Interaction Using Nearby-and-Far Projection Surfaces with a Body-Worn ProCam System

Size: px
Start display at page:

Download "Interaction Using Nearby-and-Far Projection Surfaces with a Body-Worn ProCam System"

Transcription

1 Interaction Using Nearby-and-Far Projection Surfaces with a Body-Worn ProCam System Takeshi Kurata 1 Nobuchika Sakata 13 Masakatsu Kourogi 1 Takashi Okuma 1 Yuichi Ohta 2 1 AIST, Japan 2 University of Tsukuba, Japan 3 Osaka University, Japan

2 Remote Collaboration and Wearable Visual Interfaces The need for human-computer interface for supporting real-world tasks Heightened ever in the context of social problems; Baby boomer retirement, safety compliance, etc. Wearable visual interfaces Promising technology to support workers who want to Move among different workplaces Interact with real objects Couple virtual worlds with the real world meaningfully Connect person to person in remote places

3 Previous study: WACL vs HMD/HMC Typical real-world tasks during collaboration primarily consist of three phases; Object identification Laser pointer as a visual cue: enough Procedural instruction WACL: Imposed more burdens on the remote experts when they needed to send detailed instructions -> Poor visual cue Comprehension monitoring In ISWC2004 WACL: Wearable Active Camera/Laser pointer HMD: Head-Mounted Display HMC: Head-Mounted Camera

4 BOWL ProCam (BOdy-Worn Laser Projector-Camera) Project rich visual cues directly onto the real world Controller Laser Projector MAP Content Attitude Sensors Fisheye HD Cam Laser projector Project rich visual annotation directly onto the real world Long focal depth, Wide scanning angle Compact structure Low-power consumption Fish-eye HD camera As a ProCam System 30mm 29mm 29mm 31mm 31mm

5 Laser projector Metal-based microscanner Piezoelectric layer: Directly deposited on the stainless-steel frame beside the mirror by means of the Aerosol Deposition (AD) method Wider scanning angle than conventional MEMS scanners

6 BOWL ProCam (BOdy-Worn Laser Projector-Camera) Project rich visual cues directly onto the real world Controller Laser Projector MAP Content Attitude Sensors Fisheye HD Cam Laser projector Fish-eye HD camera Easy to comprehend real workplace conditions regardless of the user s posture change Easy to stabilize projected visual cues and maintain a visual log (Keep observing the same target object) As a ProCam System 30mm 29mm 29mm 31mm 31mm

7 BOWL ProCam (BOdy-Worn Laser Projector-Camera) Project rich visual cues directly onto the real world Controller Laser Projector MAP Content Attitude Sensors Fisheye HD Cam Laser projector Fish-eye HD camera As a ProCam System Obtain 3-D structure of the real world with combination of active-stereo-vision and shape-from-motion technologies Provide intuitive interaction techniques while comprehending the situation of the users and the real environment 30mm 29mm 29mm 31mm 31mm

8 Fixing-point evaluation Fixing point of a wearable camera: Often decided empirically or experimentally Mayol s MATLAB simulator: Articulated humanbody model (1800 polygons, 16 body segments) Modified it for ProCams to support tasks involving physical operation

9 Field of View Weighted mean Stability: Looking around Suitable for wearing a ProCam View of the handling space Stability: Walking

10 Interaction using nearby-and-far projection surfaces An interaction technique utilizing long focal depth and wide scanning angle: Effectively employing both of Nearby projection surface (user s hands) Far projection surface (tabletop and wall) Need to understand where the surfaces are Detecting projection surfaces <- important

11 Proof-of-concept system with a conventional DMD projector Since the laser projector is still under development So, Fixed the distance from the projector to a palm at 35 to 55 cm, and the distance to a far surface at around 65 cm Controller Laser Projector HP mp2225 Attitude Sensors Fisheye HD Cam 70mm 70mm Scorpion & InertiaCube3

12 Nearby-surface detection Active-stereo-based technique with a projected VUI (Visual User Interface) image taken from the camera and the original VUI image 1. Fish-eye image -> Perspective corrected image 2. Rectification of the projected VUI image 3. Feature-point extraction in the original VUI image 4. Normalized-correlation-based stereo matching 5. Depth estimation of the nearby surface

