NONUNIFORM FLOW AND PROFILES. Nonuniform flow varies in depth along the channel reach. Figure 1 Nonuniform Flow

Size: px
Start display at page:

Download "NONUNIFORM FLOW AND PROFILES. Nonuniform flow varies in depth along the channel reach. Figure 1 Nonuniform Flow"

Transcription

1 Nonuniorm Flow and Proiles Page 1 NONUNIFORM FLOW AND PROFILES Nonuniorm Flow Nonuniorm low varies in depth along the channel reach. Figure 1 Nonuniorm Flow Most lows are nonuniorm because Most channels are non-prismatic. Storm sewers are non-prismatic due to the presence o manholes and changes in pipe diameter, slope and direction. Flow may be nonuniorm in a prismatic channel due the inluence o a control, e.g., backwater created by a high tailwater depth or drawdown at a ree overall. Control A control is a channel eature, usually structural, where there is a unique (one-to-one) relationship between depth and discharge. A control regulates (controls) the state o low. Examples: Free overall at the end o a mild channel Weirs, Flumes (critical controls) Ininitely long prismatic channel (control reach) Subcritical low is controlled by downstream conditions. Supercritical low is controlled by upstream conditions. Channel Classiication Channel bed slopes are classiied hydraulically as mild, steep, critical, horizontal, and adverse. A channel bed slope may classiy as mild or one low rate and steep or another. The classiication is based on the relationship between the normal depth o low, y n, and the critical depth o low, y c, or a given lowrate. ECIV 36 Introduction to Water Resources Engineering

2 Nonuniorm Flow and Proiles Page The bed slope is called: Mild i y n >y c Steep i y c >y n Critical i y n y c Flow Proiles Depending on the relationship between y n and y c, there can be three zones where y(x) occurs. Figure Flow Proile Zones on a Mild Channel I y(x)>y n, then the low proile exists in Zone 1. In other words, the actual depth o low, y(x), is greater than y n and occurs in Zone 1. I y n >y(x)>y c, then the low proile exists in Zone. I y c >y(x), then the low proile exists in Zone 3. Flow proiles are identiied using a two-character label. The irst is an alpha character that identiies the type o channel slope (e.g., M or mild, S or steep). The second is a numeric character that identiies the zone (e.g., 1, or 3). For a hydraulically mild channel: I y(x)>y n, the proile exists in Zone 1, and is an M1 proile. I y n >y(x)>y c, the proile exists in Zone, and is an M proile. I y c >y(x), the proile exists in Zone 3, and is an M3 proile. Zone 1 low proiles are known as backwater proiles because the water "backs-up" due to a downstream control that restricts the outlow and orces the water to pond to a greater depth to "push" the low through/past the control. Zone proiles are known as drawdown or rontwater (HMI, et al., 004) curves. ECIV 36 Introduction to Water Resources Engineering

3 Nonuniorm Flow and Proiles Page 3 Figure 3 Mild Channel Proiles Figure 4 Steep Channel Proiles Flow Proile Analysis The change in depth in nonuniorm low is known as the low proile and is determined mathematically by low proile analysis. Calculations involve solving the energy equation at dierent points along the proile. Flow proile analysis is used in storm sewer design when determining the hydraulic grade line (FHWA, 1996). Theory Consider the deinition igure or nonuniorm low in an open channel (Figure 5). Applying energy conservation between sections 1 and gives EGL 1 EGL + h where EGL 1 is the total energy at section 1, EGL is the total energy at section, and h is energy lost to riction between 1 and. Rewrite the energy equation in terms o speciic energy E 1 + z1 E + z + h ECIV 36 Introduction to Water Resources Engineering

4 Nonuniorm Flow and Proiles Page 4 Figure 5 Deinition Figure The dierence in elevation heads is product o channel bed slope, S o, and reach length, Δx. z1 z So Δx and h is the product o riction slope, S, and reach length. h S Δ S is the slope o the energy grade line. Ater substitution, x ( S S ) x E - E1 o Δ Dividing both sides by Δx, we get E E 1 S 0 S Δx Because speciic energy is evaluated at both ends o a channel reach (Δx), convention is to evaluate the riction slope term at both ends o the reach to approximate the average riction slope over the reach. E E 1 S S o Δ x in which S 1 + S S where S 1 is the riction slope evaluated at 1 and S is the riction slope evaluated at. We use Manning's equation to approximate S. Simply substitute S or S o and solve or S. S Q n.1 A R n A Q R (English ) (SI) ECIV 36 Introduction to Water Resources Engineering

