Interpolate Continuous Data From Non-Continuous Data. Examples. Dialog Box

Size: px
Start display at page:

Download "Interpolate Continuous Data From Non-Continuous Data. Examples. Dialog Box"

Transcription

1 Interpolate Continuous Data From Non-Continuous Data Examples Dialog Box Interpolating Continuous Elevation Data From Contours Interpolating Continuous Bathymetric Data Using a Mask Map Layer Using the operation dialog box interface Using the dialog box interface to create or edit scripts Sparse Data Map This drop-down list allows you to specify a map layer of non-continuous data to be interpolated into a map layer of continuous data. Non-continuous data can include contour data, incomplete thematic information, and remote sensing imagery with data gaps. For sparse point data such as spot heights, geological surveys, and random points, use the Krige operation to interpolate continuous data. Output Precision Use the Output Precision field and drop-down list to specify the precision of the interpolation. Specify 5m if you want the interpolated values to be calculated only to the nearest 5m; specify 0.001m or 1cm if you want the OP-INT-1

2 interpolated values to be calculated to the nearest centimetre. If your data values are not measured in mm, cm, m, or km, specify None. Mask Map Use the Mask Map drop-down list to specify a map layer that restricts the interpolation to the cells in the mask map layer that have a non-void value. All cells that have the value ÒVOIDÓ in the mask map will not be included in the interpolation. Search Radius The Search Radius field and drop-down list specify a distance from each cell for which the Interpolate operation will search for values to use in the first pass of the interpolation. The Interpolate operation uses a two pass process to calculate values (see First Pass Grid Spacing below). If no value is specified in this field, the Interpolate operation will search in all directions until it locates a value. First Pass Grid Spacing The Interpolate operation uses a two pass process to interpolate values. The First Pass Grid Spacing option field is used to specify the coarseness of the first pass of the interpolation. A spacing of 1 is equivalent to interpolating all cells on the first pass. A spacing of 3 is the default: it interpolates values for every third cell moving from left to right and top to bottom on the first pass. The higher the spacing number the faster the operation; however, increasing the spacing value may reduce accuracy. The maximum value is 10. For tightly spaced contours, use a grid spacing of Ò1Ó. Weighting Method There are two weighting methods that the Interpolate operation can use to calculate unknown values based on known values: Inverse and Inverse Square. These are based on a gravity model (see Details below). The further away a cell is from the target cell, the less influence it has on the resulting cell value. This influence is based either on the inverse of the distance, or the inverse square of the distance. With Inverse Square the distance factor is squared, greatly reducing the influence of cells that are far away. Syntax Syntax and type conventions Using the Script window interface Using the dialog box interface to create or edit scripts OP-INT-2

3 Interpolate map [In area map] [To vertical distance] [Within horizontal distance] [Step increment value] [InverseSquare]; Interpolate map The Interpolate statement specifies a map layer of non-continuous data to be interpolated into a continuous data set. In area map The In modifier is used to specify a mask map layer that restricts the interpolation to specific cells. For example, you may wish to restrict the interpolation to non-urban areas only or, if creating a Digital Bathymetry Model, to those areas below sealevel only. Non-VOID cells in the mask map identify those cells that are to be interpolated. VOID cells in the mask map will result in corresponding VOID cells in the resulting map layer. To vertical distance The To modifier is used to determine the data type and precision of the resulting map layer. If the To parameter contains a decimal point (e.g., 1.0cm), the resulting map layer will be of floating point type, otherwise (e.g., 1cm) the resulting map layer will be of fixed point type. For example, for floating point results to be within 1 cm, specify To 0.01m or To 1.0cm. The units of measure specified will be the data units of the resulting map layer. Within horizontal distance The Interpolate operation uses a two pass process to calculate the unknown values. The Within modifier can be used to limit the radius of the search area of the first pass. If no distance units are given, horizontal distance is assumed to represent number of cells. The default is unlimited distance. Note: the use of this modifier may produce VOID areas in the resulting map layer if the input map layer data is more disbursed than the radius specified. Step increment value The Interpolate operation uses a two pass algorithm. The Step modifier identifies the coarseness of the first pass of the interpolation. Step 1 is equivalent to interpolating all cells on the first pass. Step 3 is the default; it only interpolates values for every third cell moving from left to right and top to bottom on the first pass. The higher the Step number, the faster the operation; however, increasing the step value may reduce accuracy. The OP-INT-3