13 Image transformation Equidistance projection -> Perspective projection Projector Radial distance l = f wθ l = f w tan( θ ) Fish-eye cam Rectification of the projected VUI image

14 Stereo matching Rectified image: the mixture of a VUI image and texture of the projection surface Extract only salient points from the original VUI image (the Harris operator) Normalized-correlation-based stereo matching Narrow 2D search (e.g. 3-pixel width) To cover for imperfect rectification Assumptions Lots of feature points in each VUI image Projection planes that not have much obtrusive texture

15 Results Nearby-surface detection: No false positive/negative with 14 images Projected-content selection: the mean distance [42 pixels], the SD [24 pixels] with 10 images (Rectified image: 512x384 pixels, window: 19x19 pixels)

16 Snapshots from the user s field of view

17 Depth difference between the nearby-and-far surfaces Mean disparity (pixel)

18 Hand-posture classification Base-posture acquisition Rectified camera image VUI image Normarized SSD (8x8 pixels) Binarization Morphological Operations ( ) { } = y x y x y x y y x x I y x T y y x x I y x T y x R, 2, 2, 2 ), ( ), ( ), ( ), (, To increase the number of interaction techniques

19 Extracting portions different from the base posture Frame f-n Frame f Thumb-up Subtraction Base posture Clenched fist (Rock) Frame f

20 Results of hand-posture classification Binarization/ Morphological Operations Normarized SSD Rectified cam image Clenched fist (Rock) Thumb-up Subtraction

21 System diagram

22 Occluded projection and shadow Occluded projection for Cam Observed shadow for Cam Occluded projection for User Good for projecting code patterns!?

23 Structured light projected in the hidden region for the user Useful to recover 3-D structure/motion of the far surface User s view Cam s view

24 Conclusions Proposed the concept of a novel wearable AR interface; the BOWL ProCam Hands-free, Eye-free, and Head-free The upper chest area: Selected as the wearing position Proposed a novel interaction technique employing both nearby-and-far projection surfaces Active-stereo and hand-posture-classification techniques Applicable to realize such interaction by using the proof-of-concept system

Photographing System Employing a Shoulder-mounted PTZ Camera for Capturing the Composition Designated by the User s Hand Gesture

Photographing System Employing a Shoulder-mounted PTZ Camera for Capturing the Composition Designated by the User s Hand Gesture Photographing System Employing a Shoulder-mounted PTZ Camera for Capturing the Composition Designated by the User s Hand Gesture Shunsuke Sugasawara and Yasuyuki Kono Graduate School of Science and Technology,

More information

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth Common Classification Tasks Recognition of individual objects/faces Analyze object-specific features (e.g., key points) Train with images from different viewing angles Recognition of object classes Analyze

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Introduction to 3D Machine Vision

Introduction to 3D Machine Vision Introduction to 3D Machine Vision 1 Many methods for 3D machine vision Use Triangulation (Geometry) to Determine the Depth of an Object By Different Methods: Single Line Laser Scan Stereo Triangulation

More information

Outdoor Scene Reconstruction from Multiple Image Sequences Captured by a Hand-held Video Camera

Outdoor Scene Reconstruction from Multiple Image Sequences Captured by a Hand-held Video Camera Outdoor Scene Reconstruction from Multiple Image Sequences Captured by a Hand-held Video Camera Tomokazu Sato, Masayuki Kanbara and Naokazu Yokoya Graduate School of Information Science, Nara Institute

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Occlusion Detection of Real Objects using Contour Based Stereo Matching

Occlusion Detection of Real Objects using Contour Based Stereo Matching Occlusion Detection of Real Objects using Contour Based Stereo Matching Kenichi Hayashi, Hirokazu Kato, Shogo Nishida Graduate School of Engineering Science, Osaka University,1-3 Machikaneyama-cho, Toyonaka,

More information

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song CS 563 Advanced Topics in Computer Graphics Stereoscopy by Sam Song Stereoscopy Introduction Parallax Camera Displaying and Viewing Results Stereoscopy What is it? seeing in three dimensions creates the

