Three-dimensional Proxies for Hand-drawn Characters

Size: px
Start display at page:

Download "Three-dimensional Proxies for Hand-drawn Characters"

Transcription

1 Three-dimensional Proxies for Hand-drawn Characters 1 Eakta Jain 1 Yaser Sheikh 2 Moshe Mahler 1,2 Jessica Hodgins 1 Carnegie Mellon University 2 Disney Research Pittsburgh 1

2 Hand-drawn animation 3D CG animation 2

3 Hand-drawn animation 3D CG animation 2

4 Differences between hand animation and computer animation Hand animator s workdesk 3

5 Differences between hand animation and computer animation Hand animator s workdesk 3D animation software 3

6 Input 4

7 Input 4

8 5

9 5

10 Hand-drawn character 3D proxy 6

11 Geometry Motion Hand-drawn character 3D proxy 6

12 Challenge: Inferring third dimension Possible 3D points 2D points Camera center Image plane 7

13 Challenge: Composite motion ambiguity 8

14 Challenge: Composite motion ambiguity 8

15 Challenge: Composite motion ambiguity Character turns, camera in place 8

16 Challenge: Composite motion ambiguity Character turns, camera in place Camera turns, character in place 8

17 Challenge: Artistic license Frame #1 Frame #40 9

18 Challenge: Artistic license Frame #1 Frame #40 9

19 Challenge: Artistic license Frame #1 Frame #40 9

20 Challenge: Artistic license Frame #1 Frame #40 Overlaid 9

21 Challenge: Artistic license Frame #1 Frame #40 Overlaid 9

22 Three-dimensional proxies with different levels of detail Single points (3D markers) 3D Polygonal shapes 10 Joint hierarchy based skeleton

23 Three-dimensional proxies with different levels of detail Single points (3D markers) 3D Polygonal shapes 10 Joint hierarchy based skeleton

24 Past work (e)(b) Warped model Final in frame 3-D model (c)(f)edges model art (e) Warped model et al. Li et al.(f) Final fram Petrovic et al.(d) Edges indavis Correa et al. ating one texture mapped frame. Figure 2: The process of creating one texture mapped frame. (2003) (2000) (1998) (2003) (d)hand-drawn Edges in artart (a) Figure 14: Motion of walking cartoon character retargeted to 3 model Figure Tracking Baloo s dance and retargeting a flower. used later as the input to the warp. Sectio edges can be usedexisting later asproduction the input topipeline the warp. Section Our method fitssafely into the for11: cel ani-of4.4 edges can beto safely c Disney shows[6, how to specify theand edges 2-D drawing that correspond mation 18]. Steps (a) (f) on arethe stages in the current digital shows how to specify the edges on the 2-D drawing that corres to the edges foundwith on the model. stage between them. We production process, the 3-D ink-and-paint to the edges found on the 3-D model. are offering, as an alternative to the constant colors of the ink-andpaint stage, a process that applies complex textures to the drawings. 4.1 Silhouette Detection 4.1 Silhouette Detection The problem of applying textures to hand-drawn artwork poses a challenge: the line must be interpreted somevisible kind ofsilhouette shape. Figure a 15:scheme Motion of jumping character retargeted to 3Dsilho mode In this section we art describe a scheme for as finding In this section we describe for finding visible 12: acquire Broom Retargeting Sequence. (The source is not shown Given set of black paper, the computer must and aborder edges lines in a on 3-Dwhite model represented by afigure polygon mesh. and edges inin a 3-D model represented by a polygon m here It is the famous sequence from the border Sorcerer s Apprentice 9, we show some of the key poses. Disney s at These least a features primitiveare model 3-D formstoconveyed by the handart. likelyfortothe correspond features in Fantasia) the These features are likely to correspond to features in the Figure 14 shows some final rendered frames in the retarget This information necessary if we are to 3-D effects forthe sequence. Again, please consult for more information. drawn line art; is such correspondences areprovide the primary input to drawn line art; such correspondences are the thevideo primary input In the next example, we capture a cartoon character jumping in single line running through the character, that represents the overthewarp texture such as self-occlusion and foreshortening. (See, for we describe in Section 5. We also allow thealluser to specify warp we describe in Section We for also allow theanduser way that is 5. impossible an average human, retargetto ontosp t force and direction of each drawing. Generally, before drawing same 3D model. Again, contour capture is used to estimate the m example, the difference in occlusion betweenonfigures and 2ebut oranimator the2b full character, an in the line-of-action helpdrawing them directly on the 3-D model, model markers by drawing them directly the 3-D model, it draws model markerstoby tion parameters. Figure 15 shows some frames from the retarget determine the position of the character. By simply changing the thewould foreshortening shown to in have Figure Note all thatmodel withline-of-action the constant 11 sequence. be cumbersome to7.) specify marker curves would be cumbersome to have to specify all model marker c making it more curved, sloped or arched in a difthe video shows all results for the different target media. Our e ferenteffects direction the essence of the drawing can be changed. colors of thethus, traditional ink-and-paintconstruct stage, these 3-D areentire this way. we automatically model markers for all this way. Thus, we automatically markers f periments in cartoonconstruct capture providemodel an opportunity to test the ca We experiment with using the line-of-action as the source in order Johnston (2002) Bregler et al. (2002)