4 step value must be an integer between 1 and 10. To interpolate values from tightly spaced contours, use Step 1. InverseSquare By default, an inverse weighting process is used unless the InverseSquare modifier is specified. Inverse weighting works like a gravity model. The further away a cell is from the centre of the window, the less influence it has on the value of a cell in the resulting map layer. Influence is based on the inverse or inverse square of the distance between cells. More distant values have a lesser effect if the InverseSquare modifier is used. Details The Interpolate operation creates a continuous data set from sparse data by estimating unknown values based on known values using a two pass approach. The non-data cells in the non-continuous data map layer should be assigned the value ÒVOIDÓ. The Interpolate operation is commonly used with contour data and/or ridge-and-channel data to generate a DEM (Digital Elevation Model). The Interpolate operation uses a two pass approach. The first pass looks for non-void cells within the maximum specified distance surrounding a VOID cell (i.e., a cell with an unknown value). A coarse grid of cells (every 2nd or 3rd or nth cell, whatever is specified by the Step modifier in the Script window or the First Pass Grid Spacing in the Interpolate dialog box) is interpolated on the first pass. The second pass takes the resulting coarse grid and interpolates the remaining cells. Either way, the interpolated value of a cell is based on the following formula: e å i i d i target value = å 1 i di e is the elevation of a neighbouring cell d is the distance between the neighbouring cell and the target cell. i is the number of cells Each neighbouring cell contributes to the value of the target cell based on its distance from the target cell. Closer cells contribute more than cells further away. If the InverseSquare modifier is specified, the weighting is based on the square of the distance from the target, otherwise the weighting is based on the distance. What Do I Need? Use the Interpolate operation on non-continuous data to fill in gaps and voids. Cells with no data should be assigned the value ÒVOIDÓ. The Interpolate operation works best on semi-continuous data such as contours and remote sensing imagery with gaps. If you have a map layer with sparse data points, use the Krige operation to interpolate unknown values. OP-INT-4

5 Troubleshooting Error Messages Here are some of the most common error messages for the Interpolate operation with suggestions on what to do if you see them: Error, the original map data units are not compatible with the units specified in the ÒToÓ modifier. Either change the map layer units in the Information window to match the units of the To modifier or change the units of the To modifier to match the map layer units. Error, negative or zero distance/resolution specified. The distance modifier must be a value greater than zero. Error, the cell resolution units of the original map are not compatible with the units specified in the ÒWithinÓ modifier. Either change the map layer units in the Information window to match the units of the Within modifier or change the units of the Within modifier to match the map layer units. Error, the specified ÒStepÓ value is outside the valid range (1Ñ10). Specify the Step value in the operation with an integer between 1 and 10. Error, the specified ÒStepÓ value is too large for the original map. Must be less than the number of rows/columns. Consult the Information window to determine the number of rows/columns. Sorry, the map has exceeded the maximum number of zones allowed (65Ê000). The map layer is too large. Try subscening the operand map layer and perform the operation on the subscenes then use Cover (Mosaic) to reassemble the maps. OP-INT-5

Lecture 9. Raster Data Analysis. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lecture 9. Raster Data Analysis. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lecture 9 Raster Data Analysis Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Raster Data Model The GIS raster data model represents datasets in which square

More information

Exporting to a 24-bit Colour BMP

Exporting to a 24-bit Colour BMP Importing a BMP Exporting to a 24-bit Colour BMP File Type: BMP (Windows Bitmap) Directions: BMPMF Details: BMP (Windows Bitmap) is a standard graphic file format for Windows and DOS based platforms.

More information

Operations. What Do I Need? Scan Filter

Operations. What Do I Need? Scan Filter Smooth Anomalous Values in a DEM Reduce Noise and Speckling in a Satellite Image Smooth Anomalous Values in Ordinal Data (Nearest Neighbour Interpolation) Smooth Anomalous Values in Nominal Data (Nearest

More information

Exporting to a 3D Metafile (3DMF)

Exporting to a 3D Metafile (3DMF) Exporting to a 3D Metafile (3DMF) File Type: 3D Metafile (3DMF) Directions: 3DMF

More information

Geol 588. GIS for Geoscientists II. Zonal functions. Feb 22, Zonal statistics. Interpolation. Zonal statistics Sp. Analyst Tools - Zonal.

