Studying Dynamic Scenes with Time of Flight Cameras

Size: px
Start display at page:

Download "Studying Dynamic Scenes with Time of Flight Cameras"

Transcription

1 Studying Dynamic Scenes with Time of Flight Cameras Norbert Pfeifer, Wilfried Karel Sajid Ghuffar, Camillo Ressl Research Group Photogrammetry Department for Geodesy and Geoinformation Vienna University of Technology geo.tuwien.ac.at Images: Diploma thesis Stefan Niedermayer

2 Time of Flight Cameras Outline Calibration and Scattering still and dynamic imagery Optical Flow and Range Flow Range video analysis dynamic imagery General question: does high (temporal) sampling compensate for large random noise? 2

3 ToF cameras: combining advantages... of photography and laser scanning Area wise, simultaneous, robust determination of 3D object coordinates by range measurement of an emitted signal Suited for low contrast surfaces and in darkness No homologous points necessary No moving parts Low power consumption Small, compact, mobil Cheap Bundle of vectors Simplifies indirect orientation on moving platforms Simultaneous capturing of a dynamic object space 3

4 Distance measurement d = ½ c t Common for all methods: nir Amplitude modulation Pulsed modulation Avalange photo diodes (APD) for detection APD in Geiger mode: single photon counting (SPAD) Multiple Double Short time Integration (MDSI) Continuous wave modulation (Photo mix detectors, PMD) Intensity λ mod φ A P H Amplitude and Phase (distance) measured Time 4

5 PMD: typical technical data Swissranger Image matrix 144x176px² Modulation 5-30MHz Field of view Max. framerate 39.6 x47.5 Uniqueness range 30-5m 25 fps Dimensions 50x67x42.5mm³ Illumination 1W Mass 162g Carrier WL 850nm Focal distance 8mm Precision: cm Accuracy: dm 5

6 PMD: random range errors Empirically determined σ 2 obsdist vs. average amplitude σ 2 obsdist 1/A 2 6

7 Local errors Distance itself (not linear) Position at sensor Amplitude Reflectivity / material (?) Integration time Internal / external temperature Incidence angle (?) Temporal drift Not local errors Internal: scattering External: multipath Relations unclear PMD: systematic range errors Scattering cmp. lens flare Multipath 7

8 Distance calibration approach Self calibration: model selection and parameter estimation as integrated process on one data set Amplitudes: lower relative noise in δρ comparison to range and low local deformation Lateral resolution very low (sensor matrix) expoit image space entirely circular, non-coded targets Planar test field: no multipath, little scattering Bundle block adjustment IOR & EOR EOR mask test field area and use only areas outside targets distance residuals Check residuals against posssible factors of influence: model selection, parameter estimation by LS adjustment 8

9 Calibration with range videos Low lateral resolution vs. high temporal resolution : 25kPixel vs. 25fps Image sequences Handheld camera guidance permanente, random movements, dense sampling of parameter space Automatic target tracking ~ 6000 frames Only distances < 2.5m : A 1/d2 Motion blur (espcially rotations) 9

10 Calirbation with still images Averaging of thousands of frames with EOR=const to still image suited for entire distance range Automatic target detection and orientation Laborious search for correspondence between object space and image space (no target code) 850 stills : with difference in integration time, exterior orientation changes in amplitude, object distance, position in image space,... 2 test fields with different reflectivity separate between object distance and amplitude 10

11 Model selection and parameter estimation Der. minus obs. dist. corr. 4 all but obs. dist., corr. model offset,d1,d2s,d2c,d3s,d3c,a1,it1,row1,row2,col1,col2,rowcol2 / origobs x Der. minus obs. dist. corr. 4 all but amplitude, corr. model offset,d1,d2s,d2c,d3s,d3c,a1,it1,row1,row2,col1,col2,rowcol2 / origobs x Der. minus obs. dist. [m] count Der. minus obs. dist. [m] count Observed dist. [m] Amplitude [] Der. minus obs. dist. corr. 4 all but int. time, corr. model offset,d1,d2s,d2c,d3s,d3c,a1,it1,row1,row2,col1,col2,rowcol2 / origobs der. minus obs. dist. [m] int. time [] 11