More information

Stereo. Shadows: Occlusions: 3D (Depth) from 2D. Depth Cues. Viewing Stereo Stereograms Autostereograms Depth from Stereo

Stereo. Shadows: Occlusions: 3D (Depth) from 2D. Depth Cues. Viewing Stereo Stereograms Autostereograms Depth from Stereo Stereo Viewing Stereo Stereograms Autostereograms Depth from Stereo 3D (Depth) from 2D 3D information is lost by projection. How do we recover 3D information? Image 3D Model Depth Cues Shadows: Occlusions:

More information

Announcements. Stereo Vision Wrapup & Intro Recognition

Announcements. Stereo Vision Wrapup & Intro Recognition Announcements Stereo Vision Wrapup & Intro Introduction to Computer Vision CSE 152 Lecture 17 HW3 due date postpone to Thursday HW4 to posted by Thursday, due next Friday. Order of material we ll first

More information

MR-Mirror: A Complex of Real and Virtual Mirrors

MR-Mirror: A Complex of Real and Virtual Mirrors MR-Mirror: A Complex of Real and Virtual Mirrors Hideaki Sato 1, Itaru Kitahara 1, and Yuichi Ohta 1 1 Department of Intelligent Interaction Technologies, Graduate School of Systems and Information Engineering,

More information

Stereo vision. Many slides adapted from Steve Seitz

Stereo vision. Many slides adapted from Steve Seitz Stereo vision Many slides adapted from Steve Seitz What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape What is

More information

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors Complex Sensors: Cameras, Visual Sensing The Robotics Primer (Ch. 9) Bring your laptop and robot everyday DO NOT unplug the network cables from the desktop computers or the walls Tuesday s Quiz is on Visual

More information

AIT Inline Computational Imaging: Geometric calibration and image rectification

AIT Inline Computational Imaging: Geometric calibration and image rectification AIT Inline Computational Imaging: Geometric calibration and image rectification B. Blaschitz, S. Štolc and S. Breuss AIT Austrian Institute of Technology GmbH Center for Vision, Automation & Control Vienna,

More information

Lecture 14: Computer Vision

Lecture 14: Computer Vision CS/b: Artificial Intelligence II Prof. Olga Veksler Lecture : Computer Vision D shape from Images Stereo Reconstruction Many Slides are from Steve Seitz (UW), S. Narasimhan Outline Cues for D shape perception

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

VISUAL NAVIGATION SYSTEM ON WINDSHIELD HEAD-UP DISPLAY

VISUAL NAVIGATION SYSTEM ON WINDSHIELD HEAD-UP DISPLAY VISUAL NAVIGATION SYSTEM ON WINDSHIELD HEAD-UP DISPLAY Akihiko SATO *, Itaru KITAHARA, Yoshinari KAMEDA, Yuichi OHTA Department of Intelligent Interaction Technologies, Graduate School of Systems and Information

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Stereo and structured light

Stereo and structured light Stereo and structured light http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 20 Course announcements Homework 5 is still ongoing. - Make sure

More information

CV: 3D to 2D mathematics. Perspective transformation; camera calibration; stereo computation; and more

CV: 3D to 2D mathematics. Perspective transformation; camera calibration; stereo computation; and more CV: 3D to 2D mathematics Perspective transformation; camera calibration; stereo computation; and more Roadmap of topics n Review perspective transformation n Camera calibration n Stereo methods n Structured

More information

High-Fidelity Augmented Reality Interactions Hrvoje Benko Researcher, MSR Redmond

High-Fidelity Augmented Reality Interactions Hrvoje Benko Researcher, MSR Redmond High-Fidelity Augmented Reality Interactions Hrvoje Benko Researcher, MSR Redmond New generation of interfaces Instead of interacting through indirect input devices (mice and keyboard), the user is interacting

More information

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013 Lecture 19: Depth Cameras Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today: - Capturing scene depth

More information

Vision-Based Hand Detection for Registration of Virtual Objects in Augmented Reality