Geol 588. GIS for Geoscientists II. Zonal functions. Feb 22, Zonal statistics. Interpolation. Zonal statistics Sp. Analyst Tools - Zonal. Zonal functions Geol 588 GIS for Geoscientists II Feb 22, 2011 Zonal statistics Interpolation Zonal statistics Sp. Analyst Tools - Zonal Choose correct attribute for zones (usually: must be unique ID for

More information

Geological modelling. Gridded Models

Geological modelling. Gridded Models Geological modelling This white paper discusses the meaning and generation of a geological model. The emphasis is on gridded seam models which are commonly used in coal. Mining companies make investment

More information

Lesson 5 overview. Concepts. Interpolators. Assessing accuracy Exercise 5

Lesson 5 overview. Concepts. Interpolators. Assessing accuracy Exercise 5 Interpolation Tools Lesson 5 overview Concepts Sampling methods Creating continuous surfaces Interpolation Density surfaces in GIS Interpolators IDW, Spline,Trend, Kriging,Natural neighbors TopoToRaster

More information

EMIGMA V9.x Premium Series April 8, 2015

EMIGMA V9.x Premium Series April 8, 2015 EMIGMA V9.x Premium Series April 8, 2015 EMIGMA for Gravity EMIGMA for Gravity license is a comprehensive package that offers a wide array of processing, visualization and interpretation tools. The package

More information

v Importing Rasters SMS 11.2 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial

v Importing Rasters SMS 11.2 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial v. 11.2 SMS 11.2 Tutorial Objectives This tutorial teaches how to import a Raster, view elevations at individual points, change display options for multiple views of the data, show the 2D profile plots,

More information

v Working with Rasters SMS 12.1 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial

v Working with Rasters SMS 12.1 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial v. 12.1 SMS 12.1 Tutorial Objectives This tutorial teaches how to import a Raster, view elevations at individual points, change display options for multiple views of the data, show the 2D profile plots,

More information

Dijkstra's Algorithm

Dijkstra's Algorithm Shortest Path Algorithm Dijkstra's Algorithm To find the shortest path from the origin node to the destination node No matrix calculation Floyd s Algorithm To find all the shortest paths from the nodes

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued

GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued Spatial Analyst - Spatial Analyst is an ArcGIS extension designed to work with raster data - in lecture I went through a series of demonstrations

More information

These notes are designed to provide an introductory-level knowledge appropriate to understanding the basics of digital data formats.

These notes are designed to provide an introductory-level knowledge appropriate to understanding the basics of digital data formats. A brief guide to binary data Mike Sandiford, March 2001 These notes are designed to provide an introductory-level knowledge appropriate to understanding the basics of digital data formats. The problem

More information

Statistical surfaces and interpolation. This is lecture ten

Statistical surfaces and interpolation. This is lecture ten Statistical surfaces and interpolation This is lecture ten Data models for representation of surfaces So far have considered field and object data models (represented by raster and vector data structures).

More information

v SMS Tutorials Working with Rasters Prerequisites Requirements Time Objectives

v SMS Tutorials Working with Rasters Prerequisites Requirements Time Objectives v. 12.2 SMS 12.2 Tutorial Objectives Learn how to import a Raster, view elevations at individual points, change display options for multiple views of the data, show the 2D profile plots, and interpolate

More information

Knowledge Organiser - E3

Knowledge Organiser - E3 Knowledge Organiser - E3 Code Objective E3.0 Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero The temperature in Bolton

More information

How does Map Algebra work?

How does Map Algebra work? Map Algebra How does Map Algebra work? Map Algebra uses math-like expressions containing operators and functions with raster data. Map Algebra operators, which are relational, Boolean, logical, combinatorial,

More information

11 cm. A rectangular container is 12 cm long, 11 cm wide and 10 cm high. The container is filled with water to a depth of 8 cm.

11 cm. A rectangular container is 12 cm long, 11 cm wide and 10 cm high. The container is filled with water to a depth of 8 cm. Diagram NOT accurately drawn 10 cm 11 cm 12 cm 3.5 cm A rectangular container is 12 cm long, 11 cm wide and 10 cm high. The container is filled with water to a depth of 8 cm. A metal sphere of radius 3.5

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

Measure the Perimeter of Polygons Over a Surface. Operations. What Do I Need?

Measure the Perimeter of Polygons Over a Surface. Operations. What Do I Need? Measure the Perimeter of Polygons Over a Surface Operations What Do I Need? Incremental Frontage Score To measure the perimeter of polygons over a surface you need to have two input map layers. The first

More information

Name: Block: What I can do for this unit:

Name: Block: What I can do for this unit: Unit 8: Trigonometry Student Tracking Sheet Math 10 Common Name: Block: What I can do for this unit: After Practice After Review How I Did 8-1 I can use and understand triangle similarity and the Pythagorean

More information

Petrel TIPS&TRICKS from SCM

Petrel TIPS&TRICKS from SCM Petrel TIPS&TRICKS from SCM Knowledge Worth Sharing Merging Overlapping Files into One 2D Grid Often several files (grids or data) covering adjacent and overlapping areas must be combined into one 2D Grid.