25 User Input Virtual markers Limb bounding boxes Color coded body parts 12

26 User Input Virtual markers Limb bounding boxes Color coded body parts Motion capture segment with similar depth information, time-warped via Dynamic Time Warping 12

27 Camera Estimation 3D points Motion capture poses Estimated camera Image plane Hand drawings

28 3D points Back-projected rays 2D points z-depth Image plane Estimated camera 14

29 arg min(e a (x)+e m (x)+e s (x)) x 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

30 arg min(e a (x)+e m (x)+e s (x)) x input-matching 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

31 arg min(e a (x)+e m (x)+e s (x)) x input-matching depth prior 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

32 arg min(e a (x)+e m (x)+e s (x)) x input-matching depth prior smoothing term 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

33 arg min(e a (x)+e m (x)+e s (x)) x input-matching depth prior smoothing term Linear system: least squares solution 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

34 arg min(e a (x)+e m (x)+e s (x)) x input-matching depth prior smoothing term Linear system: least squares solution 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

35 arg min(e a (x)+e m (x)+e s (x)) x input-matching depth prior smoothing term Linear system: least squares solution 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

36 arg min(e a (x)+e m (x)+e s (x)) x input-matching depth prior smoothing term Linear system: least squares solution 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

37 arg min(e a (x)+e m (x)+e s (x)) x input-matching depth prior smoothing term Linear system: least squares solution 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

38 arg min(e a (x)+e m (x)+e s (x)) x input-matching depth prior smoothing term Linear system: least squares solution 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

39 arg min(e a (x)+e m (x)+e s (x)) x input-matching depth prior smoothing term Linear system: least squares solution 3D points 2D points Back-projected rays z-depth Estimated camera Image plane 14

40 Depth compositing Rendered image 15

41 Depth compositing Rendered image Depth map for rendered image 15

42 Depth compositing Rendered image Depth map for rendered image Depth map for hand drawing 15

43 Depth compositing Rendered image Depth map for rendered image Depth map for hand drawing Composited frame 15

44 16

45 16

46 17

47 17

48 18

49 18

50 19

51 20

52 21

53 22

54 22

55 23

56 23

57 24

58 24

59 25

60 25

61 Summary 3D Polygonal shapes 26

62 Summary 3D Polygonal shapes 26

63 Summary 3D Polygonal shapes 3D Joint hierarchy skeleton 26

64 Summary 3D Polygonal shapes 3D Joint hierarchy skeleton 26 Hand animator modifies physical simulation?

65 Summary 3D Polygonal shapes 3D Joint hierarchy skeleton 26 Hand animator modifies physical simulation? Learn cartoon physics?

66 Extra Slides 27

67 Camera Estimation Camera rotation and translation ρ(i) =(θ x (i),θ y (i),θ z (i),t x (i),t y (i),t z (i)) T ρ (i) = arg min(w 1 e g + w 2 e l + w 3 e o + w 4 e s ) ρ 28

68 Camera Estimation Camera rotation and translation ρ(i) =(θ x (i),θ y (i),θ z (i),t x (i),t y (i),t z (i)) T ρ (i) = arg min(w 1 e g + w 2 e l + w 3 e o + w 4 e s ) ρ Geometric projection error e g = K/2 t= K/2 Hand drawings x i+t x proj i+t where x proj i+t = M i Xi+t Motion capture poses 28

69 arg min x (λ a e a (x)+λ m e m (x)+λ s e s (x)) input-matching motion prior smoothing term e a = x ij x proj ij x proj ij = M i X w ij x ij M i X w ij =0 CM i M = X w ij Y w ij Z w ij 1 m T 1 m T 2 =0 m T 3 29

