Edge Groups: An Approach to Understanding the Mesh Quality of Marching Methods

Size: px
Start display at page:

Download "Edge Groups: An Approach to Understanding the Mesh Quality of Marching Methods"

Transcription

1 Edge Groups: An Approach to Understanding the Mesh Quality of Marching Methods Carlos A. Dietrich, Carlos Scheidegger João L. D. Comba, Luciana Porcher Nedel, Cláudio T. Silva

2 Triangle Quality of Marching Cubes good Radii ratio (2r/R) bad

3 Triangle Quality of Marching Cubes Mostly good quality triangles. But some very poor quality triangles good bad

4 Triangle Quality of Marching Cubes In this work we propose a way to understand why this happens.

5 Triangle Quality of Marching Cubes Look at each triangle individually Important Observation: Each triangle generated by MC has vertices only over active edges. Therefore, it does not generate arbitrary triangles

6 Triangle Quality of Marching Cubes Look at each triangle individually Important Observation: Each triangle generated by MC has vertices only over active edges. Therefore, it does not generate arbitrary triangles

7 Triangle Quality of Marching Cubes Look at each triangle individually Important Observation: Each triangle generated by MC has vertices only over active edges. Therefore, it does not generate arbitrary triangles

8 Triangle Quality of Marching Cubes Look at each triangle individually Idea Since three active edges define a triangle, we could evaluate all possible triangles generated by such configuration

9 Triangle Quality of Marching Cubes Look at each triangle individually Idea Since three active edges define a triangle, we could evaluate all possible triangles generated by such configuration

10 Triangle Quality of Marching Cubes Look at each triangle individually Bad Good histogram of triangle quality Idea Since three active edges define a triangle, we could evaluate all possible triangles generated by such configuration

11 Triangle Quality of Marching Cubes Several conclusions can be derived Bad histogram of triangle quality Good Interesting Observation This configuration is responsible for the worst triangles of MC!!!

12 Triangle Quality of Marching Cubes Other Questions to answer: How many cases of edge configurations?

13 Triangle Quality of Marching Cubes Other Questions to answer: How many cases of edge configurations? Is it similar to Marching Cubes Cases Enumeration?

14 Triangle Quality of Marching Cubes Other Questions to answer: How many cases of edge configurations? Is it similar to Marching Cubes Cases Enumeration? YES, but at edge level

15 Outline Motivation Edge Groups in Cubic Cells Improving Triangle Quality Based on Edge Groups Results Conclusions

16 Edge Groups in Cubic Cells Counting Cases in MC [Lorensen and Cline 87] 15 cases based on inspection [Nielson et al 2002] 23 cases by rotation only [Banks et al 2004] formal proof using group theory

17 Edge Groups in Cubic Cells Counting Cases in MC [Lorensen and Cline 87] 15 cases based on inspection [Nielson et al 2002] 23 cases by rotation only [Banks et al 2004] formal proof using group theory Counting Cases in Edge Configurations: Edge configuration (e0, e1, e2): 3 different edges of the cube Edge (Symmetry) Group: collection of edge configurations that can be transformed into another by symmetry transformations (e.g. rotations and improper reflections)

18 Edge Groups in Cubic Cells Counting Cases in MC [Lorensen and Cline 87] 15 cases based on inspection [Nielson et al 2002] 23 cases by rotation only [Banks et al 2004] formal proof using group theory Counting Cases in Edge Configurations: Edge configuration (e0, e1, e2): 3 different edges of the cube Edge (Symmetry) Group: collection of edge configurations that can be transformed into another by symmetry transformations (e.g. rotations and improper reflections) (0,5,9) (0,5,11) (0,9,11)

19 Counting Cases in Edge Groups True to the original Marching Cubes paper, we first did it by inspection too How?

20 Edge Groups in the MC table

21 Edge Groups in the MC table

22 Edge Groups in the MC table

23 Edge Groups in the MC table

24 Edge Groups in the MC table

25 Edge Groups in the MC table

26 Edge Groups in the MC table

27 Edge Groups in the MC table

28 Edge Groups in the MC table

29 Edge Groups in the MC table

30 Edge Groups in the MC table

31 Edge Groups in the MC table

32 Edge Groups in the MC table

33 Edge Groups in the MC table

34 Edge Groups proof (paper)

35 8 Edge Groups in Cubic Cells

36 Triangle quality analysis: Worst triangle of case 4 4

37 Triangle quality analysis: Worst triangle of case 6 6

38 Triangle quality analysis: Worst triangle of case 8 8

39 Triangle quality analysis: Best triangle of case 2 2

40 Triangle Quality Analysis: Edge Groups

41 Edge Groups Occurrence 30 datasets

42 Interesting Observation: Edge Group 2 dominates 30 datasets

43 Outline Motivation Edge Groups in Cubic Cells Improving Triangle Quality Based on Edge Groups Results Conclusions

44 Improving Triangle Quality based on Edge Groups Observation 1 : Edge Group 2 generates the worst triangles Changing the MC table Observation 2: Bad triangles when isosurface is parallel to the edge Edge transformations using Macet [Dietrich et al 2009]