12 Internal relections Scattering Observation: mixture of focussed and scattered light Emphasized with high image contrast active illumination Modell: addition in the complex plane Assumption: sinusoidal signal May produce strange distances (phase wraps) Investigation of scattering As few assumptions as possible Without prior calibration Influencing factors Integration time? Amplitude? Distance? Position at sensor? 12

13 Method a_0016: mean amp. diff [%]; itime: 30 Background subtraction Frames with / without foreground object Vary parameters to be investigated Background Black cardboard Foreground Circular white target Mounted on vertical staff Mask area of staff and half shadow (illumination not an ideal point source), investigation of remaining image area 2 types of differences: Separated difference of amplitude & range errors in the observation Difference of the complex signal error in the signal High noise level Static scene and fixed EOR Pixel wise averaging over up to 60 hours of continuous data acquisition

14 Variation of scattering with the position on the sensor Complex subtraction Not shift invariant Radially symmetric to principal point Range error 14

15 Findings of the experiment Scattering linear in the amplitude double target size ~ double amplitude difference Scattering additive in complex signal, independent of object space distance... Internal effect Varies with position on sensor Point spread function (using an unresolved target) 63% focussed light; 8 neighboring pixels : 1,4 ; 72% within disk (r=19px); side lobes (maxima) : 0,07 15

16 PSF: Application gg = ff h + ηη Observed image is a convolution of the real image with the PSF + noise Inversion: Richardson-Lucy: ff nn+1 = ff nn gg ff nn h htt Reduce RMSE distance spatially variant PSF: 73% spatially invariant PSF: 69% Amplitude and Range difference images with/without object in foreground before and after deconvolution 16

17 Analyzing dynamic scene content Considerations Video sequences: image of object points move in data stream vs. wide baseline: points jump Range and brightness are functions parameterized over image space r(x,y), i(x,y) Assumption: functions are continuous and differentiable Brightness of points remains constant Wrong assumption because of active illumination (1/r2, cos(incidencea)) Therefore Track range and brightness changes of points in image space for Computing camera trajectory (exterior orientation) Follow moving objects throughout the scene 17

18 Optical flow and range flow Comparable least squares matching / ICP but approx. values = 0, no iterations, no re-assignment of correspondence Apply to entire image area Range and brightness should be considered together (complementary?) Intensity Image Intensity Derivatives Depth derivatives Depth Image Use framework of optical flow and range flow 18

19 Optical and range flow I(x) u t 1 t 2 Z(x) t 1 t 2 II xx xx tt = x (U,W) X(x) II xx uu + II yy vv + II tt = 0 ZZ xx UU + ZZ yy VV WW + ZZ tt = 0 Equation for one pixel Two/three unknowns (optical/range flow) Image/surface gradients required, otherwise coefficients are zero Application in window local method, parameter estimation by least squares adjustment Applied to all pixels, e.g. independently 19

20 Fusion of Range and Intensity for object tracking Intensity Image Intensity Derivatives Depth derivatives Depth Image Optical Flow Constraint Equation Range Flow Constraint Equation II xx u + II yy v + II tt = 0 ZZ xx U+ ZZ yy V W + ZZ tt = 0 ff II xx ZZ ff ZZ xx ZZ ff II yy ZZ ff ZZ yy ZZ xx II xx ZZ II yy yy ZZ ZZ xx xx ZZ ZZ yy yy ZZ 1 UU VV WW = II tt ZZ tt 20

21 Long Term Trajectories Independently moving objects Long range trajectory generation Spatio-temporal segmentation into independently moving object 21

22 Video Note noise level in depth and intensity image range errors at dark trousers of second person: calibration not applied missing texture around feet of first person: neither in range nor in brightness hardly background texture movement within floor/wall plane pair depends on small sign at the wall: spatial regularization to determine full flow at all pixel 22

23 Note Illumination fall off Systematic range errors Full 3D estimation of flow, esp. lower train Successful suppresion of erroneous background motion Upper train shows consistent flow despite grey level differences and range errors 23

24 Optical and Range Flow for Camera Relative Orientation Motion fields generated by camera motion Estimating 6 parameters of relative orientation using dense intensity and range data 24