5 Nonuniorm Flow and Proiles Page 5 Solution Methods Most low proile analysis programs use numerical solution techniques. Two methods are commonly used: (1) Direct Step Method and () Standard Step Method. Direct Step Method Involves an explicit (direct) numerical solution o the energy equation. Applies only to prismatic channels. Involves solving or the position (xlocation) o user speciied y-values along the low proile. Rule-o-thumb: Given y, ind x. Standard Step Method Involves an iterative numerical solution o the energy equation. Applies to any channel: natural, prismatic, etc. Involves solving or the depth at user speciied x-locations. Rule-o-thumb: Given x, ind y. Direct Step Procedure: Determine the design lowrate, Q, channel geometry and dimensions, bed slope, and Manning's n-value. Determine normal depth, y n, and critical depth, y c, or the design low. Classiy the channel bed slope. Channel is mild i y n >y c, steep i y c >y n, etc. Determine the location o the control and the depth o low at the control. For example, i you are dealing with a hydraulically mild storm sewer with a ree overall at the outlet, the low will pass through critical depth at the outlet, meaning the control is at the outlet. Classiy the proile type, e.g., M1, M, S1, etc. For the example, the upstream proile is an M or drawdown curve. Knowing the proile type and the depth at the control, establish the range o values or the depth proile, y(x). For the example, y c <y(x)<y n. Create a worktable (Example Problem in Unit on Storm Sewer Design). Starting at the control, speciy several y-values over the range determined in the previous step. Use a small increment between successive y-values near the control. A larger increment can be used arther rom the control. Note: I the low is subcritical, the control is downstream, and the proile is evaluated in the upstream direction, starting at the control. I the low is supercritical, the control is upstream, and the proile is evaluated in the downstream direction, starting at the control. Solve the energy equation between successive y-values to determine the distance, Δx, between them. Sum Δx values to determine the distance o each point rom the control. Plot y(x) versus x. This is the desired low proile. Standard Step Procedure: Determine the design lowrate, Q. Determine the channel x-sectional geometry, slope and Manning's n-value. ECIV 36 Introduction to Water Resources Engineering

6 Nonuniorm Flow and Proiles Page 6 I the channel is not prismatic, determine the cross-sectional geometry, dimensions and Manning's n-value at each cross-section where you desire the depth o low. Also, measure the distance o each x-section rom the control, and determine the bed slope between adjacent x-sections. Determine Δx between adjacent x-sections (known Δx values). Evaluate normal depth, y n, and critical depth, y c. I the channel is not prismatic, do this or each subreach, Δx. Classiy the channel bed slope. I the channel is not prismatic, to have one continuous proile type, all subreaches must have the same bed slope classiication; otherwise, multiple proiles exist. Determine the location and low depth at the control. Classiy the proile. Create a worktable. Starting at the control, choose a trial y value at the irst x-section rom the control. Solve the energy equation between the two x-sections to determine the distance, Δx, between them (predicted Δx). I the predicted Δx is suiciently close to the known Δx, the assumed y-value is good; otherwise, adjust the assumed y-value and repeat the process. Repeat the process or all sub-reaches. Plot y(x) versus x. This is the desired low proile. REFERENCES Federal Highway Administration (1996). Urban Drainage Design Manual, Hydraulic Engineering Circular No., Oice o Technology Applications, th Street SW, Washington, DC. Haestad Engineering Sta, Walski, T.M., Barnard, T.E., Durrans, S.R., and Meadows, M.E. (004). Computer Applications in Hydraulic Engineering, 6 th Edition, Haestad Press, Waterbury, CT, 375 p. ECIV 36 Introduction to Water Resources Engineering

GRADUALLY VARIED FLOW

GRADUALLY VARIED FLOW CVE 341 Water Resources Lecture Notes 5: (Chapter 14) GRADUALLY VARIED FLOW FLOW CLASSIFICATION Uniform (normal) flow: Depth is constant at every section along length of channel Non-uniform (varied) flow:

More information

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox v. 9.1 WMS 9.1 Tutorial Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox

More information

Storm Drain Modeling HY-12 Rational Design

Storm Drain Modeling HY-12 Rational Design v. 10.1 WMS 10.1 Tutorial Learn how to design storm drain inlets, pipes, and other components of a storm drain system using FHWA's HY-12 storm drain analysis software and the WMS interface Objectives Define

More information

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CONTENTS 1. Flow Classification 2. Chezy s and Manning Equation 3. Specific Energy 4. Surface Water Profiles 5. Hydraulic Jump 6. HEC-RAS 7. HEC-HMS

More information

HEC-RAS. A Tutorial (Model Development of a Small Flume)

HEC-RAS. A Tutorial (Model Development of a Small Flume) HEC-RAS A Tutorial (Model Development of a Small Flume) HEC-RAS Hydraulic Engineering Center:River Analysis System 1-D step backwater model Utilizes energy equation to compute water surface elevation for

More information

Storm Drain Modeling HY-12 Pump Station

Storm Drain Modeling HY-12 Pump Station v. 10.1 WMS 10.1 Tutorial Storm Drain Modeling HY-12 Pump Station Analysis Setup a simple HY-12 pump station storm drain model in the WMS interface with pump and pipe information Objectives Using the HY-12

More information

Automating Hydraulic Analysis v 1.0.