45 Improvement 1: Changing MC Table

46 Improvement 1: Changing MC Table

47 Improvement 2: Edge Transformations using Macet Macet [Dietrich et al 2009] Edge transformations alter positions of grid points in MC Gradient Transformation Tangent Transformation

48 Improvement 2: Edge Transformations using Macet Displacement of Intersection Vertices

49 Improvement 2: Edge Transformations using Macet

50 Improvement 2: Edge Transformations using Macet

51 Summary of Changes to Marching Cubes Code triangulation table compute vertex polarity n New Table? identify cell case y new triangulation table identify active edges Modify grid? n generate intersection vertices y edge transformation Modify vertices? vertex displacement generate triangulation

52 Outline Motivation Edge Groups in Cubic Cells Improving Triangle Quality Based on Edge Groups Results Conclusions

53 Results Original MC Macet Original MC Macet Old Table Old Table New Table New Table Displacements

54 Results Original MC Macet Original MC Macet Old Table Old Table New Table New Table Displacements

55 Results Original MC Macet Original MC Macet Old Table Old Table New Table New Table Displacements

56 Results Original MC Macet Original MC Macet Old Table Old Table New Table New Table Displacements

57 Edge Groups in Tetrahedra Cells Extensions to tetrahedra cells BCC Tetrahedra (4 Edge Groups)

58 Edge Groups in Tetrahedra Cells Kuhn Tetrahedra (9 Edge Groups)

59 Ongoing Work Unified Edge Transformations Macet (Technical Report coming soon) Single Edge Transformation Optional Vertex Displacement More efficient, more quality Group 2 Group 3 λ λ p i - - pi p j + + p j

60 60 Latest Quality and Performance Results Unified Edge Transformations Macet MC Unified Macet MC Macet 3 time quality time quality Bonsai Engine Hydrogen Laçador e Neghip Siliicium

61 Demo Side-by-side comparison: MC x Unified Macet Marching Cubes Macet

62 Conclusions Main contributions: Edge groups proposal and analysis in MC: Histogram analysis of each individual case Case 2 generates the worst triangles Modifications in MC Change of MC table Improvements and Validation of Macet Reproducibility (open source): (Vistrails)

63 Acknowledegments CNPq (Brazil) scholarship and grants /2007-0, / IBM Ph.D. Student Fellowship. Department of Energy SciDAC (VACET and SDM centers) National Science Foundation (grants CNS , CCF , OCE , CNS , IIS , CCF , OISE , CNS ) IBM Faculty Awards (2005, 2006, and 2007) Reviewers for feedback

64 Questions?

Marching Cubes without Skinny Triangles

Marching Cubes without Skinny Triangles Marching Cubes without Skinny Triangles Carlos A. Dietrich, Carlos E. Scheidegger, João L. D. Comba, Luciana P. Nedel and Cláudio T. Silva, Senior Member, IEEE Abstract Most computational codes that use

More information

COMPARING TECHNIQUES FOR TETRAHEDRAL MESH GENERATION

COMPARING TECHNIQUES FOR TETRAHEDRAL MESH GENERATION Inaugural International Conference of the Engineering Mechanics Institute COMPARING TECHNIQUES FOR TETRAHEDRAL MESH GENERATION Abstract M. A. S. Lizier Instituto de Ciências Matemáticas e de Computação

More information

ISOSURFACES are ubiquitous in visualization [14], where

ISOSURFACES are ubiquitous in visualization [14], where IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008 1 Edge Transformations for Improving Mesh Quality of Marching Cubes Carlos A. Dietrich, Carlos E. Scheidegger,

More information

Scalar Algorithms: Contouring

Scalar Algorithms: Contouring Scalar Algorithms: Contouring Computer Animation and Visualisation Lecture tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Last Lecture...