25 Video Add robust parameter estimation (reweighting in LS adjustment) to eliminate moving objects 25

26 Weights in LS adjustment

27 Conclusions and findings Calibration is possible and shows stability Systematic range errors in cm-dm order Stills provided better results in calibration than videos averaging of stills reduced random error and thus eased model selection motion blur as additional source of signal (error) in dynamic scenarios Internal scattering can become larger (dm-order) Internal scattering compensation possible but too time consuming hardware solution to reduce internal scattering of light (better absorption) Combined optical and range flow as natural combination of both channels can consider stochastic signal properties, as it is embedded in LSA High noise level propagates to flow vectors due to local analysis e.g. fluctuation of flow vectors, boundaries of segments Random noise can only be effectively removed with very rigid models ToF cameras rather trigger method than application development ( Quantitative evaluation, details on methods, etc.: in the publications ) 27

28 41

29 42

30 Ende 43

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

Time-of-flight basics

Time-of-flight basics Contents 1. Introduction... 2 2. Glossary of Terms... 3 3. Recovering phase from cross-correlation... 4 4. Time-of-flight operating principle: the lock-in amplifier... 6 5. The time-of-flight sensor pixel...

More information

Airborne and terrestrial laser scanning for landslide monitoring

Airborne and terrestrial laser scanning for landslide monitoring Airborne and terrestrial laser scanning for landslide monitoring Norbert Pfeifer, Andreas Roncat, Sajid Ghuffar, Balazs Szekely norbert.pfeifer@geo.tuwien.ac.at Research Group Photogrammetry Department

More information

Range Sensors (time of flight) (1)

Range Sensors (time of flight) (1) Range Sensors (time of flight) (1) Large range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic sensors, infra-red sensors

More information

Motion Analysis. Motion analysis. Now we will talk about. Differential Motion Analysis. Motion analysis. Difference Pictures

Motion Analysis. Motion analysis. Now we will talk about. Differential Motion Analysis. Motion analysis. Difference Pictures Now we will talk about Motion Analysis Motion analysis Motion analysis is dealing with three main groups of motionrelated problems: Motion detection Moving object detection and location. Derivation of

More information

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field Finally: Motion and tracking Tracking objects, video analysis, low level motion Motion Wed, April 20 Kristen Grauman UT-Austin Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, and S. Lazebnik

More information

Depth Camera for Mobile Devices

Depth Camera for Mobile Devices Depth Camera for Mobile Devices Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Stereo Cameras Structured Light Cameras Time of Flight (ToF) Camera Inferring 3D Points Given we have

More information

Depth Sensors Kinect V2 A. Fornaser

Depth Sensors Kinect V2 A. Fornaser Depth Sensors Kinect V2 A. Fornaser alberto.fornaser@unitn.it Vision Depth data It is not a 3D data, It is a map of distances Not a 3D, not a 2D it is a 2.5D or Perspective 3D Complete 3D - Tomography

More information

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The receiver measures the time of flight (back and

More information

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1.

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1. Range Sensors (time of flight) (1) Range Sensors (time of flight) (2) arge range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic

More information

3D Computer Vision. Depth Cameras. Prof. Didier Stricker. Oliver Wasenmüller

3D Computer Vision. Depth Cameras. Prof. Didier Stricker. Oliver Wasenmüller 3D Computer Vision Depth Cameras Prof. Didier Stricker Oliver Wasenmüller Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Motion and Tracking Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Motion Segmentation Segment the video into multiple coherently moving objects Motion and Perceptual Organization

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013 Lecture 19: Depth Cameras Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today: - Capturing scene depth

More information

New Sony DepthSense TM ToF Technology

New Sony DepthSense TM ToF Technology ADVANCED MATERIAL HANDLING WITH New Sony DepthSense TM ToF Technology Jenson Chang Product Marketing November 7, 2018 1 3D SENSING APPLICATIONS Pick and Place Drones Collision Detection People Counting

More information

New Sony DepthSense TM ToF Technology

New Sony DepthSense TM ToF Technology ADVANCED MATERIAL HANDLING WITH New Sony DepthSense TM ToF Technology Jenson Chang Product Marketing November 7, 2018 1 3D SENSING APPLICATIONS Pick and Place Drones Collision Detection People Counting

More information

Active Light Time-of-Flight Imaging

Active Light Time-of-Flight Imaging Active Light Time-of-Flight Imaging Time-of-Flight Pulse-based time-of-flight scanners [Gvili03] NOT triangulation based short infrared laser pulse is sent from camera reflection is recorded in a very