70 arg min x (λ a e a (x)+λ m e m (x)+λ s e s (x)) input-matching motion prior smoothing term e a = x ij x proj ij e m = m T 3 X w ij mt 3 X ij x proj ij = M i X w ij m T 3 X w ij = mt 3 X ij x ij M i X w ij =0 CM i M = X w ij Y w ij Z w ij 1 m T 1 m T 2 =0 m T 3 29

71 arg min x (λ a e a (x)+λ m e m (x)+λ s e s (x)) input-matching motion prior smoothing term e a = x ij x proj ij e m = m T 3 X w ij mt 3 X ij x proj ij = M i X w ij m T 3 X w ij = mt 3 X ij x ij M i X w ij =0 CM i M = X w ij Y w ij Z w ij 1 m T 1 m T 2 m T 3 =0 e s = X w ij Xw (i+1)j I I X w ij X w (i+1)j = 0 29

72 arg min x (λ a e a (x)+λ m e m (x)+λ s e s (x)) input-matching motion prior smoothing term e a = x ij x proj ij e m = m T 3 X w ij mt 3 X ij x proj ij = M i X w ij m T 3 X w ij = mt 3 X ij x ij M i X w ij =0 CM i M = X w ij Y w ij Z w ij 1 m T 1 m T 2 m T 3 =0 e s = X w ij Xw (i+1)j I I X w ij X w (i+1)j WA i X w i = b i = 0 29

73 30

74 30

D animation. Advantages of 3-D3. Advantages of 2-D2. Related work. Key idea. Applications of Computer Graphics in Cel Animation.

D animation. Advantages of 3-D3. Advantages of 2-D2. Related work. Key idea. Applications of Computer Graphics in Cel Animation. Applications of Computer Graphics in Cel Animation 3-D D and 2-D 2 D animation Adam Finkelstein Princeton University Homer 3-D3 Homer 2-D2 Advantages of 3-D3 Complex lighting and shading Reuse from scene

More information

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

Animating Non-Human Characters using Human Motion Capture Data

Animating Non-Human Characters using Human Motion Capture Data Animating Non-Human Characters using Human Motion Capture Data Laurel Bancroft 1 and Jessica Hodgins 2 1 College of Fine Arts, Carngie Mellon University, lbancrof@andrew.cmu.edu 2 Computer Science, Carnegie

More information

Data-driven Approaches to Simulation (Motion Capture)

Data-driven Approaches to Simulation (Motion Capture) 1 Data-driven Approaches to Simulation (Motion Capture) Ting-Chun Sun tingchun.sun@usc.edu Preface The lecture slides [1] are made by Jessica Hodgins [2], who is a professor in Computer Science Department

More information

Real-Time Non- Photorealistic Rendering

Real-Time Non- Photorealistic Rendering Real-Time Non- Photorealistic Rendering Presented by: Qing Hu LIAO SOCS, McGill Feb 1, 2005 Index Introduction Motivation Appel s Algorithm Improving Schema Rendering Result Economy of line A great deal

More information

Graphics and Interaction Rendering pipeline & object modelling

Graphics and Interaction Rendering pipeline & object modelling 433-324 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

2D & 3D Animation NBAY Donald P. Greenberg March 21, 2016 Lecture 7

2D & 3D Animation NBAY Donald P. Greenberg March 21, 2016 Lecture 7 2D & 3D Animation NBAY 6120 Donald P. Greenberg March 21, 2016 Lecture 7 2D Cel Animation Cartoon Animation What is cartoon animation? A sequence of drawings which, when viewed in rapid succession, create

More information

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~elf Instructor: Eugene Fiume Office: BA 5266 Phone: 416 978 5472 (not a reliable way) Email:

More information

Thiruvarangan Ramaraj CS525 Graphics & Scientific Visualization Spring 2007, Presentation I, February 28 th 2007, 14:10 15:00. Topic (Research Paper):

Thiruvarangan Ramaraj CS525 Graphics & Scientific Visualization Spring 2007, Presentation I, February 28 th 2007, 14:10 15:00. Topic (Research Paper): Thiruvarangan Ramaraj CS525 Graphics & Scientific Visualization Spring 2007, Presentation I, February 28 th 2007, 14:10 15:00 Topic (Research Paper): Jinxian Chai and Jessica K. Hodgins, Performance Animation