Vision-Based Hand Detection for Registration of Virtual Objects in Augmented Reality International Journal of Future Computer and Communication, Vol. 2, No. 5, October 213 Vision-Based Hand Detection for Registration of Virtual Objects in Augmented Reality Kah Pin Ng, Guat Yew Tan, and

More information

Localization of Wearable Users Using Invisible Retro-reflective Markers and an IR Camera

Localization of Wearable Users Using Invisible Retro-reflective Markers and an IR Camera Localization of Wearable Users Using Invisible Retro-reflective Markers and an IR Camera Yusuke Nakazato, Masayuki Kanbara and Naokazu Yokoya Graduate School of Information Science, Nara Institute of Science

More information

In-Situ 3D Indoor Modeler with a Camera and Self-Contained Sensors

In-Situ 3D Indoor Modeler with a Camera and Self-Contained Sensors In-Situ 3D Indoor Modeler with a Camera and Self-Contained Sensors Tomoya Ishikawa 1, Kalaivani Thangamani 12, Masakatsu Kourogi 1, Andrew P. Gee 3, Walterio Mayol-Cuevas 3, Keechul Jung 4 and Takeshi

More information

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any)

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any) Address: Hong Kong Polytechnic University, Phase 8, Hung Hom, Kowloon, Hong Kong. Telephone: (852) 3400 8441 Email: cnerc.steel@polyu.edu.hk Website: https://www.polyu.edu.hk/cnerc-steel/ Project Title:

More information

Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images

Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images Abstract This paper presents a new method to generate and present arbitrarily

More information

Computer and Machine Vision

Computer and Machine Vision Computer and Machine Vision Lecture Week 12 Part-2 Additional 3D Scene Considerations March 29, 2014 Sam Siewert Outline of Week 12 Computer Vision APIs and Languages Alternatives to C++ and OpenCV API

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Stereo Vision 2 Inferring 3D from 2D Model based pose estimation single (calibrated) camera Stereo

More information

Stereo Wrap + Motion. Computer Vision I. CSE252A Lecture 17

Stereo Wrap + Motion. Computer Vision I. CSE252A Lecture 17 Stereo Wrap + Motion CSE252A Lecture 17 Some Issues Ambiguity Window size Window shape Lighting Half occluded regions Problem of Occlusion Stereo Constraints CONSTRAINT BRIEF DESCRIPTION 1-D Epipolar Search

More information

Lecture 9 & 10: Stereo Vision

Lecture 9 & 10: Stereo Vision Lecture 9 & 10: Stereo Vision Professor Fei- Fei Li Stanford Vision Lab 1 What we will learn today? IntroducEon to stereo vision Epipolar geometry: a gentle intro Parallel images Image receficaeon Solving

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Shape from Textures Phenomenon for 3D Modeling Applications with Big Data Images

Shape from Textures Phenomenon for 3D Modeling Applications with Big Data Images Shape from Textures Phenomenon for 3D Modeling Applications with Big Data Images Kalaivani Thangamani, Takashi Okuma, Ryosuke Ichikari and Takeshi Kurata Service Sensing, Assimilation, and Modeling Research

More information

Depth Camera for Mobile Devices

Depth Camera for Mobile Devices Depth Camera for Mobile Devices Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Stereo Cameras Structured Light Cameras Time of Flight (ToF) Camera Inferring 3D Points Given we have

More information

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from?

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from? Binocular Stereo Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the depth information come from? Binocular stereo Given a calibrated binocular stereo

More information

Three-Dimensional Measurement of Objects in Liquid with an Unknown Refractive Index Using Fisheye Stereo Camera

Three-Dimensional Measurement of Objects in Liquid with an Unknown Refractive Index Using Fisheye Stereo Camera Three-Dimensional Measurement of Objects in Liquid with an Unknown Refractive Index Using Fisheye Stereo Camera Kazuki Sakamoto, Alessandro Moro, Hiromitsu Fujii, Atsushi Yamashita, and Hajime Asama Abstract

More information

Simple and Robust Tracking of Hands and Objects for Video-based Multimedia Production