More information

3D Time-of-Flight Image Sensor Solutions for Mobile Devices

3D Time-of-Flight Image Sensor Solutions for Mobile Devices 3D Time-of-Flight Image Sensor Solutions for Mobile Devices SEMICON Europa 2015 Imaging Conference Bernd Buxbaum 2015 pmdtechnologies gmbh c o n f i d e n t i a l Content Introduction Motivation for 3D

More information

LC-1: Interference and Diffraction

LC-1: Interference and Diffraction Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly explain your reasoning to receive full credit. The lab setup has been

More information

3D Photography: Stereo

3D Photography: Stereo 3D Photography: Stereo Marc Pollefeys, Torsten Sattler Spring 2016 http://www.cvg.ethz.ch/teaching/3dvision/ 3D Modeling with Depth Sensors Today s class Obtaining depth maps / range images unstructured

More information

Engineered Diffusers Intensity vs Irradiance

Engineered Diffusers Intensity vs Irradiance Engineered Diffusers Intensity vs Irradiance Engineered Diffusers are specified by their divergence angle and intensity profile. The divergence angle usually is given as the width of the intensity distribution

More information

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS Cognitive Robotics Original: David G. Lowe, 004 Summary: Coen van Leeuwen, s1460919 Abstract: This article presents a method to extract

More information

Optimized scattering compensation for time-of-flight camera

Optimized scattering compensation for time-of-flight camera Optimized scattering compensation for time-of-flight camera James Mure-Dubois and Heinz Hügli University of Neuchâtel - Institute of Microtechnology, 2000 Neuchâtel, Switzerland ABSTRACT Recent time-of-flight

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Multiray Photogrammetry and Dense Image. Photogrammetric Week Matching. Dense Image Matching - Application of SGM

Multiray Photogrammetry and Dense Image. Photogrammetric Week Matching. Dense Image Matching - Application of SGM Norbert Haala Institut für Photogrammetrie Multiray Photogrammetry and Dense Image Photogrammetric Week 2011 Matching Dense Image Matching - Application of SGM p q d Base image Match image Parallax image

More information

Peripheral drift illusion

Peripheral drift illusion Peripheral drift illusion Does it work on other animals? Computer Vision Motion and Optical Flow Many slides adapted from J. Hays, S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others Video A video

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Hand-Eye Calibration from Image Derivatives

Hand-Eye Calibration from Image Derivatives Hand-Eye Calibration from Image Derivatives Abstract In this paper it is shown how to perform hand-eye calibration using only the normal flow field and knowledge about the motion of the hand. The proposed

More information

Basilio Bona DAUIN Politecnico di Torino

Basilio Bona DAUIN Politecnico di Torino ROBOTICA 03CFIOR DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The

More information

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc.

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc. Minimizing Noise and Bias in 3D DIC Correlated Solutions, Inc. Overview Overview of Noise and Bias Digital Image Correlation Background/Tracking Function Minimizing Noise Focus Contrast/Lighting Glare

More information

Exterior Orientation Parameters

Exterior Orientation Parameters Exterior Orientation Parameters PERS 12/2001 pp 1321-1332 Karsten Jacobsen, Institute for Photogrammetry and GeoInformation, University of Hannover, Germany The georeference of any photogrammetric product

More information

EXTENSIVE METRIC PERFORMANCE EVALUATION OF A 3D RANGE CAMERA

EXTENSIVE METRIC PERFORMANCE EVALUATION OF A 3D RANGE CAMERA EXTENSIVE METRIC PERFORMANCE EVALUATION OF A 3D RANGE CAMERA Christoph A. Weyer 3, Kwang-Ho Bae 1,2,, Kwanthar Lim 1 and Derek D. Lichti 4 1 Western Australian Centre for Geodesy & The Institute for Geoscience

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2016 NAME: Problem Score Max Score 1 6 2 8 3 9 4 12 5 4 6 13 7 7 8 6 9 9 10 6 11 14 12 6 Total 100 1 of 8 1. [6] (a) [3] What camera setting(s)

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field

More information

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi Motion and Optical Flow Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Development of a Test Field for the Calibration and Evaluation of Kinematic Multi Sensor Systems