Automating Hydraulic Analysis v 1.0. 2011 Automating Hydraulic Analysis v 1.0. Basic tutorial and introduction Automating Hydraulic Analysis (AHYDRA) is a freeware application that automates some specific features of HEC RAS or other hydraulic

More information

Peak Stormwater Engineering, LLC MEMORANDUM

Peak Stormwater Engineering, LLC MEMORANDUM Peak Stormwater Engineering, LLC 922 Cypress Lane, Louisville, CO 80027 Tel: (720) 239-1151 Fax: (720) 239-1191 Email: drapp@peakstormwater.com MEMORANDUM Date: To: Holly Piza, UDFCD Ken MacKenzie, UDFCD

More information

Required: 486DX-33, 8MB RAM, HDD w. 20 MB free, VGA, Win95. Recommended: Pentium 60, 16 MB RAM, SVGA, Win95 or NT

Required: 486DX-33, 8MB RAM, HDD w. 20 MB free, VGA, Win95. Recommended: Pentium 60, 16 MB RAM, SVGA, Win95 or NT Evaluation Form Evaluator Information Name: Jeff Hagan Date: Feb. 17, 2000 Software Information Title of Software: Purpose: Publisher: CulvertMaster Culvert Hydraulic Design Haestad Methods, Inc. Version:

More information

Watershed Modeling Rational Method Interface. Learn how to model urban areas using WMS' rational method interface

Watershed Modeling Rational Method Interface. Learn how to model urban areas using WMS' rational method interface v. 10.1 WMS 10.1 Tutorial Learn how to model urban areas using WMS' rational method interface Objectives Learn how to model urban areas using the Rational method, including how to compute rainfall intensity,

More information

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two 41.4 Routing The computation of a flood wave resulting from a dam break basically involves two problems, which may be considered jointly or seperately: 1. Determination of the outflow hydrograph from the

More information

WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS

WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS v. 10.0 WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS Objectives Define a conceptual schematic of the roadway, invert, and downstream

More information

Storm Drain Modeling HY-12 Analysis with CAD

Storm Drain Modeling HY-12 Analysis with CAD v. 10.1 WMS 10.1 Tutorial Storm Drain Modeling HY-12 Analysis with CAD Data Setup an HY-12 storm drain model in the WMS interface using CAD data with inlet and pipe information Objectives Learn to define

More information

OPEN CHANNEL FLOW. An Introduction. -

OPEN CHANNEL FLOW. An Introduction.   - OPEN CHANNEL FLOW An Introduction http://tsaad.utsi.edu - tsaad@utsi.edu OUTLINE General characteristics Surface Waves & Froude Number Effects Types of Channel flows The Hydraulic Jump Conclusion General

More information

Linear Routing: Floodrouting. HEC-RAS Introduction. Brays Bayou. Uniform Open Channel Flow. v = 1 n R2/3. S S.I. units

Linear Routing: Floodrouting. HEC-RAS Introduction. Brays Bayou. Uniform Open Channel Flow. v = 1 n R2/3. S S.I. units Linear Routing: Floodrouting HEC-RAS Introduction Shirley Clark Penn State Harrisburg Robert Pitt University of Alabama April 26, 2004 Two (2) types of floodrouting of a hydrograph Linear Muskingum Reservoir

More information

Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015

Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015 Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015 Contents Introduction General Philosophy Overview of Capabilities Applications Computational

More information

The Graph of an Equation Graph the following by using a table of values and plotting points.

The Graph of an Equation Graph the following by using a table of values and plotting points. Calculus Preparation - Section 1 Graphs and Models Success in math as well as Calculus is to use a multiple perspective -- graphical, analytical, and numerical. Thanks to Rene Descartes we can represent

More information

Classwork 5 Using HEC-RAS for computing water surface profiles

Classwork 5 Using HEC-RAS for computing water surface profiles Classwork 5 Using HEC-RAS for computing water surface profiles (in collaboration with Dr. Ing. Luca Milanesi) Why classwork 5? This lecture will give us the possibility to make our first acquaintance with

More information

Gavin Fields Senior Water Resources Engineer XP Solutions

Gavin Fields Senior Water Resources Engineer XP Solutions Hydraulics 101 Gavin Fields Senior Water Resources Engineer XP Solutions Hydraulics 101 Introduction Structures Hydraulic Model Building Q&A XP Solutions Software for modeling wastewater, stormwater, and

More information

Appendix H Drainage Ditch Design - Lab TABLE OF CONTENTS APPENDIX H... 2

Appendix H Drainage Ditch Design - Lab TABLE OF CONTENTS APPENDIX H... 2 Appendix H Drainage Ditch Design - Lab TABLE OF CONTENTS APPENDIX H... 2 H.1 Ditch Design... 2 H.1.1 Introduction... 2 H.1.2 Link/Ditch Configuration... 2 H.2 Lab 19: Ditch Design... 3 H.2.1 Introduction...

More information

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic v. 8.4 WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic Objectives This tutorial shows you how to define a basic MODRAT model using

More information

Storm Drain Modeling Defining HY-12 Storm Drain Networks with Shapefiles and LandXML files

Storm Drain Modeling Defining HY-12 Storm Drain Networks with Shapefiles and LandXML files WMS 10.1 Tutorial v. 10.1 Storm Drain Modeling Defining HY-12 Storm Drain Networks with Shapefiles and LandXML files Set up an HY-12 storm drain model in the WMS interface using common file types such

More information

FLOODPLAIN MODELING MANUAL. HEC-RAS Procedures for HEC-2 Modelers

FLOODPLAIN MODELING MANUAL. HEC-RAS Procedures for HEC-2 Modelers FLOODPLAIN MODELING MANUAL HEC-RAS Procedures for HEC-2 Modelers Federal Emergency Management Agency Mitigation Directorate 500 C Street, SW Washington, DC 20472 April 2002 Floodplain Modeling Manual HEC-RAS