Simple and Robust Tracking of Hands and Objects for Video-based Multimedia Production Simple and Robust Tracking of Hands and Objects for Video-based Multimedia Production Masatsugu ITOH Motoyuki OZEKI Yuichi NAKAMURA Yuichi OHTA Institute of Engineering Mechanics and Systems University

More information

Gexcel. JRC 3D Reconstructor BASIC MEASURING TOOLS

Gexcel. JRC 3D Reconstructor BASIC MEASURING TOOLS Gexcel JRC 3D Reconstructor BASIC MEASURING TOOLS In this tutorial you will learn how to Save snapshots of the 3D view Measure distances and angles of the 3D models Add annotations to the objects in the

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

Measurement of Pedestrian Groups Using Subtraction Stereo

Measurement of Pedestrian Groups Using Subtraction Stereo Measurement of Pedestrian Groups Using Subtraction Stereo Kenji Terabayashi, Yuki Hashimoto, and Kazunori Umeda Chuo University / CREST, JST, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan terabayashi@mech.chuo-u.ac.jp

More information

A THREE-DIMENSIONAL PHASED ARRAY ULTRASONIC TESTING TECHNIQUE

A THREE-DIMENSIONAL PHASED ARRAY ULTRASONIC TESTING TECHNIQUE A THREE-DIMENSIONAL PHASED ARRAY ULTRASONIC TESTING TECHNIQUE So KITAZAWA, Naoyuki KONO, Atsushi BABA and Yuji ADACHI HITACHI, Ltd., Japan Mitsuru ODAKURA HITACHI-GE Nuclear Energy, Ltd., Japan Introduction

More information

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5)

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5) Announcements Stereo Project 2 due today Project 3 out today Single image stereogram, by Niklas Een Readings Szeliski, Chapter 10 (through 10.5) Public Library, Stereoscopic Looking Room, Chicago, by Phillips,

More information

Other Reconstruction Techniques

Other Reconstruction Techniques Other Reconstruction Techniques Ruigang Yang CS 684 CS 684 Spring 2004 1 Taxonomy of Range Sensing From Brain Curless, SIGGRAPH 00 Lecture notes CS 684 Spring 2004 2 Taxonomy of Range Scanning (cont.)

More information

Three-Dimensional Hand Pointing Recognition using Two Cameras by Interpolation and Integration of Classification Scores

Three-Dimensional Hand Pointing Recognition using Two Cameras by Interpolation and Integration of Classification Scores Three-Dimensional Hand Pointing Recognition using Two Cameras by Interpolation and Integration of Classification Scores Dai Fujita and Takashi Komuro Graduate School of Science and Engineering, Saitama

More information

Gesture Recognition using Temporal Templates with disparity information

Gesture Recognition using Temporal Templates with disparity information 8- MVA7 IAPR Conference on Machine Vision Applications, May 6-8, 7, Tokyo, JAPAN Gesture Recognition using Temporal Templates with disparity information Kazunori Onoguchi and Masaaki Sato Hirosaki University

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Stereo. Many slides adapted from Steve Seitz

Stereo. Many slides adapted from Steve Seitz Stereo Many slides adapted from Steve Seitz Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1 image 2 Dense depth map Binocular stereo Given a calibrated

More information

3DPIXA: options and challenges with wirebond inspection. Whitepaper

3DPIXA: options and challenges with wirebond inspection. Whitepaper 3DPIXA: options and challenges with wirebond inspection Whitepaper Version Author(s) Date R01 Timo Eckhard, Maximilian Klammer 06.09.2017 R02 Timo Eckhard 18.10.2017 Executive Summary: Wirebond inspection

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

A FULL-COLOR SINGLE-CHIP-DLP PROJECTOR WITH AN EMBEDDED 2400-FPS HOMOGRAPHY WARPING ENGINE

A FULL-COLOR SINGLE-CHIP-DLP PROJECTOR WITH AN EMBEDDED 2400-FPS HOMOGRAPHY WARPING ENGINE A FULL-COLOR SINGLE-CHIP-DLP PROJECTOR WITH AN EMBEDDED 2400-FPS HOMOGRAPHY WARPING ENGINE Shingo Kagami, Koichi Hashimoto Tohoku University 2018 SIGGRAPH. All Rights Reserved Photography & Recording Encouraged

