. INTRODUCTION AND SCOPE The Grimm particulate monitor is used by Alberta Environment (AENV) in the Mobile Air Monitoring Laboratory

More information

Diffuse Terahertz Reflection Imaging using Quantum Cascade Lasers

Diffuse Terahertz Reflection Imaging using Quantum Cascade Lasers Diffuse Terahertz Reflection Imaging using Quantum Cascade Lasers P. Dean, S. P. Khanna, S. Chakraborty, M. Lachab, A. G. Davies, E. H, Linfield Institute of Microwaves and Photonics School of Electronic

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

Summary of Publicly Released CIPS Data Versions.

Summary of Publicly Released CIPS Data Versions. Summary of Publicly Released CIPS Data Versions. Last Updated 13 May 2012 V3.11 - Baseline data version, available before July 2008 All CIPS V3.X data versions followed the data processing flow and data

More information

X-Ray fluorescence and Raman spectroscopy

X-Ray fluorescence and Raman spectroscopy X-Ray fluorescence and Raman spectroscopy Advanced physics laboratory (nd part) 4CFU Catalini Letizia, De Angelis Giulia Vittoria, Piselli Verdiana Abstract In this paper we report about two different

More information

LIGHT SCATTERING THEORY

LIGHT SCATTERING THEORY LIGHT SCATTERING THEORY Laser Diffraction (Static Light Scattering) When a Light beam Strikes a Particle Some of the light is: Diffracted Reflected Refracted Absorbed and Reradiated Reflected Refracted

More information

Global and Regional Retrieval of Aerosol from MODIS

Global and Regional Retrieval of Aerosol from MODIS Global and Regional Retrieval of Aerosol from MODIS Why study aerosols? CLIMATE VISIBILITY Presented to UMBC/NESDIS June 4, 24 Robert Levy, Lorraine Remer, Yoram Kaufman, Allen Chu, Russ Dickerson modis-atmos.gsfc.nasa.gov

More information

Polarization of the Radiation Reflected and Transmitted by the Earth's Atmosphere

Polarization of the Radiation Reflected and Transmitted by the Earth's Atmosphere Polarization of the Radiation Reflected and Transmitted by the Earth's Atmosphere G. N. Plass and G. W. Kattawar The polarization of the reflected and transmitted radiation is calculated for a realistic

More information

430g Dimensions. 102mm x 84mm x 59mm Detector nm Pixels 3648 Pixel size. 8μm x 200μm Pixel well depth

430g Dimensions. 102mm x 84mm x 59mm Detector nm Pixels 3648 Pixel size. 8μm x 200μm Pixel well depth Weigth 430g Dimensions 102mm x 84mm x 59mm Detector Toshiba TCD1304DG linear array Detector range 200-1200nm Pixels 3648 Pixel size 8μm x 200μm Pixel well depth 100,000 electrons Signal-to-noise ratio

More information

1. INTRODUCTION 2. OBSCURANTS PENETRATION

1. INTRODUCTION 2. OBSCURANTS PENETRATION Characterization of the OPAL Obscurant Penetrating LiDAR in various Degraded Visual Environments Evan Trickey *, Philip Church **, Xiaoying Cao *** Neptec Design Group, 302 Legget Drive, Kanata, Ontario,

More information

ON-LINE MONITORING OF FOOD PROCESSES USING SUBSURFACE LASER SCATTERING

ON-LINE MONITORING OF FOOD PROCESSES USING SUBSURFACE LASER SCATTERING ON-LINE MONITORING OF FOOD PROCESSES USING SUBSURFACE LASER SCATTERING Jens Michael Carstensen Assoc. Prof. DTU Informatics (CTO Videometer A/S) Coworkers: Flemming Møller, Danisco A/S Jeppe Revall Frisvad,

More information

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION A Thesis by JULIE MARIE SLANKER Submitted to the Office of Graduate Studies

More information

ISTC Reports. Development of Refraction Index Sensors for in situ Monitoring of Machine Cutting Fluids

ISTC Reports. Development of Refraction Index Sensors for in situ Monitoring of Machine Cutting Fluids ISTC Reports Illinois Sustainable Technology Center Development of Refraction Index Sensors for in situ Monitoring of Machine Cutting Fluids Benjamin E. Newell Ty A. Newell Newell Instruments, Inc. Urbana,

More information

Received 15 August 2007; revised 9 October 2007; accepted 10 October 2007; posted 11 October 2007 (Doc. ID 86452); published 19 December 2007

Received 15 August 2007; revised 9 October 2007; accepted 10 October 2007; posted 11 October 2007 (Doc. ID 86452); published 19 December 2007 This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Determination of the particulate extinction-coeff icient