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 Tobler s Law All places are related, but nearby places are related more than distant places Corollary:

More information

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics DIGITAL TERRAIN MODELLING Endre Katona University of Szeged Department of Informatics katona@inf.u-szeged.hu The problem: data sources data structures algorithms DTM = Digital Terrain Model Terrain function:

More information

Point Cloud Classification

Point Cloud Classification Point Cloud Classification Introduction VRMesh provides a powerful point cloud classification and feature extraction solution. It automatically classifies vegetation, building roofs, and ground points.

More information

Accuracy, Support, and Interoperability. Michael F. Goodchild University of California Santa Barbara

Accuracy, Support, and Interoperability. Michael F. Goodchild University of California Santa Barbara Accuracy, Support, and Interoperability Michael F. Goodchild University of California Santa Barbara The traditional view Every object has a true position and set of attributes with enough time and resources

More information

SoundPLAN Info #1. February 2012

SoundPLAN Info #1. February 2012 SoundPLAN Info #1 February 2012 If you are not a SoundPLAN user and want to experiment with the noise maps, please feel free to download the demo version from our server, (download SoundPLAN). If you want

More information

Gridding and Contouring in Geochemistry for ArcGIS

Gridding and Contouring in Geochemistry for ArcGIS Gridding and Contouring in Geochemistry for ArcGIS The Geochemsitry for ArcGIS extension includes three gridding options: Minimum Curvature Gridding, Kriging and a new Inverse Distance Weighting algorithm.

More information

Maths PoS: Year 7 HT1. Students will colour code as they work through the scheme of work. Students will learn about Number and Shape

Maths PoS: Year 7 HT1. Students will colour code as they work through the scheme of work. Students will learn about Number and Shape Maths PoS: Year 7 HT1 Students will learn about Number and Shape Number: Use positive and negative numbers in context and position them on a number line. Recall quickly multiplication facts up to 10 10

More information

Creating Surfaces. Steve Kopp Steve Lynch

Creating Surfaces. Steve Kopp Steve Lynch Steve Kopp Steve Lynch Overview Learn the types of surfaces and the data structures used to store them Emphasis on surface interpolation Learn the interpolation workflow Understand how interpolators work

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS CONTOURS! Self-Paced Lab Due Friday! WEEK SIX Lecture RASTER ANALYSES Joe Wheaton YOUR EXCERCISE Integer Elevations Rounded up

More information

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University 1 Outline of This Week Last topic, we learned: Spatial autocorrelation of areal data Spatial regression

More information

Spatial Interpolation - Geostatistics 4/3/2018

Spatial Interpolation - Geostatistics 4/3/2018 Spatial Interpolation - Geostatistics 4/3/201 (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Distance between pairs of points Lag Mean Tobler s Law All places are related, but nearby places

More information

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents GMS 7.0 TUTORIALS 1 Introduction Two-dimensional geostatistics (interpolation) can be performed in GMS using the 2D Scatter Point module. The module is used to interpolate from sets of 2D scatter points

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are in the L12 subdirectory.

More information

A comparison of interpolation methods for processing randomly scattered bathymetric data

A comparison of interpolation methods for processing randomly scattered bathymetric data A comparison of interpolation methods for processing randomly scattered bathymetric data L.J. Scott

More information

A Method to Create a Single Photon LiDAR based Hydro-flattened DEM

A Method to Create a Single Photon LiDAR based Hydro-flattened DEM A Method to Create a Single Photon LiDAR based Hydro-flattened DEM Sagar Deshpande 1 and Alper Yilmaz 2 1 Surveying Engineering, Ferris State University 2 Department of Civil, Environmental, and Geodetic

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS Quizzes Lab 8? WEEK EIGHT Lecture INTERPOLATION & SPATIAL ESTIMATION Joe Wheaton READING FOR TODAY WHAT CAN WE COLLECT AT POINTS?

More information

DIGITAL ORTHOPHOTO GENERATION

DIGITAL ORTHOPHOTO GENERATION DIGITAL ORTHOPHOTO GENERATION Manuel JAUREGUI, José VÍLCHE, Leira CHACÓN. Universit of Los Andes, Venezuela Engineering Facult, Photogramdemr Institute, Email leirac@ing.ula.ven Working Group IV/2 KEY

More information

Using WindSim by means of WindPRO-interface gives the user many advantages:

Using WindSim by means of WindPRO-interface gives the user many advantages: 1 Content: Content:...1 1. Introduction...1 Using WindSim by means of WindPRO-interface gives the user many advantages:...1 Important Limitations...2 Important Information about Nested Calculation...2

More information

Year 6 programme of study

Year 6 programme of study Year 6 programme of study Number number and place value read, write, order and compare numbers up to 10 000 000 and determine the value of each digit round any whole number to a required degree of accuracy