More information

Contouring and Isosurfaces. Ronald Peikert SciVis Contouring 2-1

Contouring and Isosurfaces. Ronald Peikert SciVis Contouring 2-1 Contouring and Isosurfaces Ronald Peikert SciVis 2007 - Contouring 2-1 What are contours? Set of points where the scalar field s has a given value c: Examples in 2D: height contours on maps isobars on

More information

Indirect Volume Rendering

Indirect Volume Rendering Indirect Volume Rendering Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Contour tracing Marching cubes Marching tetrahedra Optimization octree-based range query Weiskopf/Machiraju/Möller

More information

Managing the Evolution of Dataflows with VisTrails

Managing the Evolution of Dataflows with VisTrails Managing the Evolution of Dataflows with VisTrails Juliana Freire http://www.cs.utah.edu/~juliana University of Utah Joint work with: Steven P. Callahan, Emanuele Santos, Carlos E. Scheidegger, Claudio

More information

Volume Illumination, Contouring

Volume Illumination, Contouring Volume Illumination, Contouring Computer Animation and Visualisation Lecture 0 tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Overview -

More information

arxiv: v1 [math.na] 2 Aug 2013

arxiv: v1 [math.na] 2 Aug 2013 arxiv:1308.0387 [math.na] 2 Aug 2013 3D Volume Calculation For the Marching Cubes Algorithm in Cartesian Coordinates Contents Shuqiang Wang 06/20/2013 1 Introduction 1 2 Method 2 2.1 Volume Calculations

More information

Scalar Visualization

Scalar Visualization Scalar Visualization Visualizing scalar data Popular scalar visualization techniques Color mapping Contouring Height plots outline Recap of Chap 4: Visualization Pipeline 1. Data Importing 2. Data Filtering

More information

Isosurface Rendering. CSC 7443: Scientific Information Visualization

Isosurface Rendering. CSC 7443: Scientific Information Visualization Isosurface Rendering What is Isosurfacing? An isosurface is the 3D surface representing the locations of a constant scalar value within a volume A surface with the same scalar field value Isosurfaces form

More information

SURFACE CONSTRUCTION USING TRICOLOR MARCHING CUBES

SURFACE CONSTRUCTION USING TRICOLOR MARCHING CUBES SURFACE CONSTRUCTION USING TRICOLOR MARCHING CUBES Shaojun Liu, Jia Li Oakland University Rochester, MI 4839, USA Email: sliu2@oakland.edu, li4@oakland.edu Xiaojun Jing Beijing University of Posts and

More information

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2 Visualisatie BMT Fundamental algorithms Arjan Kok a.j.f.kok@tue.nl Lecture overview Classification of algorithms Scalar algorithms Vector algorithms Tensor algorithms Modeling algorithms 1 2 Visualization

More information

Carlos Eduardo Scheidegger

Carlos Eduardo Scheidegger Carlos Eduardo Scheidegger University of Utah phone: (801) 585-1467 School of Computing, SCI Institute fax: (801) 581-6513 72 S. Central Campus Drive, RM 4750 Salt Lake City, UT cscheid@sci.utah.edu http://www.sci.utah.edu/

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

Verifiable Visualization for Isosurface Extraction

Verifiable Visualization for Isosurface Extraction Verifiable Visualization for Isosurface Extraction T. Etiene, C. Scheidegger, L.G. Nonato, R.M. Kirby Member, IEEE, C.T. Silva Member, IEEE Fig. 1. Through the verification methodology presented on this

More information

Scalar Visualization

Scalar Visualization Scalar Visualization 5-1 Motivation Visualizing scalar data is frequently encountered in science, engineering, and medicine, but also in daily life. Recalling from earlier, scalar datasets, or scalar fields,

More information

Topology Preserving Tetrahedral Decomposition of Trilinear Cell

Topology Preserving Tetrahedral Decomposition of Trilinear Cell Topology Preserving Tetrahedral Decomposition of Trilinear Cell Bong-Soo Sohn Department of Computer Engineering, Kyungpook National University Daegu 702-701, South Korea bongbong@knu.ac.kr http://bh.knu.ac.kr/

More information

Fundamental Algorithms and Advanced Data Representations

Fundamental Algorithms and Advanced Data Representations Fundamental Algorithms and Advanced Data Representations Anders Hast Outline Isosurfaces (Volume Data) Cuberille Contouring Marching Squares Linear Interpolation methods Marching Cubes Non Linear Interpolation

More information

CIS 467/602-01: Data Visualization

CIS 467/602-01: Data Visualization CIS 467/60-01: Data Visualization Isosurfacing and Volume Rendering Dr. David Koop Fields and Grids Fields: values come from a continuous domain, infinitely many values - Sampled at certain positions to

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-0) Isosurfaces & Volume Rendering Dr. David Koop Fields & Grids Fields: - Values come from a continuous domain, infinitely many values - Sampled at certain positions

More information

GPU-Based Volume Rendering of. Unstructured Grids. João L. D. Comba. Fábio F. Bernardon UFRGS