More information

Culvert Studio User's Guide

Culvert Studio User's Guide Culvert Studio User's Guide 2 Culvert Studio Table of Contents Foreword 0 Part I Introduction 5 1 Installing... and Activating 6 2 Getting... Updates 7 3 About... This Guide 7 Part II Overview 9 1 The

More information

Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24

Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24 Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24 One dimensional river models (1-D models) Assumptions Flow is one dimensional Streamline

More information

WMS 10.0 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic

WMS 10.0 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic v. 10.0 WMS 10.0 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic Objectives This tutorial shows users how to define a basic MODRAT model using

More information

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations:

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: ENV3104 Hydraulics II 2017 Assignment 1 Assignment 1 Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: Examiner: Jahangir Alam Due Date: 27 Apr 2017 Weighting: 1% Objectives

More information

This loads a preset standard set of data appropriate for Malaysian modeling projects.

This loads a preset standard set of data appropriate for Malaysian modeling projects. XP Software On-Site Detention (OSD) Example Step 1 Open xpswmm2010 program Or from Start menu select Programs XPS - then select xpswmm2010 Select Create From Template Save file, e.g. Filename.xp The program

More information

Build a MODRAT model by defining a hydrologic schematic

Build a MODRAT model by defining a hydrologic schematic v. 11.0 WMS 11.0 Tutorial Build a MODRAT model by defining a hydrologic schematic Objectives Learn how to define a basic MODRAT model using the hydrologic schematic tree in WMS by building a tree and defining

More information

UTILITY REPORT FOR THORNTON SELF STORAGE THORNTON, COLORADO

UTILITY REPORT FOR THORNTON SELF STORAGE THORNTON, COLORADO UTILITY REPORT FOR THORNTON SELF STORAGE THORNTON, COLORADO Prepared by: Bowman Consulting 63 Park Point Dr. Suite 1 Golden, CO 841 (33)-81-29 June 29, 215 Revised August 14, 215 CERTIFICATE SHEET DCB

More information

H y d r o C A D. Owner's Manual

H y d r o C A D. Owner's Manual H y d r o C A D Stormwater Modeling System Version 8 Owner's Manual Copyright 2006 HydroCAD Software Solutions LLC. All rights reserved. HydroCAD is a registered trademark of HydroCAD Software Solutions

More information

HY-8 User Manual (v7.5) HY-8 Culvert Analysis Program

HY-8 User Manual (v7.5) HY-8 Culvert Analysis Program HY-8 User Manual (v7.5) HY-8 Culvert Analysis Program HY-8 User Manual 2 1. Introduction... 6 Introduction...6 Getting Started...7 Differences from DOS HY-8...9 Limitations...10 Vena Contracta...13 2.

More information

Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5

Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5 5 Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5 Karen Finney, Rob James, William James and Tiehong Xiao An advantage of USEPA s SWMM5 is its capability to dynamically model

More information

Introduction to Bentley PondPack

Introduction to Bentley PondPack Introduction to Bentley PondPack CE 365K Hydraulic Engineering Design Prepared by Cassandra Fagan and David Maidment Spring 2015 Contents Goals of the Tutorial... 1 Procedure... 1 (1) Opening Bentley PondPack...

More information

Concavity. Notice the location of the tangents to each type of curve.

Concavity. Notice the location of the tangents to each type of curve. Concavity We ve seen how knowing where a unction is increasing and decreasing gives a us a good sense o the shape o its graph We can reine that sense o shape by determining which way the unction bends

More information

Tree-Dimensional numerical study of flows in complex CSOs for their instrumentation

Tree-Dimensional numerical study of flows in complex CSOs for their instrumentation Wasserbaukolloquium 2006 Strömungssimulation im Wasserbau Dresdner Wasserbauliche Mitteilungen Heft 32 353 Tree-Dimensional numerical study of flows in complex CSOs for their instrumentation Vazquez, J.

More information

WMS 10.0 Tutorial Storm Drain Modeling SWMM Modeling Learn how to link a hydrologic model to the SWMM storm drain model

WMS 10.0 Tutorial Storm Drain Modeling SWMM Modeling Learn how to link a hydrologic model to the SWMM storm drain model v. 10.0 WMS 10.0 Tutorial Learn how to link a hydrologic model to the SWMM storm drain model Objectives Build a rational method hydrologic model and compute sub-basin flows. Import storm drain network

More information

WMS 9.1 Tutorial Storm Drain Modeling SWMM Modeling Learn how to link a hydrologic model to the SWMM storm drain model

WMS 9.1 Tutorial Storm Drain Modeling SWMM Modeling Learn how to link a hydrologic model to the SWMM storm drain model v. 9.1 WMS 9.1 Tutorial Learn how to link a hydrologic model to the SWMM storm drain model Objectives Build a rational method hydrologic model and compute sub-basin flows. Import storm drain network information