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 21 KEYFRAME ANIMATION 1 Lecture Overview Review of last class Next week Quiz #2 Project presentations rubric Today Keyframe Animation Programming Assignment #3 solution

More information

Non-Photo Realistic Rendering. Jian Huang

Non-Photo Realistic Rendering. Jian Huang Non-Photo Realistic Rendering Jian Huang P and NP Photo realistic has been stated as the goal of graphics during the course of the semester However, there are cases where certain types of non-photo realistic

More information

Chapter 9 Animation System

Chapter 9 Animation System Chapter 9 Animation System 9.1 Types of Character Animation Cel Animation Cel animation is a specific type of traditional animation. A cel is a transparent sheet of plastic on which images can be painted

More information

COMP30019 Graphics and Interaction Rendering pipeline & object modelling

COMP30019 Graphics and Interaction Rendering pipeline & object modelling COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

Lecture outline. COMP30019 Graphics and Interaction Rendering pipeline & object modelling. Introduction to modelling

Lecture outline. COMP30019 Graphics and Interaction Rendering pipeline & object modelling. Introduction to modelling Lecture outline COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Introduction to Modelling Polygonal geometry The rendering

More information

SheetAnim - From Model Sheets to 2D Hand-drawn Character Animation

SheetAnim - From Model Sheets to 2D Hand-drawn Character Animation SheetAnim - From Model Sheets to 2D Hand-drawn Character Animation Heena Gupta and Parag Chaudhuri Department of Computer Science and Engineering, IIT Bombay, Mumbai, India Keywords: Abstract: 2D Character

More information

3D model-based human face modeling

3D model-based human face modeling 3D model-based human face modeling André Gagalowicz Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex E-Mail : Andre.Gagalowicz@inria.fr II-I - INTRODUCTION II-II FIRST STEP

More information

Animation COM3404. Richard Everson. School of Engineering, Computer Science and Mathematics University of Exeter

Animation COM3404. Richard Everson. School of Engineering, Computer Science and Mathematics University of Exeter Animation COM3404 Richard Everson School of Engineering, Computer Science and Mathematics University of Exeter R.M.Everson@exeter.ac.uk http://www.secamlocal.ex.ac.uk/studyres/com304 Richard Everson Animation

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 32 Cornell CS4620 Fall 2015 1 What is animation? Modeling = specifying shape using all the tools we ve seen: hierarchies, meshes, curved surfaces Animation = specifying shape

More information

Topics in Computer Animation

Topics in Computer Animation Topics in Computer Animation Animation Techniques Artist Driven animation The artist draws some frames (keyframing) Usually in 2D The computer generates intermediate frames using interpolation The old

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

SE Mock Online Retest 2-CG * Required

SE Mock Online Retest 2-CG * Required SE Mock Online Retest 2-CG * Required 1. Email address * 2. Name Of Student * 3. Roll No * 4. Password * Untitled Section 5. 10. A transformation that slants the shape of objects is called the? shear transformation

More information

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about Image-Based Modeling and Rendering Image-Based Modeling and Rendering MIT EECS 6.837 Frédo Durand and Seth Teller 1 Some slides courtesy of Leonard McMillan, Wojciech Matusik, Byong Mok Oh, Max Chen 2

More information

Integrating Physics into a Modern Game Engine. Object Collision. Various types of collision for an object:

Integrating Physics into a Modern Game Engine. Object Collision. Various types of collision for an object: Integrating Physics into a Modern Game Engine Object Collision Various types of collision for an object: Sphere Bounding box Convex hull based on rendered model List of convex hull(s) based on special

More information

Animation & Rendering

Animation & Rendering 7M836 Animation & Rendering Introduction, color, raster graphics, modeling, transformations Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl 1 Purpose Understand 3D computer graphics

More information

NETWORK ANIMATION SOLUTION. What s New?