GPU-Based Volume Rendering of. Unstructured Grids. João L. D. Comba. Fábio F. Bernardon UFRGS GPU-Based Volume Rendering of João L. D. Comba Cláudio T. Silva Steven P. Callahan Unstructured Grids UFRGS University of Utah University of Utah Fábio F. Bernardon UFRGS Natal - RN - Brazil XVIII Brazilian

More information

LAPLACIAN MESH SMOOTHING FOR TETRAHEDRA BASED VOLUME VISUALIZATION 1. INTRODUCTION

LAPLACIAN MESH SMOOTHING FOR TETRAHEDRA BASED VOLUME VISUALIZATION 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol.4/2002, ISSN 642-6037 Rafał STĘGIERSKI *, Paweł MIKOŁAJCZAK * volume data,triangle mesh generation, mesh smoothing, marching tetrahedra LAPLACIAN MESH

More information

Approximation of Isosurface in the Marching Cube: Ambiguity Problem.

Approximation of Isosurface in the Marching Cube: Ambiguity Problem. Approximation of Isosurface in the Marching Cube: Ambiguity Problem Sergey V Matveyev Computer Science Department Institute for High Energy Physics 142284, Protvino, Moscow Region, Russia E-mail: matveyev@desertihepsu

More information

Comparative Study of Marching Cubes Algorithms for the Conversion of 2D image to 3D

Comparative Study of Marching Cubes Algorithms for the Conversion of 2D image to 3D International Journal of Computational Intelligence Research ISSN 0973-1873 Volume 13, Number 3 (2017), pp. 327-337 Research India Publications http://www.ripublication.com Comparative Study of Marching

More information

Mesh Generation. Jean-Daniel Boissonnat DataShape, INRIA

Mesh Generation. Jean-Daniel Boissonnat DataShape, INRIA Mesh Generation Jean-Daniel Boissonnat DataShape, INRIA http://www-sop.inria.fr/datashape Algorithmic Geometry Mesh generation J-D. Boissonnat 1 / 27 Meshing surfaces and 3D domains visualization and graphics

More information

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo 3 - Reconstruction Acknowledgements: Olga Sorkine-Hornung Geometry Acquisition Pipeline Scanning: results in range images Registration: bring all range images to one coordinate system Stitching/ reconstruction:

More information

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement:

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement: Iso-Contouring Advanced Issues Iso-surface cell search 1. Efficiently determining which cells to examine. 2. Using iso-contouring as a slicing mechanism 3. Iso-contouring in higher dimensions 4. Texturing

More information

Adaptive Mesh Extraction using Simplification and Refinement

Adaptive Mesh Extraction using Simplification and Refinement Adaptive Mesh Extraction using Simplification and Refinement Adelailson Peixoto and Luiz Velho Abstract. This work presents a method for multiresolution mesh extraction with important mathematical properties.

More information

Brain Surface Conformal Spherical Mapping

Brain Surface Conformal Spherical Mapping Brain Surface Conformal Spherical Mapping Min Zhang Department of Industrial Engineering, Arizona State University mzhang33@asu.edu Abstract It is well known and proved that any genus zero surface can

More information

Marching Squares. Rodrigo Morante

Marching Squares. Rodrigo Morante Marching Squares Rodrigo Morante 1/9 Objective Implicit functions Implement a method for polygonizing implicit functions that apply fromr 2 tor. 2/9 Implicit functions Implicit functions An implicit function

More information

3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set

3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set 3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set John M. Sullivan, Jr., Ziji Wu, and Anand Kulkarni Worcester Polytechnic Institute Worcester,

More information

Topological Equivalence between a 3D Object and the Reconstruction of its Digital Image

Topological Equivalence between a 3D Object and the Reconstruction of its Digital Image to appear in IEEE PAMI Topological Equivalence between a 3D Object and the Reconstruction of its Digital Image Peer Stelldinger, Longin Jan Latecki and Marcelo Siqueira Abstract Digitization is not as

More information

High-speed Marching Cubes using Histogram Pyramids

High-speed Marching Cubes using Histogram Pyramids High-speed Marching Cubes using Histogram Pyramids Christopher Dyken 1,2, Gernot Ziegler 3, Christian Theobalt 4 and Hans-Peter Seidel 3 1 Centre of Mathematics for Applications, University of Oslo, Norway

More information

Ansoft HFSS Mesh Menu

Ansoft HFSS Mesh Menu Ansoft HFSS After you have seeded your object, you must create the finite element mesh from which the variables and values of your model will be computed. The Mesh menu allows you to: Create or delete