More information

Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri. [10] Spring 2018 GIS Dr. Mohammad N. Almasri Spatial Analyst

Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri. [10] Spring 2018 GIS Dr. Mohammad N. Almasri Spatial Analyst Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri 1 Preface POINTS, LINES, and POLYGONS are good at representing geographic objects with distinct shapes They are less good

More information

YEAR 6 MATHS LONG TERM PLAN ACADEMIC YEAR AUTUMN TERM

YEAR 6 MATHS LONG TERM PLAN ACADEMIC YEAR AUTUMN TERM YEAR 6 MATHS LONG TERM PLAN ACADEMIC YEAR 2013 2014 AUTUMN TERM WEEK BLOCK-UNIT MENTAL AND ORAL OBJECTIVE 1 Block A Unit 1 5 Questions from 1 Multiply and Divide numbers by 10, 100 and 1000 explaining

More information

Surveying. Session GPS Surveying 1. GPS Surveying. Carrier-Phase (RTK) Pseudo-Range (DGPS) Slide 1

Surveying. Session GPS Surveying 1. GPS Surveying. Carrier-Phase (RTK) Pseudo-Range (DGPS) Slide 1 GPS Surveying Slide 1 GPS Surveying Surveying Mapping Standalone Relative Relative Standalone Post-Processed Real-Time Static / Fast Static Kinematic Stop & Go Rapid-Static Carrier-Phase (RTK) Pseudo-Range

More information

Stitching Fine Resolution DEMs

Stitching Fine Resolution DEMs 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 Stitching Fine Resolution DEMs Gallant, J.C. 1 and J.M. Austin 1 1 CSIRO Land and Water, Black Mountain

More information

Information for Parents/Carers. Mathematics Targets - A Year 1 Mathematician

Information for Parents/Carers. Mathematics Targets - A Year 1 Mathematician Mathematics Targets - A Year 1 Mathematician Number I can count reliably to 100. I can count on and back in 1s, 2s, 5s and 10s from any given number up to 100. I can write all numbers in words to 20. I

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Videos that show how to copy/paste data

More information

Reality Check: Processing LiDAR Data. A story of data, more data and some more data

Reality Check: Processing LiDAR Data. A story of data, more data and some more data Reality Check: Processing LiDAR Data A story of data, more data and some more data Red River of the North Red River of the North Red River of the North Red River of the North Introduction and Background

More information

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Buyuksalih, G.*, Oruc, M.*, Topan, H.*,.*, Jacobsen, K.** * Karaelmas University Zonguldak, Turkey **University

More information

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford Esri International User Conference July 23 27 San Diego Convention Center Lidar Solutions Clayton Crawford Outline Data structures, tools, and workflows Assessing lidar point coverage and sample density

More information

L E S S O N 2 Background

L E S S O N 2 Background Flight, Naperville Central High School, Naperville, Ill. No hard hat needed in the InDesign work area Once you learn the concepts of good page design, and you learn how to use InDesign, you are limited

More information

Restricted Bathymetric Tracklines Interpolation

Restricted Bathymetric Tracklines Interpolation Restricted Bathymetric Tracklines Interpolation Wenli Li, W. Randolph Franklin, Salles V. G. Magalhães, Marcus V. A. Andrade Rensselaer Polytechnic Institute liw9@rpi.edu, mail@wrfranklin.org, vianas2@rpi.edu,

More information

What can we represent as a Surface?

What can we represent as a Surface? Geography 38/42:376 GIS II Topic 7: Surface Representation and Analysis (Chang: Chapters 13 & 15) DeMers: Chapter 10 What can we represent as a Surface? Surfaces can be used to represent: Continuously

More information

Accuracy of Terrain Elevation Modelling

Accuracy of Terrain Elevation Modelling Accuracy of Terrain Elevation Modelling 0790 0790 07900 07880 0780 0770 0770 07700 1710 17180 1700 170 170 170 1780 1700 170 Accuracy of Terrain Elevation Modelling By A.G. Barnett and H.L. MacMurray Barnett

More information

Tutorial 7. Water Table and Bedrock Surface

Tutorial 7. Water Table and Bedrock Surface Tutorial 7 Water Table and Bedrock Surface Table of Contents Objective. 1 Step-by-Step Procedure... 2 Section 1 Data Input. 2 Step 1: Open Adaptive Groundwater Input (.agw) File. 2 Step 2: Assign Material

More information

DEM creation using 3D vectors Geomatica 2014 tutorial

DEM creation using 3D vectors Geomatica 2014 tutorial The following tutorial demonstrates how to create a raster digital elevation model (DEM) by interpolating elevation values from millions of points and 3-D structure lines commonly referred to as breaklines.