Development of a Test Field for the Calibration and Evaluation of Kinematic Multi Sensor Systems Development of a Test Field for the Calibration and Evaluation of Kinematic Multi Sensor Systems DGK-Doktorandenseminar Graz, Austria, 26 th April 2017 Erik Heinz Institute of Geodesy and Geoinformation

More information

3D Photography: Active Ranging, Structured Light, ICP

3D Photography: Active Ranging, Structured Light, ICP 3D Photography: Active Ranging, Structured Light, ICP Kalin Kolev, Marc Pollefeys Spring 2013 http://cvg.ethz.ch/teaching/2013spring/3dphoto/ Schedule (tentative) Feb 18 Feb 25 Mar 4 Mar 11 Mar 18 Mar

More information

3D Pose Estimation and Mapping with Time-of-Flight Cameras. S. May 1, D. Dröschel 1, D. Holz 1, C. Wiesen 1 and S. Fuchs 2

3D Pose Estimation and Mapping with Time-of-Flight Cameras. S. May 1, D. Dröschel 1, D. Holz 1, C. Wiesen 1 and S. Fuchs 2 3D Pose Estimation and Mapping with Time-of-Flight Cameras S. May 1, D. Dröschel 1, D. Holz 1, C. Wiesen 1 and S. Fuchs 2 1 2 Objectives 3D Pose Estimation and Mapping Based on ToF camera data No additional

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

ToF Camera for high resolution 3D images with affordable pricing

ToF Camera for high resolution 3D images with affordable pricing ToF Camera for high resolution 3D images with affordable pricing Basler AG Jana Bartels, Product Manager 3D Agenda Coming next I. Basler AG II. 3D Purpose and Time-of-Flight - Working Principle III. Advantages

More information

Centre for Digital Image Measurement and Analysis, School of Engineering, City University, Northampton Square, London, ECIV OHB

Centre for Digital Image Measurement and Analysis, School of Engineering, City University, Northampton Square, London, ECIV OHB HIGH ACCURACY 3-D MEASUREMENT USING MULTIPLE CAMERA VIEWS T.A. Clarke, T.J. Ellis, & S. Robson. High accuracy measurement of industrially produced objects is becoming increasingly important. The techniques

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

The main problem of photogrammetry

The main problem of photogrammetry Structured Light Structured Light The main problem of photogrammetry to recover shape from multiple views of a scene, we need to find correspondences between the images the matching/correspondence problem

More information

University of Technology Building & Construction Department / Remote Sensing & GIS lecture

University of Technology Building & Construction Department / Remote Sensing & GIS lecture 5. Corrections 5.1 Introduction 5.2 Radiometric Correction 5.3 Geometric corrections 5.3.1 Systematic distortions 5.3.2 Nonsystematic distortions 5.4 Image Rectification 5.5 Ground Control Points (GCPs)

More information

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1 Last update: May 4, 200 Vision CMSC 42: Chapter 24 CMSC 42: Chapter 24 Outline Perception generally Image formation Early vision 2D D Object recognition CMSC 42: Chapter 24 2 Perception generally Stimulus

More information

Active Stereo Vision. COMP 4900D Winter 2012 Gerhard Roth

Active Stereo Vision. COMP 4900D Winter 2012 Gerhard Roth Active Stereo Vision COMP 4900D Winter 2012 Gerhard Roth Why active sensors? Project our own texture using light (usually laser) This simplifies correspondence problem (much easier) Pluses Can handle different

More information

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS J. KORNIS, P. PACHER Department of Physics Technical University of Budapest H-1111 Budafoki út 8., Hungary e-mail: kornis@phy.bme.hu, pacher@phy.bme.hu

More information

Optical Active 3D Scanning. Gianpaolo Palma

Optical Active 3D Scanning. Gianpaolo Palma Optical Active 3D Scanning Gianpaolo Palma 3D Scanning Taxonomy SHAPE ACQUISTION CONTACT NO-CONTACT NO DESTRUCTIVE DESTRUCTIVE X-RAY MAGNETIC OPTICAL ACOUSTIC CMM ROBOTIC GANTRY SLICING ACTIVE PASSIVE

More information

A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays

A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays I. Rech, A. Ingargiola, R. Spinelli, S. Marangoni, I. Labanca, M. Ghioni, S. Cova Dipartimento di Elettronica ed Informazione Politecnico