More information

CIS 4930/ SCIENTIFICVISUALIZATION

CIS 4930/ SCIENTIFICVISUALIZATION CIS 4930/6930-902 SCIENTIFICVISUALIZATION ISOSURFACING Paul Rosen Assistant Professor University of South Florida slides credits Tricoche and Meyer ADMINISTRATIVE Read (or watch video): Kieffer et al,

More information

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Alex Li 11/20/2009 Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk duction Overview of Lagrangian of Topological s Altering the Topology 2 Presents a method for accurately tracking the moving surface

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Improved marching cubes using novel adjacent lookup table and random sampling for medical object-specific 3D visualization

Improved marching cubes using novel adjacent lookup table and random sampling for medical object-specific 3D visualization 2528 JOURNAL OF SOFTWARE, VOL. 9, NO., OCTOBER 214 Improved marching cubes using novel adjacent lookup table and random sampling for medical object-specific 3D visualization Xuchu Wang a, Yanmin Niu b,a,

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

Special Topics in Visualization

Special Topics in Visualization Special Topics in Visualization Final Project Report Dual contouring of Hermite Data Submitted By S M Shahed Nejhum 8589-1199 May 19, 2008 Introduction Iso-surface extraction from 3D volumetric data is

More information

FOUNDATION HIGHER. F Autumn 1, Yr 9 Autumn 2, Yr 9 Spring 1, Yr 9 Spring 2, Yr 9 Summer 1, Yr 9 Summer 2, Yr 9

FOUNDATION HIGHER. F Autumn 1, Yr 9 Autumn 2, Yr 9 Spring 1, Yr 9 Spring 2, Yr 9 Summer 1, Yr 9 Summer 2, Yr 9 Year: 9 GCSE Mathematics FOUNDATION F Autumn 1, Yr 9 Autumn 2, Yr 9 Spring 1, Yr 9 Spring 2, Yr 9 Summer 1, Yr 9 Summer 2, Yr 9 HIGHER Integers and place value Decimals Indices, powers and roots Factors,multiples

More information

Scientific Visualization

Scientific Visualization Scientific Visualization Topics Motivation Color InfoVis vs. SciVis VisTrails Core Techniques Advanced Techniques 1 Check Assumptions: Why Visualize? Problem: How do you apprehend 100k tuples? when your

More information

SHAPE, SPACE & MEASURE

SHAPE, SPACE & MEASURE STAGE 1 Know the place value headings up to millions Recall primes to 19 Know the first 12 square numbers Know the Roman numerals I, V, X, L, C, D, M Know the % symbol Know percentage and decimal equivalents

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-01) Scalar Visualization Dr. David Koop Online JavaScript Resources http://learnjsdata.com/ Good coverage of data wrangling using JavaScript Fields in Visualization Scalar

More information

Department Curriculum Map (new GCSE)

Department Curriculum Map (new GCSE) Department Curriculum Map 2014-15 (new GCSE) Department Mathematics required in Year 11 Foundation 1. Structure and calculation: N1 to N9 Fractions, decimals and percentages: N10 to N12 Measure and accuracy:

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

: Mesh Processing. Chapter 8

: Mesh Processing. Chapter 8 600.657: Mesh Processing Chapter 8 Handling Mesh Degeneracies [Botsch et al., Polygon Mesh Processing] Class of Approaches Geometric: Preserve the mesh where it s good. Volumetric: Can guarantee no self-intersection.

More information

GPU-based Tiled Ray Casting using Depth Peeling

GPU-based Tiled Ray Casting using Depth Peeling GPU-based Tiled Ray Casting using Depth Peeling Fábio F. Bernardon 2 Christian A. Pagot 2 João L. D. Comba 2 Cláudio T. Silva 1 1 Scientific Computing and Imaging Institute, School of Computing, University

More information

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING 3D surface reconstruction of objects by using stereoscopic viewing Baki Koyuncu, Kurtuluş Küllü bkoyuncu@ankara.edu.tr kkullu@eng.ankara.edu.tr Computer Engineering Department, Ankara University, Ankara,

More information

Decimation of 2D Scalar Data with Error Control

Decimation of 2D Scalar Data with Error Control Decimation of 2D Scalar Data with Error Control Daniel R. Schikore Chandrajit L. Bajaj Department of Computer Sciences Purdue University West Lafayette, IN 47907 drs@cs.purdue.edu bajaj@cs.purdue.edu Abstract

More information

Marching Squares Algorithm. Can you summarize the marching squares algorithm based on what we just discussed?