More information

Esri International User Conference. San Diego, California. Technical Workshops. July Creating Surfaces. Steve Kopp and Steve Lynch

Esri International User Conference. San Diego, California. Technical Workshops. July Creating Surfaces. Steve Kopp and Steve Lynch Esri International User Conference San Diego, California Technical Workshops July 2011 Creating Surfaces Steve Kopp and Steve Lynch Overview Learn the types of surfaces and the data structures used to

More information

Number and Place Value

Number and Place Value Number and Place Value Reading and writing numbers Ordering and comparing numbers Place value Representing and estimating numbers Rounding numbers Counting Finding other numbers Solving problems Roman

More information

Surface Analysis. Data for Surface Analysis. What are Surfaces 4/22/2010

Surface Analysis. Data for Surface Analysis. What are Surfaces 4/22/2010 Surface Analysis Cornell University Data for Surface Analysis Vector Triangulated Irregular Networks (TIN) a surface layer where space is partitioned into a set of non-overlapping triangles Attribute and

More information

Petrel TIPS&TRICKS from SCM

Petrel TIPS&TRICKS from SCM Petrel TIPS&TRICKS from SCM Knowledge Worth Sharing Digitizing and Gridding Contours in Petrel SCM trainers and consultants use Petrel s contour digitizing and contour gridding tools on most projects.

More information

Raster model. Raster model. Resolution. Value and data types. Structure and storage. Cell. Values. Data

Raster model. Raster model. Resolution. Value and data types. Structure and storage. Cell. Values. Data Raster model. Resolution. Values and data types 3. Storage. Fitting rasters 5. Map algebra 6. Interpolation 7. Conversion vectorraster 8. Vector vs. raster Raster model Divides the space into a regular

More information

Medium Term Plan Mathematics Year 6. The Medium Term Plan lists the objectives to be covered each half term for the teaching of Mathematics

Medium Term Plan Mathematics Year 6. The Medium Term Plan lists the objectives to be covered each half term for the teaching of Mathematics Medium Term Plan Mathematics Year 6 The Medium Term Plan lists the objectives to be covered each half term for the teaching of Mathematics problem, an appropriate degree of accuracy the four op s Solve

More information

University of Manitoba Open Programming Contest September 22, General Instructions:

University of Manitoba Open Programming Contest September 22, General Instructions: University of Manitoba Open Programming Contest September 22, 2012 General Instructions: 1. Submit solutions using the PC^2 software. 2. The questions are not listed in order of difficulty. Some questions

More information

Learn to create a cell-centered grid using data from the area around Kalaeloa Barbers Point Harbor in Hawaii. Requirements

Learn to create a cell-centered grid using data from the area around Kalaeloa Barbers Point Harbor in Hawaii. Requirements v. 13.0 SMS 13.0 Tutorial Objectives Learn to create a cell-centered grid using data from the area around Kalaeloa Barbers Point Harbor in Hawaii. Prerequisites Overview Tutorial Requirements Map Module

More information

All classes in a package can be imported by using only one import statement. If the postcondition of a method is not met, blame its implementer

All classes in a package can be imported by using only one import statement. If the postcondition of a method is not met, blame its implementer Java By Abstraction ANSWERS O ES-A GROUP - A For each question, give +0.5 if correct, -0.5 if wrong, and 0 if blank. If the overall total is negative, record it (on the test's cover sheet)

More information

Advances in radial trace domain coherent noise attenuation

Advances in radial trace domain coherent noise attenuation Advances in radial trace domain coherent noise attenuation ABSTRACT David C. Henley* CREWES, Department of Geology and Geophysics University of Calgary, Calgary, AB henley@crewes.org The radial trace transform,

More information

G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S )

G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S ) G r a d e 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 0 S ) Midterm Practice Exam Answer Key G r a d e 0 I n t r o d u c t i o n t o A p p l i e d

More information

IMAGE PROCESSING AND IMAGE REGISTRATION ON SPIRAL ARCHITECTURE WITH salib

IMAGE PROCESSING AND IMAGE REGISTRATION ON SPIRAL ARCHITECTURE WITH salib IMAGE PROCESSING AND IMAGE REGISTRATION ON SPIRAL ARCHITECTURE WITH salib Stefan Bobe 1 and Gerald Schaefer 2,* 1 University of Applied Sciences, Bielefeld, Germany. 2 School of Computing and Informatics,

More information

Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis

Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis Module content 18.1. Creating a TIN 18.2. Spatial Analyst Viewsheds, Slopes, Hillshades and Density. 18.1 Creating a TIN Sometimes

More information

Oasis montaj Advanced Mapping

Oasis montaj Advanced Mapping Oasis montaj Advanced Mapping As more information becomes available in digital format, Earth science specialists are recognizing that it is essential to work with a variety of data from different sources.