More information

Learn how to link a hydrologic model to the SWMM storm drain model

Learn how to link a hydrologic model to the SWMM storm drain model v. 10.1 WMS 10.1 Tutorial Learn how to link a hydrologic model to the SWMM storm drain model Objectives Build a rational method hydrologic model and compute sub-basin flows. Import storm drain network

More information

Hydraulic Calculations Relating to the Flooding and Draining. of the Roman Colosseum for Naumachiae. Research Report

Hydraulic Calculations Relating to the Flooding and Draining. of the Roman Colosseum for Naumachiae. Research Report Hydraulic Calculations Relating to the Flooding and Draining of the Roman Colosseum for Naumachiae Research Report Edinburgh Research Archive (www.era.lib.ed.ac.uk) By Martin Crapper PhD C Eng MICE MCIWEM

More information

The HEC-RAS Model Refresher

The HEC-RAS Model Refresher The HEC-RAS Model Refresher Minmin Shu P.E. Transportation Review Unit Water Resources Division Michigan Department of Environmental Quality 12-6-2018 What Does the HEC-RAS Mean RAS----River Analysis System

More information

HEC-22 Inlets in INFOSWMM and H2OMAP SWMM v12

HEC-22 Inlets in INFOSWMM and H2OMAP SWMM v12 HEC-22 Inlets in INFOSWMM and H2OMAP SWMM v12 Table of Contents How the Inlet and Overland Junctions are Defined 3 Why Would You Use the HEC-22 Inlets Option? 4 Types of Inlets 5 Nodes in InfoSWMM and

More information

HY-8 Quick Start Guide. What s in this Quick Start Document. Technical Methods. HY-8 Quick Start

HY-8 Quick Start Guide. What s in this Quick Start Document. Technical Methods. HY-8 Quick Start HY-8 Quick Start Guide This Quick Start guide is intended to provide essential information for installing and running the updated version 7.1 of the HY-8 culvert hydraulic analysis and design program (HY-8

More information

Improved understanding of combined sewer systems using the Illinois Conveyance Analysis Program (ICAP)

Improved understanding of combined sewer systems using the Illinois Conveyance Analysis Program (ICAP) Improved understanding of combined sewer systems using the Illinois Conveyance Analysis Program (ICAP) Nils Oberg 1*, Arthur R. Schmidt 1, Blake J. Landry 1, Arturo S. Leon 1,2, Andrew R. Waratuke 1, José

More information

Benefits of 2D Modeling for Urban Stormwater Master Planning Niles, Illinois

Benefits of 2D Modeling for Urban Stormwater Master Planning Niles, Illinois Benefits of 2D Modeling for Urban Stormwater Master Planning Niles, Illinois Patrick Lach, P.E., CFM, Hey and Associates, Inc. Steve Vinezeano, ICMA CM, LEED AP Assistant Village Manager Three Geographic

More information

Section 3 Laying Out Structures

Section 3 Laying Out Structures Mastering Storm&Sanitary Section 3 Laying Out Structures Section Goals: How to Set Drainage Options When to Set Structure Settings Using Preference Sets Laying Out Ditch Inlets Laying Out a connecting

More information

INTRODUCTION TO HEC-RAS

INTRODUCTION TO HEC-RAS INTRODUCTION TO HEC-RAS HEC- RAS stands for Hydrologic Engineering Center s River Analysis System By U.S. Army Corps of Engineers One dimensional analysis of : 1. Steady flow 2. Unsteady flow 3. Sediment

More information

SRH-2D Additional Boundary Conditions

SRH-2D Additional Boundary Conditions v. 12.2 SMS 12.2 Tutorial SRH-2D Additional Boundary Conditions Objectives Learn techniques for using various additional boundary conditions with the Sedimentation and River Hydraulics Two-Dimensional

More information

Improving the Senior Level Hydraulic Engineering Design Course (CE 474) By Means of Computer Assisted Instruction

Improving the Senior Level Hydraulic Engineering Design Course (CE 474) By Means of Computer Assisted Instruction Improving the Senior Level Hydraulic Engineering Design Course (CE 474) By Means of Computer Assisted Instruction Rolando Bravo 1 Abstract- This paper presents the development of spreadsheet software at

More information

PRACTICAL UNIT 1 exercise task

PRACTICAL UNIT 1 exercise task Practical Unit 1 1 1 PRACTICAL UNIT 1 exercise task Developing a hydraulic model with HEC RAS using schematic river geometry data In the course of practical unit 1 we prepare the input for the execution

More information

PCSWMM 2002 EXTRAN Block PAT AVENUE Storm Drainage Design

PCSWMM 2002 EXTRAN Block PAT AVENUE Storm Drainage Design PCSWMM 2002 EXTRAN Block PAT AVENUE Storm Drainage Design A Hello World Example Prepared by Dr. Robert Pitt and Jason Kirby, Department of Civil Engineering, University of Alabama August 20, 2002 Introduction

More information

HEC-RAS 3.0 January, 2001 Release Notes

HEC-RAS 3.0 January, 2001 Release Notes HEC-RAS 3.0 January, 2001 Release Notes A new version of HEC-RAS (3.0) has been released with significant new features over the previous version (2.21). Version 3.0 includes unsteady flow routing capabilities,

More information

Introduction to MIKE FLOOD

Introduction to MIKE FLOOD Introduction to MIKE FLOOD HYDROEUROPE, Sophia-Antipolis, February 2011 Julie Landrein, DHI Denmark Introduction to MIKE FLOOD - Introduction to MIKE FLOOD - 1D Modelling: MIKE 11, MIKE URBAN - 2D Modelling:

More information

Multi-Stage Outlet Structures

Multi-Stage Outlet Structures Methods in Stormwater Management Using HydroCAD Multi-Stage Outlet Structures H09 Multi-Stage Outlet Structures.pdf 1 Topics 1. Multi-State Outlet Structures Definition 2. Orifice and Weir Equations 3.