Marching Squares Algorithm. Can you summarize the marching squares algorithm based on what we just discussed? Marching Squares Algorithm Can you summarize the marching squares algorithm based on what we just discussed? Marching Squares Algorithm Can you summarize the marching squares algorithm based on what we

More information

Data Visualization (CIS/DSC 468)

Data Visualization (CIS/DSC 468) Data Visualization (CIS/DSC 46) Volume Rendering Dr. David Koop Visualizing Volume (3D) Data 2D visualization slice images (or multi-planar reformating MPR) Indirect 3D visualization isosurfaces (or surface-shaded

More information

A Comparison of Fundamental Methods for Iso-surface Extraction

A Comparison of Fundamental Methods for Iso-surface Extraction A Comparison of Fundamental Methods for Iso-surface Extraction JAN PATERA 1, VÁCLAV SKALA Department of Computer Science and Engineering Faculty of Applied Sciences, University of West Bohemia Univerzitní,

More information

Revisiting Histograms and Isosurface Statistics

Revisiting Histograms and Isosurface Statistics Revisiting Histograms and Isosurface Statistics Carlos E. Scheidegger John Schreiner Brian Duffy Hamish Carr Cláudio T. Silva Abstract Recent results have shown a link between geometric properties of isosurfaces

More information

Volume Tracking Using Higher Dimensional Isosurfacing

Volume Tracking Using Higher Dimensional Isosurfacing Volume Tracking Using Higher Dimensional Isosurfacing Guangfeng Ji Han-Wei Shen Department of Computer and Information Science The Ohio State University Rephael Wenger Abstract Tracking and visualizing

More information

Freehand Voxel Carving Scanning on a Mobile Device

Freehand Voxel Carving Scanning on a Mobile Device Technion Institute of Technology Project in Image Processing and Analysis 234329 Freehand Voxel Carving Scanning on a Mobile Device Author: Student Number: 305950099 Supervisors: Aaron Wetzler, Yaron Honen,

More information

MARCHING CUBES AND VARIANTS

MARCHING CUBES AND VARIANTS CHAPTER MARCHING CUBES AND VARIANTS In the introduction, we mentioned four different approaches to isosurface construction. In this chapter, we describe one of those approaches to isosurface construction,

More information

Isosurfaces Over Simplicial Partitions of Multiresolution Grids

Isosurfaces Over Simplicial Partitions of Multiresolution Grids EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker (Guest Editors) Volume 29 (2010), Number 2 Isosurfaces Over Simplicial Partitions of Multiresolution Grids Josiah Manson and Scott Schaefer Texas A&M

More information

Who has worked on a voxel engine before? Who wants to? My goal is to give the talk I wish I would have had before I started on our procedural engine.

Who has worked on a voxel engine before? Who wants to? My goal is to give the talk I wish I would have had before I started on our procedural engine. 1 Who has worked on a voxel engine before? Who wants to? My goal is to give the talk I wish I would have had before I started on our procedural engine. Three parts to this talk. A lot of content, so I

More information

Managing Exploratory Workflows

Managing Exploratory Workflows Managing Exploratory Workflows Juliana Freire Claudio T. Silva http://www.sci.utah.edu/~vgc/vistrails/ University of Utah Joint work with: Erik Andersen, Steven P. Callahan, David Koop, Emanuele Santos,

More information

Robust adaptive meshes for implicit surfaces

Robust adaptive meshes for implicit surfaces Robust adaptive meshes for implicit surfaces Afonso Paiva Hélio Lopes Thomas Lewiner Department of Mathematics, PUC Rio, Brazil Luiz Henrique de Figueiredo IMPA, Rio de Janeiro, Brazil Figure 1. Toric

More information

Unbiased Sampling and Meshing of Isosurfaces

Unbiased Sampling and Meshing of Isosurfaces JOURNAL 1 Unbiased Sampling and Meshing of Isosurfaces Dong-Ming Yan, Johannes Wallner, Peter Wonka Abstract In this paper, we present a new technique to generate unbiased samples on isosurfaces. An isosurface,

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al.

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. Solid Modeling Michael Kazhdan (601.457/657) HB 10.15 10.17, 10.22 FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. 1987 Announcement OpenGL review session: When: Today @ 9:00 PM Where: Malone

More information

MULTI-RESOLUTION DUAL CONTOURING FROM VOLUMETRIC DATA

MULTI-RESOLUTION DUAL CONTOURING FROM VOLUMETRIC DATA MULTI-RESOLUTION DUAL CONTOURING FROM VOLUMETRIC DATA Ricardo Uribe Lobello, Florent Dupont, Florence Denis Université de Lyon, CNRS, LIRIS, UMR5205, Villeurbanne F-69622, France {Ricardo.Uribe-lobello,Florent.Dupont,Florence.Denis}@liris.cnrs.fr