More information

Whole Numbers. Integers and Temperature

Whole Numbers. Integers and Temperature Whole Numbers Know the meaning of count and be able to count Know that a whole number is a normal counting number such as 0, 1, 2, 3, 4, Know the meanings of even number and odd number Know that approximating

More information

Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas

Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas Number Number system and counting Fractions and decimals

More information

Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas

Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas Number Number system and counting Fractions and decimals

More information

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Operations What Do I Need? Classify Merge Combine Cross Scan Score Warp Respace Cover Subscene Rotate Translators

More information

GY461 GIS 1: Environmental Campus Topography Project with ArcGIS 9.x

GY461 GIS 1: Environmental Campus Topography Project with ArcGIS 9.x I. Introduction GY461 GIS 1: Environmental In this project you will use data from a topographic survey of the USA campus to generate 2 separate maps: 1. A color-coded 2-dimensional topographic contour

More information

Files Used in this Tutorial

Files Used in this Tutorial RPC Orthorectification Tutorial In this tutorial, you will use ground control points (GCPs), an orthorectified reference image, and a digital elevation model (DEM) to orthorectify an OrbView-3 scene that

More information

Learn how to delineate a watershed using the hydrologic modeling wizard

Learn how to delineate a watershed using the hydrologic modeling wizard v. 10.1 WMS 10.1 Tutorial Learn how to delineate a watershed using the hydrologic modeling wizard Objectives Import a digital elevation model, compute flow directions, and delineate a watershed and sub-basins

More information

Summer Packet 7 th into 8 th grade. Name. Integer Operations = 2. (-7)(6)(-4) = = = = 6.

Summer Packet 7 th into 8 th grade. Name. Integer Operations = 2. (-7)(6)(-4) = = = = 6. Integer Operations Name Adding Integers If the signs are the same, add the numbers and keep the sign. 7 + 9 = 16 - + -6 = -8 If the signs are different, find the difference between the numbers and keep

More information

Recreating Hand Drawn Contour Maps using Didger and Surfer

Recreating Hand Drawn Contour Maps using Didger and Surfer Recreating Hand Drawn Contour Maps using Didger and Surfer Have you ever had a scanned contour map that you wanted to convert into a digital version? You might want to do this to easily change contour

More information

FOR 274: Surfaces from Lidar. Lidar DEMs: Understanding the Returns. Lidar DEMs: Understanding the Returns

FOR 274: Surfaces from Lidar. Lidar DEMs: Understanding the Returns. Lidar DEMs: Understanding the Returns FOR 274: Surfaces from Lidar LiDAR for DEMs The Main Principal Common Methods Limitations Readings: See Website Lidar DEMs: Understanding the Returns The laser pulse travel can travel through trees before

More information

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University Lecture 6: GIS Spatial Analysis GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University 1 Spatial Data It can be most simply defined as information that describes the distribution

More information

Target 3D Geology Surfaces

Target 3D Geology Surfaces Target 3D Geology Surfaces The Target 3D Geology Surfaces (Contact Surface from Geology Grids) tool enables you to create subsurface topography grids, where the "Z" values correspond to the elevation of

More information

Differentiate Between Keywords and Identifiers

Differentiate Between Keywords and Identifiers History of C? Why we use C programming language Martin Richards developed a high-level computer language called BCPL in the year 1967. The intention was to develop a language for writing an operating system(os)

More information

Prepared for: CALIFORNIA COAST COMMISSION c/o Dr. Stephen Schroeter 45 Fremont Street, Suite 2000 San Francisco, CA

Prepared for: CALIFORNIA COAST COMMISSION c/o Dr. Stephen Schroeter 45 Fremont Street, Suite 2000 San Francisco, CA REVIEW OF MULTIBEAM SONAR SURVEYS WHEELER REEF NORTH, SAN CLEMENTE, CALIFORNIA TO EVALUATE ACCURACY AND PRECISION OF REEF FOOTPRINT DETERMINATIONS AND CHANGES BETWEEN 2008 AND 2009 SURVEYS Prepared for:

More information

EASI Modeling in Focus

EASI Modeling in Focus EASI Modeling in Focus TUTORIAL EASI Modeling in Focus operates on a single input file, which you select from the drop-down list in the Modeling window. The basic steps required to run a simple model are

More information

Oral and Mental calculation

Oral and Mental calculation Oral and Mental calculation Read and write any integer and know what each digit represents. Read and write decimal notation for tenths, hundredths and thousandths and know what each digit represents. Order