NETWORK ANIMATION SOLUTION. What s New? NETWORK ANIMATION SOLUTION What s New? What s New in Harmony 9? New Pencil Line Technology In Harmony 9, Toon Boom has re-engineered its vector technology to deliver a redesigned Pencil Line Technology

More information

Keyframe Animation. Animation. Computer Animation. Computer Animation. Animation vs Modeling. Animation vs Modeling

Keyframe Animation. Animation. Computer Animation. Computer Animation. Animation vs Modeling. Animation vs Modeling CSCI 420 Computer Graphics Lecture 19 Keyframe Animation Traditional Animation Keyframe Animation [Angel Ch. 9] Animation "There is no particular mystery in animation...it's really very simple, and like

More information

animation projects in digital art animation 2009 fabio pellacini 1

animation projects in digital art animation 2009 fabio pellacini 1 animation projects in digital art animation 2009 fabio pellacini 1 animation shape specification as a function of time projects in digital art animation 2009 fabio pellacini 2 how animation works? flip

More information

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation CS 352: Computer Graphics Hierarchical Graphics, Modeling, And Animation Chapter 9-2 Overview Modeling Animation Data structures for interactive graphics CSG-tree BSP-tree Quadtrees and Octrees Visibility

More information

3D Imaging from Video and Planar Radiography

3D Imaging from Video and Planar Radiography 3D Imaging from Video and Planar Radiography Julien Pansiot and Edmond Boyer Morpheo, Inria Grenoble Rhône-Alpes, France International Conference on Medical Image Computing and Computer Assisted Intervention

More information

Art? 2 Computer Graphics 2 The Stages of Production 4 The CG Production Workflow 8 Core Concepts 10 Basic Film Concepts 21 Summary 26

Art? 2 Computer Graphics 2 The Stages of Production 4 The CG Production Workflow 8 Core Concepts 10 Basic Film Concepts 21 Summary 26 Contents Introduction xvii Chapter 1 Introduction to Computer Graphics and 3D 1 Art? 2 Computer Graphics 2 The Stages of Production 4 The CG Production Workflow 8 Core Concepts 10 Basic Film Concepts 21

More information

Model-Based Stereo. Chapter Motivation. The modeling system described in Chapter 5 allows the user to create a basic model of a

Model-Based Stereo. Chapter Motivation. The modeling system described in Chapter 5 allows the user to create a basic model of a 96 Chapter 7 Model-Based Stereo 7.1 Motivation The modeling system described in Chapter 5 allows the user to create a basic model of a scene, but in general the scene will have additional geometric detail

More information

Bayesian Reconstruction of 3D Human Motion from Single-Camera Video

Bayesian Reconstruction of 3D Human Motion from Single-Camera Video Bayesian Reconstruction of 3D Human Motion from Single-Camera Video Nicholas R. Howe Cornell University Michael E. Leventon MIT William T. Freeman Mitsubishi Electric Research Labs Problem Background 2D

More information

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Clipping 1 Objectives Clipping lines First of implementation algorithms Clipping polygons (next lecture) Focus on pipeline plus a few classic algorithms 2 Clipping 2D against clipping window 3D against

More information

CGDD 4113 Final Review. Chapter 7: Maya Shading and Texturing

CGDD 4113 Final Review. Chapter 7: Maya Shading and Texturing CGDD 4113 Final Review Chapter 7: Maya Shading and Texturing Maya topics covered in this chapter include the following: Shader Types Shader Attributes Texturing the Axe Life, Love, Textures and Surfaces

More information

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials)

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials) Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 16 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 3 milestone due May 29 Should already be well on way Contact us for difficulties

More information

3D Production Pipeline

3D Production Pipeline Overview 3D Production Pipeline Story Character Design Art Direction Storyboarding Vocal Tracks 3D Animatics Modeling Animation Rendering Effects Compositing Basics : OpenGL, transformation Modeling :

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

How to create video effects

How to create video effects Adobe After Affects CC Guide How to create video effects After Effects includes many innovative and expressive video effects, which you apply to layers to add or modify characteristics of still images

More information

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Computer Animation Fundamentals Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Lecture 21 6.837 Fall 2001 Conventional Animation Draw each frame of the animation great control

More information

animation computer graphics animation 2009 fabio pellacini 1

animation computer graphics animation 2009 fabio pellacini 1 animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics Preview CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles of traditional

More information

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection Lesson 10 Transformational Designs Creating Designs M.C. Escher was an artist that made remarkable pieces of art using geometric transformations. He was first inspired by the patterns in mosaic tiles.