More information

Questions and Answers

Questions and Answers Autodesk Storm and Sanitary Analysis Extension 2011 Questions and Answers Design stormwater and wastewater systems more effectively with integrated analysis. Contents 1. GENERAL PRODUCT INFORMATION...

More information

Rapid Floodplain Delineation. Presented by: Leo R. Kreymborg 1, P.E. David T. Williams 2, Ph.D., P.E. Iwan H. Thomas 3, E.I.T.

Rapid Floodplain Delineation. Presented by: Leo R. Kreymborg 1, P.E. David T. Williams 2, Ph.D., P.E. Iwan H. Thomas 3, E.I.T. 007 ASCE Rapid Floodplain Delineation Presented by: Leo R. Kreymborg 1, P.E. David T. Williams, Ph.D., P.E. Iwan H. Thomas 3, E.I.T. 1 Project Manager, PBS&J, 975 Sky Park Court, Suite 00, San Diego, CA

More information

THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL

THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL by Jonathan N. Wetmore and Danny L. Fread 1 (Revised 12/18/91) by Danny L. Fread, Janice M. Lewis 2, and Stephen M. Wiele 2 SYNOPSIS The National Weather

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Efficiency and performances

More information

iric Software Changing River Science River2D Tutorials

iric Software Changing River Science River2D Tutorials iric Software Changing River Science River2D Tutorials iric Software Changing River Science Confluence of the Colorado River, Blue River and Indian Creek, Colorado, USA 1 TUTORIAL 1: RIVER2D STEADY SOLUTION

More information

Canal design by dynamic programming, computer programme CANDY G. Radovic Energoprojekt-Hidronizenjering, Bui. Lenjina 12, Belgrade, Yugoslavia

Canal design by dynamic programming, computer programme CANDY G. Radovic Energoprojekt-Hidronizenjering, Bui. Lenjina 12, Belgrade, Yugoslavia Canal design by dynamic programming, computer programme CANDY G. Radovic Energoprojekt-Hidronizenjering, Bui. Lenjina 12, 11 000 Belgrade, Yugoslavia Abstract The problem considered in this technical note

More information

Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results

Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results Prabharanjani Madduri, P.E., CFM Mathini Sreetharan, Ph.D., P.E., CFM Hydraulic modeling of urban areas and issues Modeling

More information

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Developing a GSSHA Model Using the Hydrologic Modeling Wizard in WMS Learn how to setup a basic GSSHA model using the hydrologic modeling wizard Objectives

More information

TECHNICAL PROBLEM The author's work, software application "BALBYKAN", solves the problem of hydraulic

TECHNICAL PROBLEM The author's work, software application BALBYKAN, solves the problem of hydraulic 1 SOFTWARE APPLICATION "BALBYKAN" FOR HYDRAULIC CALCULATION, ENGINEERING DESIGN, AND SIMULATION OF SEWERAGE SYSTEMS AUTHOR: Pavle Babac, Civil Engineer, MSc ABSTRACT The author's work, software application

More information

Wave load formulae for prediction of wave-induced forces on a slender pile within pile groups

Wave load formulae for prediction of wave-induced forces on a slender pile within pile groups Wave load ormulae or prediction o wave-induced orces on a slender pile within pile groups Lisham Bonakdar 1 *, Hocine Oumeraci 1 and Amir Etemad-Shahidi 2 1 Leichtweiss-Institute or Hydraulic Engineering

More information

Flood Inundation Mapping using HEC-RAS

Flood Inundation Mapping using HEC-RAS Flood Inundation Mapping using HEC-RAS Goodell, C. 1 ; Warren, C. 2 WEST Consultants, 2601 25 th St SE, Suite 450, Salem, OR 97302. Abstract Flood inundation mapping is an important tool for municipal

More information

Aalborg Universitet. Numerical 3-D Modelling of Overflows Larsen, Torben; Nielsen, L.; Jensen, B.; Christensen, E. D.