More information

Stereo SLAM. Davide Migliore, PhD Department of Electronics and Information, Politecnico di Milano, Italy

Stereo SLAM. Davide Migliore, PhD Department of Electronics and Information, Politecnico di Milano, Italy Stereo SLAM, PhD migliore@elet.polimi.it Department of Electronics and Information, Politecnico di Milano, Italy What is a Stereo Camera? Slide n 2 Do you remember the pin-hole camera? What is a Stereo

More information

Single-view 3D Reconstruction

Single-view 3D Reconstruction Single-view 3D Reconstruction 10/12/17 Computational Photography Derek Hoiem, University of Illinois Some slides from Alyosha Efros, Steve Seitz Notes about Project 4 (Image-based Lighting) You can work

More information

Inline Computational Imaging: Single Sensor Technology for Simultaneous 2D/3D High Definition Inline Inspection

Inline Computational Imaging: Single Sensor Technology for Simultaneous 2D/3D High Definition Inline Inspection Inline Computational Imaging: Single Sensor Technology for Simultaneous 2D/3D High Definition Inline Inspection Svorad Štolc et al. svorad.stolc@ait.ac.at AIT Austrian Institute of Technology GmbH Center

More information

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation.

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation. 3D Sensing 3D Shape from X Perspective Geometry Camera Model Camera Calibration General Stereo Triangulation 3D Reconstruction 3D Shape from X shading silhouette texture stereo light striping motion mainly

More information

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination 3D Polygon Rendering What steps are necessary to utilize spatial coherence while drawing

More information

A Qualitative Analysis of 3D Display Technology

A Qualitative Analysis of 3D Display Technology A Qualitative Analysis of 3D Display Technology Nicholas Blackhawk, Shane Nelson, and Mary Scaramuzza Computer Science St. Olaf College 1500 St. Olaf Ave Northfield, MN 55057 scaramum@stolaf.edu Abstract

More information

Neue Verfahren der Bildverarbeitung auch zur Erfassung von Schäden in Abwasserkanälen?

Neue Verfahren der Bildverarbeitung auch zur Erfassung von Schäden in Abwasserkanälen? Neue Verfahren der Bildverarbeitung auch zur Erfassung von Schäden in Abwasserkanälen? Fraunhofer HHI 13.07.2017 1 Fraunhofer-Gesellschaft Fraunhofer is Europe s largest organization for applied research.

More information

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems EECS 442 Computer vision Stereo systems Stereo vision Rectification Correspondence problem Active stereo vision systems Reading: [HZ] Chapter: 11 [FP] Chapter: 11 Stereo vision P p p O 1 O 2 Goal: estimate

More information

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1.

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1. Range Sensors (time of flight) (1) Range Sensors (time of flight) (2) arge range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic

More information

3D Shape and Indirect Appearance By Structured Light Transport

3D Shape and Indirect Appearance By Structured Light Transport 3D Shape and Indirect Appearance By Structured Light Transport CVPR 2014 - Best paper honorable mention Matthew O Toole, John Mather, Kiriakos N. Kutulakos Department of Computer Science University of

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence CS4495/6495 Introduction to Computer Vision 3B-L3 Stereo correspondence For now assume parallel image planes Assume parallel (co-planar) image planes Assume same focal lengths Assume epipolar lines are

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely, Zhengqi Li Stereo Single image stereogram, by Niklas Een Mark Twain at Pool Table", no date, UCR Museum of Photography Stereo Given two images from different viewpoints

More information

Overview of Active Vision Techniques

Overview of Active Vision Techniques SIGGRAPH 99 Course on 3D Photography Overview of Active Vision Techniques Brian Curless University of Washington Overview Introduction Active vision techniques Imaging radar Triangulation Moire Active

More information

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES Jie Shao a, Wuming Zhang a, Yaqiao Zhu b, Aojie Shen a a State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing

More information

3D Face and Hand Tracking for American Sign Language Recognition

3D Face and Hand Tracking for American Sign Language Recognition 3D Face and Hand Tracking for American Sign Language Recognition NSF-ITR (2004-2008) D. Metaxas, A. Elgammal, V. Pavlovic (Rutgers Univ.) C. Neidle (Boston Univ.) C. Vogler (Gallaudet) The need for automated