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

Overview of Active Vision Techniques

Overview of Active Vision Techniques SIGGRAPH 99 Course on 3D Photography Overview of Active Vision Techniques Brian Curless University of Washington Overview Introduction Active vision techniques Imaging radar Triangulation Moire Active

More information

ACCURACY OF EXTERIOR ORIENTATION FOR A RANGE CAMERA

ACCURACY OF EXTERIOR ORIENTATION FOR A RANGE CAMERA ACCURACY OF EXTERIOR ORIENTATION FOR A RANGE CAMERA Jan Boehm, Timothy Pattinson Institute for Photogrammetry, University of Stuttgart, Germany jan.boehm@ifp.uni-stuttgart.de Commission V, WG V/2, V/4,

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS442/542b: Artificial ntelligence Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field Methods

More information

y z x SNR(dB) RMSE(mm)

y z x SNR(dB) RMSE(mm) a b c d y z x SNR(dB) RMSE(mm) 30.16 2.94 20.28 6.56 10.33 13.74 0.98 25.37 Supplementary Figure 1: System performance with different noise levels. The SNRs are the mean SNR of all measured signals corresponding

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 11 140311 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Motion Analysis Motivation Differential Motion Optical

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Monitoring Masonry Walls Subjected to Earthquake Loading with a Time-of-Flight Range Camera

Monitoring Masonry Walls Subjected to Earthquake Loading with a Time-of-Flight Range Camera Monitoring Masonry Walls Subjected to Earthquake Loading with a Time-of-Flight Range Camera David HOLDENER, Dr. Derek D. LICHTI, Jeremy STEWARD, and Pedram KAHEH, Canada Key words: Photogrammetry, Range

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Lecture 19: Motion. Effect of window size 11/20/2007. Sources of error in correspondences. Review Problem set 3. Tuesday, Nov 20

Lecture 19: Motion. Effect of window size 11/20/2007. Sources of error in correspondences. Review Problem set 3. Tuesday, Nov 20 Lecture 19: Motion Review Problem set 3 Dense stereo matching Sparse stereo matching Indexing scenes Tuesda, Nov 0 Effect of window size W = 3 W = 0 Want window large enough to have sufficient intensit

More information

Scanner Parameter Estimation Using Bilevel Scans of Star Charts

Scanner Parameter Estimation Using Bilevel Scans of Star Charts ICDAR, Seattle WA September Scanner Parameter Estimation Using Bilevel Scans of Star Charts Elisa H. Barney Smith Electrical and Computer Engineering Department Boise State University, Boise, Idaho 8375

More information

Linescan System Design for Robust Web Inspection

Linescan System Design for Robust Web Inspection Linescan System Design for Robust Web Inspection Vision Systems Design Webinar, December 2011 Engineered Excellence 1 Introduction to PVI Systems Automated Test & Measurement Equipment PC and Real-Time

More information

Comparison between Motion Analysis and Stereo

Comparison between Motion Analysis and Stereo MOTION ESTIMATION The slides are from several sources through James Hays (Brown); Silvio Savarese (U. of Michigan); Octavia Camps (Northeastern); including their own slides. Comparison between Motion Analysis

More information

Accurately measuring 2D position using a composed moiré grid pattern and DTFT

Accurately measuring 2D position using a composed moiré grid pattern and DTFT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 Accurately measuring 2D position using a composed moiré grid pattern and DTFT S. Van

More information

Visual Computing Midterm Winter Pledge: I neither received nor gave any help from or to anyone in this exam.

Visual Computing Midterm Winter Pledge: I neither received nor gave any help from or to anyone in this exam. Visual Computing Midterm Winter 2018 Total Points: 80 points Name: Number: Pledge: I neither received nor gave any help from or to anyone in this exam. Signature: Useful Tips 1. All questions are multiple

More information

AUTOMATED CALIBRATION TECHNIQUE FOR PHOTOGRAMMETRIC SYSTEM BASED ON A MULTI-MEDIA PROJECTOR AND A CCD CAMERA

AUTOMATED CALIBRATION TECHNIQUE FOR PHOTOGRAMMETRIC SYSTEM BASED ON A MULTI-MEDIA PROJECTOR AND A CCD CAMERA AUTOMATED CALIBRATION TECHNIQUE FOR PHOTOGRAMMETRIC SYSTEM BASED ON A MULTI-MEDIA PROJECTOR AND A CCD CAMERA V. A. Knyaz * GosNIIAS, State Research Institute of Aviation System, 539 Moscow, Russia knyaz@gosniias.ru