More information

Contours & Implicit Modelling 1

Contours & Implicit Modelling 1 Contouring & Implicit Modelling Visualisation Lecture 8 Institute for Perception, Action & Behaviour School of Informatics Contours & Implicit Modelling 1 Brief Recap Contouring Implicit Functions lecture

More information

Using Isosurface Methods for Visualizing the Envelope of a Swept Trivariate Solid

Using Isosurface Methods for Visualizing the Envelope of a Swept Trivariate Solid Using Isosurface Methods for Visualizing the Envelope of a Swept Trivariate Solid Jason Conkey Kenneth I. Joy Center for Image Processing and Integrated Computing Department of Computer Science University

More information

Contours & Implicit Modelling 4

Contours & Implicit Modelling 4 Brief Recap Contouring & Implicit Modelling Contouring Implicit Functions Visualisation Lecture 8 lecture 6 Marching Cubes lecture 3 visualisation of a Quadric toby.breckon@ed.ac.uk Computer Vision Lab.

More information

Reconstruction of complete 3D object model from multi-view range images.

Reconstruction of complete 3D object model from multi-view range images. Header for SPIE use Reconstruction of complete 3D object model from multi-view range images. Yi-Ping Hung *, Chu-Song Chen, Ing-Bor Hsieh, Chiou-Shann Fuh Institute of Information Science, Academia Sinica,

More information

Level Set Extraction from Gridded 2D and 3D Data

Level Set Extraction from Gridded 2D and 3D Data Level Set Extraction from Gridded 2D and 3D Data David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

HOTmaths. Early Secondary Comparing Lessons pre and post Feb /01/2011

HOTmaths.   Early Secondary Comparing Lessons pre and post Feb /01/2011 Early Secondary Comparing Lessons pre and post Feb 1 2011 Removed lessons Some lessons can now be found in the course, or in a remodelled Early Secondary lesson. Information about the content for these

More information

Progressive Volume Rendering of Large Unstructured Grids

Progressive Volume Rendering of Large Unstructured Grids Progressive Volume Rendering of Large Unstructured Grids Steven P. Callahan 1, Louis Bavoil 1, Valerio Pascucci 2, and Cláudio T. Silva 1 1 SCI Institute, University of Utah 2 Lawrence Livermore National

More information

Topology Verification for Isosurface Extraction

Topology Verification for Isosurface Extraction JOURNAL OF L A T E X CLASS FILES, VOL.?, NO.?, JANUARY 20?? 1 Topology Verification for Isosurface Extraction Tiago Etiene, L. Gustavo Nonato, Carlos Scheidegger, Julien Tierny, Thomas J. Peters, Valerio

More information

5. Volume Visualization

5. Volume Visualization 5. Volume Visualization Scalar volume data Medical Applications: CT, MRI, confocal microscopy, ultrasound, etc. 1 5. Volume Visualization 2 5. Volume Visualization 3 5. Volume Visualization Some possible

More information

Polygonization of Implicit Surfaces

Polygonization of Implicit Surfaces Polygonization of Implicit Surfaces Hongxin Zhang and Jieqing Feng 2007-01-11 State Key Lab of CAD&CG Zhejiang University Contents Polygonization of Implicit Surfaces Other Methods for Displaying Implicit

More information

SPECIALIZING VISUALIZATION ALGORITHMS

SPECIALIZING VISUALIZATION ALGORITHMS SPECIALIZING VISUALIZATION ALGORITHMS Stephan Diehl FR Informatik Universität des Saarlandes diehl@cs.uni-sb.de Abstract In this paper we look at the potential of program specialization techniques in the

More information

Prentice Hall Geometry 2011 Correlated to: Washington Mathematics Standards, Geometry (2008)

Prentice Hall Geometry 2011 Correlated to: Washington Mathematics Standards, Geometry (2008) Geometry G.1. Core Content: Logical arguments and proofs (Logic) Students formalize the reasoning skills they have developed in previous grades and solidify their understanding of what it means to prove

More information

Surface Reconstruction

Surface Reconstruction Eurographics Symposium on Geometry Processing (2006) Surface Reconstruction 2009.12.29 Some methods for surface reconstruction Classification 1. Based on Delaunay triangulation(or Voronoi diagram) Alpha

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

Isotopic Approximation of Implicit Curves and Surfaces (Extended Abstract)

Isotopic Approximation of Implicit Curves and Surfaces (Extended Abstract) Isotopic Approximation of Implicit Curves and Surfaces (Extended Abstract) Simon Plantinga and Gert Vegter Institute for Mathematics and Computing Science University of Groningen simon@cs.rug.nl gert@cs.rug.nl