More information

Articulated Pose Estimation with Flexible Mixtures-of-Parts

Articulated Pose Estimation with Flexible Mixtures-of-Parts Articulated Pose Estimation with Flexible Mixtures-of-Parts PRESENTATION: JESSE DAVIS CS 3710 VISUAL RECOGNITION Outline Modeling Special Cases Inferences Learning Experiments Problem and Relevance Problem:

More information

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation Computer Animation Aitor Rovira March 2010 Human body animation Based on slides by Marco Gillies Human Body Animation Skeletal Animation Skeletal Animation (FK, IK) Motion Capture Motion Editing (retargeting,

More information

Computer Graphics Fundamentals. Jon Macey

Computer Graphics Fundamentals. Jon Macey Computer Graphics Fundamentals Jon Macey jmacey@bournemouth.ac.uk http://nccastaff.bournemouth.ac.uk/jmacey/ 1 1 What is CG Fundamentals Looking at how Images (and Animations) are actually produced in

More information

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal Overview Pipeline implementation I Preliminaries Clipping Line clipping Hidden Surface removal Overview At end of the geometric pipeline, vertices have been assembled into primitives Must clip out primitives

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Video based Animation Synthesis with the Essential Graph Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Goal Given a set of 4D models, how to generate realistic motion from user specified

More information

CSM Scrolling. An acceleration technique for the rendering of cascaded shadow maps

CSM Scrolling. An acceleration technique for the rendering of cascaded shadow maps CSM Scrolling An acceleration technique for the rendering of cascaded shadow maps CSM Scrolling by: Mike Day CSM Caching by: Al Hastings Who am I? Mike Acton mday@insomniacgames.com afh@insomniacgames.com

More information

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations Multimedia Systems 03 Vector Graphics 2D and 3D Graphics, Transformations Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures

More information

3D Human Motion Analysis and Manifolds

3D Human Motion Analysis and Manifolds D E P A R T M E N T O F C O M P U T E R S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N 3D Human Motion Analysis and Manifolds Kim Steenstrup Pedersen DIKU Image group and E-Science center Motivation

More information

CS 4620 Midterm, March 21, 2017

CS 4620 Midterm, March 21, 2017 CS 460 Midterm, March 1, 017 This 90-minute exam has 4 questions worth a total of 100 points. Use the back of the pages if you need more space. Academic Integrity is expected of all students of Cornell

More information

Animation Charts. What is in the Animation Charts Package? Flying Cycle. Throw Side View. Jump. Side View. Sequence Layout

Animation Charts. What is in the Animation Charts Package? Flying Cycle. Throw Side View. Jump. Side View. Sequence Layout Toon Boom Animation provides several animation charts designed to help you animate different characters. The Animation Chart Package contains main actions and animation such as, walking, flying, weight

More information

COMPUTER GRAPHICS. Computer Multimedia Systems Department Prepared By Dr Jamal Zraqou

COMPUTER GRAPHICS. Computer Multimedia Systems Department Prepared By Dr Jamal Zraqou COMPUTER GRAPHICS Computer Multimedia Systems Department Prepared By Dr Jamal Zraqou Introduction What is Computer Graphics? Applications Graphics packages What is Computer Graphics? Creation, Manipulation

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

From Art to Engine with Model I/O

From Art to Engine with Model I/O Session Graphics and Games #WWDC17 From Art to Engine with Model I/O 610 Nick Porcino, Game Technologies Engineer Nicholas Blasingame, Game Technologies Engineer 2017 Apple Inc. All rights reserved. Redistribution

More information

Kinematics & Motion Capture

Kinematics & Motion Capture Lecture 27: Kinematics & Motion Capture Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Forward Kinematics (Slides with James O Brien) Forward Kinematics Articulated skeleton Topology

More information

The Line of Action: an Intuitive Interface for Expressive Character Posing. Martin Guay, Marie-Paule Cani, Rémi Ronfard

The Line of Action: an Intuitive Interface for Expressive Character Posing. Martin Guay, Marie-Paule Cani, Rémi Ronfard The Line of Action: an Intuitive Interface for Expressive Character Posing Martin Guay, Marie-Paule Cani, Rémi Ronfard LJK, INRIA, Université de Grenoble [S.Lee and J. Buscema, Drawing Comics the Marvel

More information

Geometric Features for Non-photorealistiic Rendering

Geometric Features for Non-photorealistiic Rendering CS348a: Computer Graphics Handout # 6 Geometric Modeling and Processing Stanford University Monday, 27 February 2017 Homework #4: Due Date: Mesh simplification and expressive rendering [95 points] Wednesday,