More information

Effects Of Shadow On Canny Edge Detection through a camera

Effects Of Shadow On Canny Edge Detection through a camera 1523 Effects Of Shadow On Canny Edge Detection through a camera Srajit Mehrotra Shadow causes errors in computer vision as it is difficult to detect objects that are under the influence of shadows. Shadow

More information

3D Modeling from Range Images

3D Modeling from Range Images 1 3D Modeling from Range Images A Comprehensive System for 3D Modeling from Range Images Acquired from a 3D ToF Sensor Dipl.-Inf. March 22th, 2007 Sensor and Motivation 2 3D sensor PMD 1k-S time-of-flight

More information

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 1, MARCH

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 1, MARCH IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 1, MARCH 2016 27 A Comparative Error Analysis of Current Time-of-Flight Sensors Peter Fürsattel, Simon Placht, Michael Balda, Christian Schaller,

More information

Computational Cameras: Exploiting Spatial- Angular Temporal Tradeoffs in Photography

Computational Cameras: Exploiting Spatial- Angular Temporal Tradeoffs in Photography Mitsubishi Electric Research Labs (MERL) Computational Cameras Computational Cameras: Exploiting Spatial- Angular Temporal Tradeoffs in Photography Amit Agrawal Mitsubishi Electric Research Labs (MERL)

More information

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery 1 Charles TOTH, 1 Dorota BRZEZINSKA, USA 2 Allison KEALY, Australia, 3 Guenther RETSCHER,

More information

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT.

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT. Vivekananda Collegee of Engineering & Technology Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT Dept. Prepared by Harivinod N Assistant Professor, of Computer Science and Engineering,

More information

2 Depth Camera Assessment

2 Depth Camera Assessment 2 Depth Camera Assessment The driving question of this chapter is how competitive cheap consumer depth cameras, namely the Microsoft Kinect and the SoftKinetic DepthSense, are compared to state-of-the-art

More information

Exploring the Potential of Combining Time of Flight and Thermal Infrared Cameras for Person Detection

Exploring the Potential of Combining Time of Flight and Thermal Infrared Cameras for Person Detection Exploring the Potential of Combining Time of Flight and Thermal Infrared Cameras for Person Detection Wim Abbeloos and Toon Goedemé KU Leuven, Department of Electrical Engineering, EAVISE Leuven, Belgium

More information

Real-time scattering compensation for time-of-flight camera

Real-time scattering compensation for time-of-flight camera Real-time scattering compensation for time-of-flight camera James Mure-Dubois and Heinz Hügli University of Neuchâtel Institute of Microtechnology, 2000 Neuchâtel, Switzerland Abstract. 3D images from

More information

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012 Diffuse Optical Tomography, Inverse Problems, and Optimization Mary Katherine Huffman Undergraduate Research Fall 11 Spring 12 1. Introduction. This paper discusses research conducted in order to investigate

More information

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa 3D Scanning Qixing Huang Feb. 9 th 2017 Slide Credit: Yasutaka Furukawa Geometry Reconstruction Pipeline This Lecture Depth Sensing ICP for Pair-wise Alignment Next Lecture Global Alignment Pairwise Multiple

More information

Chapters 1 7: Overview

Chapters 1 7: Overview Chapters 1 7: Overview Chapter 1: Introduction Chapters 2 4: Data acquisition Chapters 5 7: Data manipulation Chapter 5: Vertical imagery Chapter 6: Image coordinate measurements and refinements Chapter

More information

Capturing, Modeling, Rendering 3D Structures

Capturing, Modeling, Rendering 3D Structures Computer Vision Approach Capturing, Modeling, Rendering 3D Structures Calculate pixel correspondences and extract geometry Not robust Difficult to acquire illumination effects, e.g. specular highlights

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

Outline 7/2/201011/6/

Outline 7/2/201011/6/ Outline Pattern recognition in computer vision Background on the development of SIFT SIFT algorithm and some of its variations Computational considerations (SURF) Potential improvement Summary 01 2 Pattern