Aalborg Universitet. Numerical 3-D Modelling of Overflows Larsen, Torben; Nielsen, L.; Jensen, B.; Christensen, E. D. Aalborg Universitet Numerical 3-D Modelling of Overflows Larsen, Torben; Nielsen, L.; Jensen, B.; Christensen, E. D. Published in: Confernce Proceedings : 11th International Conference on Urban Drainage

More information

Open Channel Flow. Course paper: Water level calculation with HEC-RAS

Open Channel Flow. Course paper: Water level calculation with HEC-RAS Course paper: Water level calculation with HEC-RAS Prof. Dr.-Ing. Tobias Bleninger Graduate Program for Water Resources and Environmental Engineering (PPGERHA) Universidade Federal do Paraná - UFPR Centro

More information

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model v. 9.1 WMS 9.1 Tutorial Integrate stream flow with your GSSHA overland flow model Objectives Learn how to add hydraulic channel routing to your GSSHA model and how to define channel properties. Learn how

More information

Evaluating Multiple Stormwater Analysis and Design Alternatives with StormCAD

Evaluating Multiple Stormwater Analysis and Design Alternatives with StormCAD Evaluating Multiple Stormwater Analysis and Design Alternatives with StormCAD Workshop Overview In this workshop you will use StormCAD to analyze an existing storm sewer system. You will add a parking

More information

Day 1. HEC-RAS 1-D Training. Rob Keller and Mark Forest. Break (9:45 am to 10:00 am) Lunch (12:00 pm to 1:00 pm)

Day 1. HEC-RAS 1-D Training. Rob Keller and Mark Forest. Break (9:45 am to 10:00 am) Lunch (12:00 pm to 1:00 pm) Day 1 HEC-RAS 1-D Training Rob Keller and Mark Forest Introductions and Course Objectives (8:00 am to 8:15 am) Introductions: Class and Content Module 1 Open Channel Hydraulics (8:15 am to 9:45 am) Lecture

More information

Another Look at the Safety Effects of Horizontal Curvature on Rural Two-Lane Highways

Another Look at the Safety Effects of Horizontal Curvature on Rural Two-Lane Highways 1 2 Another Look at the Safety Effects of Horizontal Curvature on Rural Two-Lane Highways 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

More information

Floodplain Engineering

Floodplain Engineering Floodplain Engineering by David E. Fantina, PE Introduction: This course presents a discussion of the modeling procedure for flood profiling. The most commonly used software for flood profiling is the

More information

v SMS Tutorials SRH-2D Prerequisites Requirements SRH-2D Model Map Module Mesh Module Data files Time

v SMS Tutorials SRH-2D Prerequisites Requirements SRH-2D Model Map Module Mesh Module Data files Time v. 11.2 SMS 11.2 Tutorial Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional () simulation using SMS version 11.2 or later. Prerequisites SMS Overview tutorial

More information

ITU - Telecommunication Standardization Sector. G.fast: Far-end crosstalk in twisted pair cabling; measurements and modelling ABSTRACT

ITU - Telecommunication Standardization Sector. G.fast: Far-end crosstalk in twisted pair cabling; measurements and modelling ABSTRACT ITU - Telecommunication Standardization Sector STUDY GROUP 15 Temporary Document 11RV-22 Original: English Richmond, VA. - 3-1 Nov. 211 Question: 4/15 SOURCE 1 : TNO TITLE: G.ast: Far-end crosstalk in

More information

Ducks on the Pond: Stormwater Management Basin Analysis Using AutoCAD Civil 3D and Autodesk SSA

Ducks on the Pond: Stormwater Management Basin Analysis Using AutoCAD Civil 3D and Autodesk SSA Ducks on the Pond: Stormwater Management Basin Analysis Using AutoCAD Civil 3D and Autodesk Josh Kehs, P.E. Autodesk, Inc. CI4541 Learning Objectives At the end of this class, you will be able to: Model

More information

Section 4: Pond Storage

Section 4: Pond Storage Section 4: Pond Storage Defining and calculating pond storage 55 Minutes Press Space, PageDown, or Click to advance. Press PageUp to reverse. Esc to exit. Right-Click for other options. Pond Storage Introduction

More information

Using a Projected Subgradient Method to Solve a Constrained Optimization Problem for Separating an Arbitrary Set of Points into Uniform Segments

Using a Projected Subgradient Method to Solve a Constrained Optimization Problem for Separating an Arbitrary Set of Points into Uniform Segments Using a Projected Subgradient Method to Solve a Constrained Optimization Problem or Separating an Arbitrary Set o Points into Uniorm Segments Michael Johnson May 31, 2011 1 Background Inormation The Airborne

More information

Comparison of 1D and 2D Surface Water Models for Solid Waste Facilities. Garth R. Bowers, P.E., Carl E. Bueter, P.E., Larry Henk

Comparison of 1D and 2D Surface Water Models for Solid Waste Facilities. Garth R. Bowers, P.E., Carl E. Bueter, P.E., Larry Henk Comparison of 1D and 2D Surface Water Models for Solid Waste Facilities Garth R. Bowers, P.E., Carl E. Bueter, P.E., Larry Henk Introduction Importance of Accurate Floodplain Delineation Required by Federal

More information

Chapter 16. Table of Contents

Chapter 16. Table of Contents Table of Contents BANK FAILURE CALCULATIONS IN HEC-6T...16-1 Introduction...16-1 Approach...16-2 Conceptual Model...16-3 Theoretical Development...16-4 Two Foot Test...16-6 Mass Conservation...16-6 Command

More information

Skill Sets Chapter 5 Functions

Skill Sets Chapter 5 Functions Skill Sets Chapter 5 Functions No. Skills Examples o questions involving the skills. Sketch the graph o the (Lecture Notes Example (b)) unction according to the g : x x x, domain. x, x - Students tend

More information

A Proposed Approach for Solving Rough Bi-Level. Programming Problems by Genetic Algorithm

A Proposed Approach for Solving Rough Bi-Level. Programming Problems by Genetic Algorithm Int J Contemp Math Sciences, Vol 6, 0, no 0, 45 465 A Proposed Approach or Solving Rough Bi-Level Programming Problems by Genetic Algorithm M S Osman Department o Basic Science, Higher Technological Institute

More information

A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway.