More information

CS 231A Computer Vision (Winter 2014) Problem Set 3

CS 231A Computer Vision (Winter 2014) Problem Set 3 CS 231A Computer Vision (Winter 2014) Problem Set 3 Due: Feb. 18 th, 2015 (11:59pm) 1 Single Object Recognition Via SIFT (45 points) In his 2004 SIFT paper, David Lowe demonstrates impressive object recognition

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University Character Motion Hierarchical Modeling Character Animation Motion Editing 1 Hierarchical Modeling Connected primitives 2 3D Example: A robot arm

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

EF432. Introduction to spagetti and meatballs

EF432. Introduction to spagetti and meatballs EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/fall2015 Instructor: Karan

More information

Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular Video Sequences

Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular Video Sequences Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular Video Sequences Presentation of the thesis work of: Hedvig Sidenbladh, KTH Thesis opponent: Prof. Bill Freeman, MIT Thesis supervisors

More information

Computer Graphics Disciplines. Grading. Textbooks. Course Overview. Assignment Policies. Computer Graphics Goals I

Computer Graphics Disciplines. Grading. Textbooks. Course Overview. Assignment Policies. Computer Graphics Goals I CSCI 480 Computer Graphics Lecture 1 Course Overview January 10, 2011 Jernej Barbic University of Southern California Administrative Issues Modeling Animation Rendering OpenGL Programming Course Information

More information

Articulated Characters

Articulated Characters Articulated Characters Skeleton A skeleton is a framework of rigid body bones connected by articulated joints Used as an (invisible?) armature to position and orient geometry (usually surface triangles)

More information

Cybercity Walker - Layered Morphing Method -

Cybercity Walker - Layered Morphing Method - Cybercity Walker - Layered Morphing Method - Takaaki Endo 1), Akihiro Katayama 1), Hideyuki Tamura 1), Michitaka Hirose 2), and Tomohiro Tanikawa 2) 1) Mixed Reality Systems Laboratory Inc. 6-145 Hanasakicho,

More information

Textureless Layers CMU-RI-TR Qifa Ke, Simon Baker, and Takeo Kanade

Textureless Layers CMU-RI-TR Qifa Ke, Simon Baker, and Takeo Kanade Textureless Layers CMU-RI-TR-04-17 Qifa Ke, Simon Baker, and Takeo Kanade The Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 Abstract Layers are one of the most well

More information

CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling

CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 4 due tomorrow Project

More information

Three-Dimensional Computer Animation

Three-Dimensional Computer Animation Three-Dimensional Computer Animation Visual Imaging in the Electronic Age Donald P. Greenberg November 29, 2016 Lecture #27 Why do we need an animation production pipeline? Animated full-length features

More information

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 18 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir 3D Graphics Pipeline Modeling (Creating 3D Geometry) Course Outline Rendering (Creating, shading

More information

IMAGE-BASED RENDERING

IMAGE-BASED RENDERING IMAGE-BASED RENDERING 1. What is Image-Based Rendering? - The synthesis of new views of a scene from pre-recorded pictures.!"$#% "'&( )*+,-/.). #0 1 ' 2"&43+5+, 2. Why? (1) We really enjoy visual magic!

More information

There we are; that's got the 3D screen and mouse sorted out.

There we are; that's got the 3D screen and mouse sorted out. Introduction to 3D To all intents and purposes, the world we live in is three dimensional. Therefore, if we want to construct a realistic computer model of it, the model should be three dimensional as

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

CSCI 4972/6963 Advanced Computer Graphics Quiz 2 Tuesday April 17, 2007 noon-1:30pm

CSCI 4972/6963 Advanced Computer Graphics Quiz 2 Tuesday April 17, 2007 noon-1:30pm CSCI 4972/6963 Advanced Computer Graphics Quiz 2 Tuesday April 17, 2007 noon-1:30pm Name: RCS username: This quiz is closed book & closed notes except for one 8.5x11 (double-sided) sheet of notes. Please

More information

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2 Visualisatie BMT Fundamental algorithms Arjan Kok a.j.f.kok@tue.nl Lecture overview Classification of algorithms Scalar algorithms Vector algorithms Tensor algorithms Modeling algorithms 1 2 Visualization

More information

Digitization of 3D Objects for Virtual Museum

Digitization of 3D Objects for Virtual Museum Digitization of 3D Objects for Virtual Museum Yi-Ping Hung 1, 2 and Chu-Song Chen 2 1 Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan 2 Institute of

More information

What is Computer Vision?