More information

Sensor technology for mobile robots

Sensor technology for mobile robots Laser application, vision application, sonar application and sensor fusion (6wasserf@informatik.uni-hamburg.de) Outline Introduction Mobile robots perception Definitions Sensor classification Sensor Performance

More information

Computer Vision. Introduction

Computer Vision. Introduction Computer Vision Introduction Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 About this course Official

More information

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors Complex Sensors: Cameras, Visual Sensing The Robotics Primer (Ch. 9) Bring your laptop and robot everyday DO NOT unplug the network cables from the desktop computers or the walls Tuesday s Quiz is on Visual

More information

EE565:Mobile Robotics Lecture 3

EE565:Mobile Robotics Lecture 3 EE565:Mobile Robotics Lecture 3 Welcome Dr. Ahmad Kamal Nasir Today s Objectives Motion Models Velocity based model (Dead-Reckoning) Odometry based model (Wheel Encoders) Sensor Models Beam model of range

More information

Synthesis Imaging. Claire Chandler, Sanjay Bhatnagar NRAO/Socorro

Synthesis Imaging. Claire Chandler, Sanjay Bhatnagar NRAO/Socorro Synthesis Imaging Claire Chandler, Sanjay Bhatnagar NRAO/Socorro Michelson Summer Workshop Caltech, July 24-28, 2006 Synthesis Imaging 2 Based on the van Cittert-Zernike theorem: The complex visibility

More information

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation Motion Sohaib A Khan 1 Introduction So far, we have dealing with single images of a static scene taken by a fixed camera. Here we will deal with sequence of images taken at different time intervals. Motion

More information

Wide Area 2D/3D Imaging

Wide Area 2D/3D Imaging Wide Area 2D/3D Imaging Benjamin Langmann Wide Area 2D/3D Imaging Development, Analysis and Applications Benjamin Langmann Hannover, Germany Also PhD Thesis, University of Siegen, 2013 ISBN 978-3-658-06456-3

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington T V ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

OPTI-521 Graduate Report 2 Matthew Risi Tutorial: Introduction to imaging, and estimate of image quality degradation from optical surfaces

OPTI-521 Graduate Report 2 Matthew Risi Tutorial: Introduction to imaging, and estimate of image quality degradation from optical surfaces OPTI-521 Graduate Report 2 Matthew Risi Tutorial: Introduction to imaging, and estimate of image quality degradation from optical surfaces Abstract The purpose of this tutorial is to introduce the concept

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 4 Jan. 24 th, 2019 Slides from Dr. Shishir K Shah and Frank (Qingzhong) Liu Digital Image Processing COSC 6380/4393 TA - Office: PGH 231 (Update) Shikha

More information

Visual Perception Sensors

Visual Perception Sensors G. Glaser Visual Perception Sensors 1 / 27 MIN Faculty Department of Informatics Visual Perception Sensors Depth Determination Gerrit Glaser University of Hamburg Faculty of Mathematics, Informatics and

More information

Refined Measurement of Digital Image Texture Loss Peter D. Burns Burns Digital Imaging Fairport, NY USA

Refined Measurement of Digital Image Texture Loss Peter D. Burns Burns Digital Imaging Fairport, NY USA Copyright 3 SPIE Refined Measurement of Digital Image Texture Loss Peter D. Burns Burns Digital Imaging Fairport, NY USA ABSTRACT Image texture is the term given to the information-bearing fluctuations

More information

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation Alexander Andreopoulos, Hirak J. Kashyap, Tapan K. Nayak, Arnon Amir, Myron D. Flickner IBM Research March 25,

More information

High Resolution Tree Models: Modeling of a Forest Stand Based on Terrestrial Laser Scanning and Triangulating Scanner Data

High Resolution Tree Models: Modeling of a Forest Stand Based on Terrestrial Laser Scanning and Triangulating Scanner Data ELMF 2013, 11-13 November 2013 Amsterdam, The Netherlands High Resolution Tree Models: Modeling of a Forest Stand Based on Terrestrial Laser Scanning and Triangulating Scanner Data Lothar Eysn Lothar.Eysn@geo.tuwien.ac.at

More information

Characterization of a Time-of-Flight Camera for Use in Diffuse Optical Tomography

Characterization of a Time-of-Flight Camera for Use in Diffuse Optical Tomography Characterization of a Time-of-Flight Camera for Use in Diffuse Optical Tomography A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information