More information

VISUAL NAVIGATION SYSTEM ON WINDSHIELD HEAD-UP DISPLAY

VISUAL NAVIGATION SYSTEM ON WINDSHIELD HEAD-UP DISPLAY VISUAL NAVIGATION SYSTEM ON WINDSHIELD HEAD-UP DISPLAY Akihiko SATO *, Itaru KITAHARA, Yoshinari KAMEDA, Yuichi OHTA Department of Intelligent Interaction Technologies, Graduate School of Systems and Information

More information

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc.

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc. Minimizing Noise and Bias in 3D DIC Correlated Solutions, Inc. Overview Overview of Noise and Bias Digital Image Correlation Background/Tracking Function Minimizing Noise Focus Contrast/Lighting Glare

More information

A Comparison between Active and Passive 3D Vision Sensors: BumblebeeXB3 and Microsoft Kinect

A Comparison between Active and Passive 3D Vision Sensors: BumblebeeXB3 and Microsoft Kinect A Comparison between Active and Passive 3D Vision Sensors: BumblebeeXB3 and Microsoft Kinect Diana Beltran and Luis Basañez Technical University of Catalonia, Barcelona, Spain {diana.beltran,luis.basanez}@upc.edu

More information

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views?

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views? Recap: Features and filters Epipolar geometry & stereo vision Tuesday, Oct 21 Kristen Grauman UT-Austin Transforming and describing images; textures, colors, edges Recap: Grouping & fitting Now: Multiple

More information

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 Teesta suspension bridge-darjeeling, India Mark Twain at Pool Table", no date, UCR Museum of Photography Woman getting eye exam during

More information

Range Sensors (time of flight) (1)

Range Sensors (time of flight) (1) Range Sensors (time of flight) (1) Large range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic sensors, infra-red sensors

More information

Lecture'9'&'10:'' Stereo'Vision'

Lecture'9'&'10:'' Stereo'Vision' Lecture'9'&'10:'' Stereo'Vision' Dr.'Juan'Carlos'Niebles' Stanford'AI'Lab' ' Professor'FeiAFei'Li' Stanford'Vision'Lab' 1' Dimensionality'ReducIon'Machine'(3D'to'2D)' 3D world 2D image Point of observation

More information

3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit

3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit 3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit 9 Toyomi Fujita and Yuya Kondo Tohoku Institute of Technology Japan 1. Introduction A 3D configuration and terrain sensing

More information

Dense 3-D Reconstruction of an Outdoor Scene by Hundreds-baseline Stereo Using a Hand-held Video Camera

Dense 3-D Reconstruction of an Outdoor Scene by Hundreds-baseline Stereo Using a Hand-held Video Camera Dense 3-D Reconstruction of an Outdoor Scene by Hundreds-baseline Stereo Using a Hand-held Video Camera Tomokazu Satoy, Masayuki Kanbaray, Naokazu Yokoyay and Haruo Takemuraz ygraduate School of Information

More information

Advances in Disk Metrology

Advances in Disk Metrology Advances in Disk Metrology Robert Kertayasa Zeta Instruments March 2011 www.zeta-inst.com 1909 Concourse Drive San Jose CA 95131 PHONE (408) 577-1888 FAX (408) 577-0588 Agenda Introduction Technology Sample

More information

Interactive Virtual Environments

Interactive Virtual Environments Interactive Virtual Environments Video Acquisition of 3D Object Shape Emil M. Petriu, Dr. Eng., FIEEE Professor, School of Information Technology and Engineering University of Ottawa, Ottawa, ON, Canada

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

SL A Tordivel - Thor Vollset -Stereo Vision and structured illumination creates dense 3D Images Page 1

SL A Tordivel - Thor Vollset -Stereo Vision and structured illumination creates dense 3D Images Page 1 Tordivel ASTORDIVEL 2000-2015 Scorpion Vision Software Scorpion Stinger are trademarks SL-2010-0001-A AS - Scorpion Visionand 8 and 3DMaMa Tordivel ASof Tordivel AS 2000-2010 Page 1 Stereo Vision and structured