What is Computer Vision? Perceptual Grouping in Computer Vision Gérard Medioni University of Southern California What is Computer Vision? Computer Vision Attempt to emulate Human Visual System Perceive visual stimuli with cameras

More information

3D from Images - Assisted Modeling, Photogrammetry. Marco Callieri ISTI-CNR, Pisa, Italy

3D from Images - Assisted Modeling, Photogrammetry. Marco Callieri ISTI-CNR, Pisa, Italy 3D from Images - Assisted Modeling, Photogrammetry Marco Callieri ISTI-CNR, Pisa, Italy 3D from Photos Our not-so-secret dream: obtain a reliable and precise 3D from simple photos Why? Easier, cheaper

More information

3D Object Model Acquisition from Silhouettes

3D Object Model Acquisition from Silhouettes 4th International Symposium on Computing and Multimedia Studies 1 3D Object Model Acquisition from Silhouettes Masaaki Iiyama Koh Kakusho Michihiko Minoh Academic Center for Computing and Media Studies

More information

character design pipeline) callum.html

character design pipeline)   callum.html References: http://3d.about.com/od/3d-101-the-basics/tp/introducing-the-computer-graphics- Pipeline.htm (character design pipeline) http://cpapworthpp.blogspot.co.uk/2012/12/animation-production-pipelinecallum.html

More information

3D GRAPHICS. design. animate. render

3D GRAPHICS. design. animate. render 3D GRAPHICS design animate render 3D animation movies Computer Graphics Special effects Computer Graphics Advertising Computer Graphics Games Computer Graphics Simulations & serious games Computer Graphics

More information

Trimmed Surfaces Maya 2013

Trimmed Surfaces Maya 2013 2000-2013 Michael O'Rourke Trimmed Surfaces Maya 2013 Concepts Trimming works only on patches (in Maya, this means NURBS patches) Does not work with polygonal models A trim can look similar to a Boolean

More information

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1 Last update: May 4, 200 Vision CMSC 42: Chapter 24 CMSC 42: Chapter 24 Outline Perception generally Image formation Early vision 2D D Object recognition CMSC 42: Chapter 24 2 Perception generally Stimulus

More information

Animation Charts 4. What is in the Animation Charts 4 Package?

Animation Charts 4. What is in the Animation Charts 4 Package? Toon Boom Animation provides several animation charts designed to help the user animate different actions. The package contains fx animation such as; a smoke cycle, a bubble bursting, and an electric arc.

More information

Motus Unitatis, an Animation Editor

Motus Unitatis, an Animation Editor Motus Unitatis, an Animation Editor Bryan Castillo, Timothy Elmer Purpose The Motus Unitatis Animator Editor allows artists and designers to edit and create short animated clips. With MU, a designer has

More information

Topic 0. Introduction: What Is Computer Graphics? CSC 418/2504: Computer Graphics EF432. Today s Topics. What is Computer Graphics?

Topic 0. Introduction: What Is Computer Graphics? CSC 418/2504: Computer Graphics EF432. Today s Topics. What is Computer Graphics? EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/ Instructors: L0101, W 12-2pm

More information

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) Figure 1: A perspective view of a polyhedron on an infinite plane. Cameras and Perspective Rendering

More information

Dynamic Geometry Processing

Dynamic Geometry Processing Dynamic Geometry Processing EG 2012 Tutorial Will Chang, Hao Li, Niloy Mitra, Mark Pauly, Michael Wand Tutorial: Dynamic Geometry Processing 1 Articulated Global Registration Introduction and Overview

More information

Structured Annotations for 2D-to-3D Modeling

Structured Annotations for 2D-to-3D Modeling Structured Annotations for 2D-to-3D Modeling Yotam Gingold (New York University / JST ERATO) Takeo Igarashi (University of Tokyo / JST ERATO) Denis Zorin (New York University) In this talk, Structured

More information

Graphics Hardware and Display Devices

Graphics Hardware and Display Devices Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

Geometry Regents Lomac Date 3/17 due 3/18 3D: Area and Dissection 9.1R. A point has no measure because a point represents a

Geometry Regents Lomac Date 3/17 due 3/18 3D: Area and Dissection 9.1R. A point has no measure because a point represents a Geometry Regents Lomac 2015-2016 Date 3/17 due 3/18 3D: Area and Dissection Name Per LO: I can define area, find area, and explain dissection it relates to area and volume. DO NOW On the back of this packet

More information