More information

Discretized Marching Cubes

Discretized Marching Cubes Discretized Marching Cubes C. Montani, R. Scateni, R. Scopigno I.E.I. Consiglio Nazionale delle Ricerche, Via S. Maria 46, 56126 Pisa, ITALY Centro di Ricerca, Sviluppo e Studi Superiori Sardegna (CRS4),

More information

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26]

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Visualization Images are used to aid in understanding of data Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Tumor SCI, Utah Scientific Visualization Visualize large

More information

Real-Time Isosurface Extraction Using the GPU Programmable Geometry Pipeline

Real-Time Isosurface Extraction Using the GPU Programmable Geometry Pipeline Chapter 9: Real-Time Isosurface Extraction Using the GPU Programmable Geometry Pipeline Chapter 9 Real-Time Isosurface Extraction Using the GPU Programmable Geometry Pipeline Natalya Tatarchuk 14 Jeremy

More information

Managing Rapidly-Evolving Scientific Workflows

Managing Rapidly-Evolving Scientific Workflows Managing Rapidly-Evolving Scientific Workflows Juliana Freire, Cláudio T. Silva, Steven P. Callahan, Emanuele Santos, Carlos E. Scheidegger, and Huy T. Vo University of Utah Abstract. We give an overview

More information

Surface Construction Analysis using Marching Cubes

Surface Construction Analysis using Marching Cubes Surface Construction Analysis using Marching Cubes Burak Erem Northeastern University erem.b@neu.edu Nicolas Dedual Northeastern University ndedual@ece.neu.edu Abstract This paper presents an analysis

More information

x1_nearest x2_nearest Implicit Surface:[ f(x)=0,b(x)= false ]

x1_nearest x2_nearest Implicit Surface:[ f(x)=0,b(x)= false ] Marching Triangles: Delaunay Implicit Surface Triangulation A.Hilton 1 and J.Illingworth Vision, Speech and Signal Processing Group, Department of Electronic and Electrical Engineering University of Surrey,

More information

3D SHAPE ANALYSIS: CONSTRUCTION, CLASSIFICATION AND MATCHING DISSERTATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN SYSTEM ENGINEERING SHAOJUN LIU

3D SHAPE ANALYSIS: CONSTRUCTION, CLASSIFICATION AND MATCHING DISSERTATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN SYSTEM ENGINEERING SHAOJUN LIU 3D SHAPE ANALYSIS: CONSTRUCTION, CLASSIFICATION AND MATCHING DISSERTATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN SYSTEM ENGINEERING SHAOJUN LIU OAKLAND UNIVERSITY 27 3D SHAPE ANALYSIS: CONSTRUCTION,

More information

Dominating Sets in Planar Graphs 1

Dominating Sets in Planar Graphs 1 Dominating Sets in Planar Graphs 1 Lesley R. Matheson 2 Robert E. Tarjan 2; May, 1994 Abstract Motivated by an application to unstructured multigrid calculations, we consider the problem of asymptotically

More information

USING RAY INTERSECTION FOR DUAL ISOSURFACING

USING RAY INTERSECTION FOR DUAL ISOSURFACING USING RAY INTERSECTION FOR DUAL ISOSURFACING Jaya Sreevalsan-Nair 1 Lars Linsen 2 ernd Hamann 1 1 Institute for Data Analysis and Visualization (IDAV) 2 Department of Mathematics and Computer Science Department

More information

Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Part I : Solid geometry

Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Part I : Solid geometry Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Surfaces Part I : Solid geometry hachar Fleishman Tel Aviv University David Levin Claudio T.

More information

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017 Multi-View Matching & Mesh Generation Qixing Huang Feb. 13 th 2017 Geometry Reconstruction Pipeline RANSAC --- facts Sampling Feature point detection [Gelfand et al. 05, Huang et al. 06] Correspondences

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9).

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). 9-1 GCSE Maths GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). In each tier, there are three exams taken at the end of Year 11. Any topic may be assessed on each of

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

An Adaptive Framework for Visualizing Unstructured Grids with Time-Varying Scalar Fields

An Adaptive Framework for Visualizing Unstructured Grids with Time-Varying Scalar Fields An Adaptive Framework for Visualizing Unstructured Grids with Time-Varying Scalar Fields Fábio F. Bernardon a,, Steven P. Callahan b, João L. D. Comba a, Cláudio T. Silva b a Instituto de Informática,

More information

Scalar Field Visualization. Some slices used by Prof. Mike Bailey

Scalar Field Visualization. Some slices used by Prof. Mike Bailey Scalar Field Visualization Some slices used by Prof. Mike Bailey Scalar Fields The approximation of certain scalar function in space f(x,y,z). Most of time, they come in as some scalar values defined on

More information