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern

Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern Pathum Rathnayaka, Seung-Hae Baek and Soon-Yong Park School of Computer Science and Engineering, Kyungpook

More information

Image Based Reconstruction II

Image Based Reconstruction II Image Based Reconstruction II Qixing Huang Feb. 2 th 2017 Slide Credit: Yasutaka Furukawa Image-Based Geometry Reconstruction Pipeline Last Lecture: Multi-View SFM Multi-View SFM This Lecture: Multi-View

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Stereo Vision 2 Inferring 3D from 2D Model based pose estimation single (calibrated) camera > Can

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

Wireless Cube Fish-Eye IP Camera Wireless Fish-Eye Cloud IP Camera ICA-W8100 ICA-W8100-CLD

Wireless Cube Fish-Eye IP Camera Wireless Fish-Eye Cloud IP Camera ICA-W8100 ICA-W8100-CLD Wireless Cube Fish-Eye IP Camera Wireless Fish-Eye Cloud IP Camera ICA-W8100 ICA-W8100-CLD Presentation Outlines Product Overview Product Features Product Applications Product Comparison 2 / 25 Product

More information

Advanced Vision Guided Robotics. David Bruce Engineering Manager FANUC America Corporation

Advanced Vision Guided Robotics. David Bruce Engineering Manager FANUC America Corporation Advanced Vision Guided Robotics David Bruce Engineering Manager FANUC America Corporation Traditional Vision vs. Vision based Robot Guidance Traditional Machine Vision Determine if a product passes or

More information

Visual Tracking of Unknown Moving Object by Adaptive Binocular Visual Servoing

Visual Tracking of Unknown Moving Object by Adaptive Binocular Visual Servoing Visual Tracking of Unknown Moving Object by Adaptive Binocular Visual Servoing Minoru Asada, Takamaro Tanaka, and Koh Hosoda Adaptive Machine Systems Graduate School of Engineering Osaka University, Suita,

More information

AR Cultural Heritage Reconstruction Based on Feature Landmark Database Constructed by Using Omnidirectional Range Sensor

AR Cultural Heritage Reconstruction Based on Feature Landmark Database Constructed by Using Omnidirectional Range Sensor AR Cultural Heritage Reconstruction Based on Feature Landmark Database Constructed by Using Omnidirectional Range Sensor Takafumi Taketomi, Tomokazu Sato, and Naokazu Yokoya Graduate School of Information

More information

Light source estimation using feature points from specular highlights and cast shadows

Light source estimation using feature points from specular highlights and cast shadows Vol. 11(13), pp. 168-177, 16 July, 2016 DOI: 10.5897/IJPS2015.4274 Article Number: F492B6D59616 ISSN 1992-1950 Copyright 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/ijps

More information

New Sony DepthSense TM ToF Technology

New Sony DepthSense TM ToF Technology ADVANCED MATERIAL HANDLING WITH New Sony DepthSense TM ToF Technology Jenson Chang Product Marketing November 7, 2018 1 3D SENSING APPLICATIONS Pick and Place Drones Collision Detection People Counting

More information

A Full-Range of 3D Body Scanning Solutions

A Full-Range of 3D Body Scanning Solutions Abstract A Full-Range of 3D Body Scanning Solutions Jean-Loup RENNESSON TELMAT Industrie SA, Soultz, France TELMAT extends its range of 3D body scanning solutions named SYMCAD to fulfill a wide scope of

More information

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER INTRODUCTION The DIGIBOT 3D Laser Digitizer is a high performance 3D input device which combines laser ranging technology, personal

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

Realtime Omnidirectional Stereo for Obstacle Detection and Tracking in Dynamic Environments

Realtime Omnidirectional Stereo for Obstacle Detection and Tracking in Dynamic Environments Proc. 2001 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems pp. 31-36, Maui, Hawaii, Oct./Nov. 2001. Realtime Omnidirectional Stereo for Obstacle Detection and Tracking in Dynamic Environments Hiroshi

More information