More information

Sedimentation in Aquilla Lake Hill County, Texas

Sedimentation in Aquilla Lake Hill County, Texas Sedimentation in Aquilla Lake Hill County, Texas by Lorena Roque Martinez, GIS and GPS Applications in Earth Sciences (GEO 327G) Introduction The Texas Water Development Board (TWDB) is in charge of offering

More information

Surface Modeling with GIS

Surface Modeling with GIS Surface Modeling with GIS By Abdul Mohsen Al Maskeen ID # 889360 For CRP 514: Introduction to GIS Course Instructor: Dr. Baqer Al-Ramadan Date: December 29, 2004 1 Outline Page # Outline -------------------------------------------------------------

More information

Calculate the area of each figure. Each square on the grid represents a square that is one meter long and one meter wide.

Calculate the area of each figure. Each square on the grid represents a square that is one meter long and one meter wide. CH 3 Test Review Boundary Lines: Area of Parallelograms and Triangles Calculate the area of each figure Each square on the grid represents a square that is one meter long and one meter wide 1 You are making

More information

Learn how to delineate a watershed using the hydrologic modeling wizard

Learn how to delineate a watershed using the hydrologic modeling wizard v. 11.0 WMS 11.0 Tutorial Learn how to delineate a watershed using the hydrologic modeling wizard Objectives Import a digital elevation model, compute flow directions, and delineate a watershed and sub-basins

More information

Number Mulitplication and Number and Place Value Addition and Subtraction Division

Number Mulitplication and Number and Place Value Addition and Subtraction Division Number Mulitplication and Number and Place Value Addition and Subtraction Division read, write, order and compare numbers up to 10 000 000 and determine the value of each digit round any whole number to

More information

Y6 MATHEMATICS TERMLY PATHWAY NUMBER MEASURE GEOMETRY STATISTICS

Y6 MATHEMATICS TERMLY PATHWAY NUMBER MEASURE GEOMETRY STATISTICS Autumn Number & Place value read, write, order and compare numbers up to 10 000 000 and determine the value of each digit round any whole number to a required degree of accuracy use negative numbers in

More information

Producing a Depth-Converted Seismic Horizon in Z-map

Producing a Depth-Converted Seismic Horizon in Z-map Producing a Depth-Converted Seismic Horizon in Z-map Summary This is a reference guide to creating a depth-converted seismic horizon in LGC s Z-Map Plus TM. The procedure followed is: 1. Approximately

More information

EDINBURGH PRIMARY SCHOOL

EDINBURGH PRIMARY SCHOOL EDINBURGH PRIMARY SCHOOL TARGETS FOR THE NEW MATHEMATICS CURRICULUM Parent Information Edinburgh Primary School Assessment MATHEMATICS TARGETS - A YEAR 1 MATHEMATICIAN Number and place value I can count

More information

RASTER ANALYSIS GIS Analysis Winter 2016

RASTER ANALYSIS GIS Analysis Winter 2016 RASTER ANALYSIS GIS Analysis Winter 2016 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information.

More information

Learn the various 3D interpolation methods available in GMS

Learn the various 3D interpolation methods available in GMS v. 10.4 GMS 10.4 Tutorial Learn the various 3D interpolation methods available in GMS Objectives Explore the various 3D interpolation algorithms available in GMS, including IDW and kriging. Visualize the

More information

New Swannington Primary School 2014 Year 6

New Swannington Primary School 2014 Year 6 Number Number and Place Value Number Addition and subtraction, Multiplication and division Number fractions inc decimals & % Ratio & Proportion Algebra read, write, order and compare numbers up to 0 000

More information

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham Getting Started with Spatial Analyst Steve Kopp Elizabeth Graham Spatial Analyst Overview Over 100 geoprocessing tools plus raster functions Raster and vector analysis Construct workflows with ModelBuilder,

More information

Cell based GIS. Introduction to rasters

Cell based GIS. Introduction to rasters Week 9 Cell based GIS Introduction to rasters topics of the week Spatial Problems Modeling Raster basics Application functions Analysis environment, the mask Application functions Spatial Analyst in ArcGIS

More information

GCSE Mathematics. Higher Tier. Paper 4G (Calculator) Time: 1 hour and 45 minutes. For Edexcel. Name

GCSE Mathematics. Higher Tier. Paper 4G (Calculator) Time: 1 hour and 45 minutes. For Edexcel. Name For Edexcel Name GCSE Mathematics Paper 4G (Calculator) Higher Tier Time: 1 hour and 45 minutes Materials required Ruler, protractor, compasses, pen, pencil, eraser. Tracing paper may be used. Instructions

More information