More information

LIDORT family of Radiative Transfer Models Applications to the TEMPO Project

LIDORT family of Radiative Transfer Models Applications to the TEMPO Project LIDORT family of Radiative Transfer Models Applications to the TEMPO Project Robert Spurr, RT Solutions Inc. 9 Channing Street, Cambridge, Mass. First TEMPO Science Team Meeting Harvard-Smithsonian CfA,

More information

1. Particle Scattering. Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes

1. Particle Scattering. Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes 1. Particle Scattering Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes Generally gas and particles do not scatter isotropically. The phase function, scattering efficiency, and single scattering

More information

EARLINET Single Calculus Chain - general presentation methodology and strategy

EARLINET Single Calculus Chain - general presentation methodology and strategy Manuscript prepared for Atmos. Meas. Tech. with version 5.0 of the L A TEX class copernicus.cls. Date: 20 March 2015 EARLINET Single Calculus Chain - general presentation methodology and strategy Giuseppe

More information

Single Photon Interference

Single Photon Interference December 19, 2006 D. Lancia P. McCarthy Classical Interference Intensity Distribution Overview Quantum Mechanical Interference Probability Distribution Which Path? The Effects of Making a Measurement Wave-Particle

More information

Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time

Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time By Allen M. Cary, Jeffrey L. Guttman, Razvan Chirita, Derrick W. Peterman, Photon Inc A new instrument design allows the M

More information

Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo

Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo Damien Josset, Jacques Pelon, Anne Garnier, Yongxiang Hu, Mark Vaughan, Peng-Wang Zhai,

More information

Algorithm development for aerosol retrieval and its validation based on combined use of polarization and radiance measurements

Algorithm development for aerosol retrieval and its validation based on combined use of polarization and radiance measurements Algorithm development for aerosol retrieval and its validation based on combined use of polarization and radiance measurements I. Sano, and CI team CIs : S. Mukai, M. Nakata, B. Holben, O. Dubovik, A.

More information

GRASP Algorithm: Retrieval of the detailed properties of atmospheric aerosol from PARASOL and other sensors

GRASP Algorithm: Retrieval of the detailed properties of atmospheric aerosol from PARASOL and other sensors GRASP Algorithm: Retrieval of the detailed properties of atmospheric aerosol from PARASOL and other sensors Oleg Dubovik (University of Lille-1, CNRS, France) GRASP team: P. Litvinov 1,T. Lapyonok 1, F.

More information

Femtosecond Single Shot Autocorrelator. Model ASF-20 INSTRUCTION MANUAL

Femtosecond Single Shot Autocorrelator. Model ASF-20 INSTRUCTION MANUAL 1 Femtosecond Single Shot Autocorrelator Model ASF-20 INSTRUCTION MANUAL 2 The Single Shot Autocorrelator (SSA) Model ASF-20 was designed to monitor the pulsewidth of both oscillators and amplifiers of

More information

Ocean Optics Inversion Algorithm

Ocean Optics Inversion Algorithm Ocean Optics Inversion Algorithm N. J. McCormick 1 and Eric Rehm 2 1 University of Washington Department of Mechanical Engineering Seattle, WA 98195-26 mccor@u.washington.edu 2 University of Washington

More information

Lidar System Design For Automotive Industrial Military

Lidar System Design For Automotive Industrial Military We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with lidar system design

More information

Neusiedler See project

Neusiedler See project Young Authors Paper Analysis of ALS data and products in the Neusiedler See project Maja Bitenc Objectives Technology of ALS Project Neusiedler See. Analyse of DTM quality Analyse of intensity Conclusion

More information

Spectrophotometric Methods of Refractive Indices Measurement

Spectrophotometric Methods of Refractive Indices Measurement Application Note Glass, ceramics, optics Spectrophotometric Methods of Refractive Indices Measurement Measuring the refractive index of single crystal optical materials using two methods Authors N.S. Kozlova

More information

Using LabVIEW in Instrumentation and Control Course

Using LabVIEW in Instrumentation and Control Course Session 1559 Using LabVIEW in Instrumentation and Control Course Chong Chen Department of Engineering Technology and Industrial Studies Middle Tennessee State University Murfreesboro, TN 37132 Abstract

More information

Laboratory 6: Light and the Laser

Laboratory 6: Light and the Laser Laboratory 6: Light and the Laser WARNING NEVER LOOK DIRECTLY AT LASER LIGHT Index of Refraction: Snell's Law 1. Read the section on physical optics in some introductory physics text. 2. Set the semicircular

More information

Advanced Processing Techniques and Classification of Full-waveform Airborne Laser...

Advanced Processing Techniques and Classification of Full-waveform Airborne Laser... f j y = f( x) = f ( x) n j= 1 j Advanced Processing Techniques and Classification of Full-waveform Airborne Laser... 89 A summary of the proposed methods is presented below: Stilla et al. propose a method

More information

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference Effects 6.2 Two-Slit Thin film is a general property of waves. A condition for is that the wave source is coherent. between two waves gives characteristic patterns due to constructive and destructive.

More information