A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway. A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway. VPC: Vertical Point of Curvature VPI: Vertical Point of Intersection VPT: Vertical Point

More information

River Analysis System HEC-RAS

River Analysis System HEC-RAS Hydrologic Engineering Center River Analysis System HEC-RAS Release Notes Version 4.0.0 March 2008 Approved for Public Release Distribution Unlimited 1 Introduction Version 4.0.0 of the River Analysis

More information

George Mason University Department of Civil, Environmental and Infrastructure Engineering. Dr. Celso Ferreira Prepared by Lora Baumgartner

George Mason University Department of Civil, Environmental and Infrastructure Engineering. Dr. Celso Ferreira Prepared by Lora Baumgartner George Mason University Department of Civil, Environmental and Infrastructure Engineering Dr. Celso Ferreira Prepared by Lora Baumgartner Exercise Topic: Getting started with HEC RAS Objective: Create

More information

MEMORANDUM. Corona Subdivision XP Storm Evaluation. Date: March 5, Curt Bates, City of Petaluma. David S. Smith, P.E., WEST Consultants, Inc.

MEMORANDUM. Corona Subdivision XP Storm Evaluation. Date: March 5, Curt Bates, City of Petaluma. David S. Smith, P.E., WEST Consultants, Inc. MEMORANDUM Project: Corona Subdivision XP Storm Evaluation Subject: Results Summary Date: March 5, 2013 To: Curt Bates, City of Petaluma No. C056132 EXP. 12/31/14 From: David S. Smith, P.E., WEST Consultants,

More information

Building a new model in wspg2010

Building a new model in wspg2010 Building a new model in wspg2010 The Water Surface Profile Gradient 2010 (wspg2010 by XP Software) model is a hydraulic analysis system that computes and plots uniform and non-uniform steady flow water

More information

This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation. Requirements

This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation. Requirements v. 13.0 SMS 13.0 Tutorial Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional () simulation. Prerequisites SMS Overview tutorial Requirements Model Map Module

More information

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Tom Molls 1, Gary Brunner 2, & Alejandro Sanchez 2 1. David Ford Consulting Engineers, Inc., Sacramento, CA 2. USACE Hydrologic Engineering

More information

Bentley OpenRoads Workshop 2017 FLUG Fall Training Event

Bentley OpenRoads Workshop 2017 FLUG Fall Training Event Bentley OpenRoads Workshop 2017 FLUG Fall Training Event F-1P - Designing with a Pond Bentley Systems, Incorporated 685 Stockton Drive Exton, PA 19341 www.bentley.com Practice Workbook This workbook is

More information

Watershed Modeling With DEMs: The Rest of the Story

Watershed Modeling With DEMs: The Rest of the Story Watershed Modeling With DEMs: The Rest of the Story Lesson 7 7-1 DEM Delineation: The Rest of the Story DEM Fill for some cases when merging DEMs Delineate Basins Wizard Smoothing boundaries Representing

More information

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File C H A P T E R 9 Viewing Results After the model has finished the steady or unsteady flow computations the user can begin to view the output. Output is available in a graphical and tabular format. The current

More information

1-2. Composition of Functions. OBJECTIVES Perform operations with functions. Find composite functions. Iterate functions using real numbers.

1-2. Composition of Functions. OBJECTIVES Perform operations with functions. Find composite functions. Iterate functions using real numbers. - OBJECTIVES Perorm operations with unctions. Find composite unctions. Iterate unctions using real numbers. Composition o Functions BUSINESS Each year, thousands o people visit Yellowstone National Park

More information

Use of measured and interpolated crosssections

Use of measured and interpolated crosssections Use of measured and interpolated crosssections in hydraulic river modelling Y. Chen/, R. Crowded & R. A. Falconer^ ^ Department of Civil & Environmental Engineering, University ofbradford, Bradford, West

More information

Conic Sections. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Conic Sections. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Conic Sections MATH 211, Calculus II J. Robert Buchanan Department o Mathematics Spring 2018 Introduction The conic sections include the parabola, the ellipse, and the hyperbola. y y y x x x Parabola A

More information

General Applications

General Applications Chapter General Applications The general analysis modules can be used to calculate section properties, wind pressures on buildings and evaluate drainage systems of building roofs. General Applications

More information

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE Jungseok Ho 1, Hong Koo Yeo 2, Julie Coonrod 3, and Won-Sik Ahn 4 1 Research Assistant Professor, Dept. of Civil Engineering,

More information

Practice Workbook. QuickStart using Subsurface Utility Engineering

Practice Workbook. QuickStart using Subsurface Utility Engineering Practice Workbook This workbook is designed for use in Live instructor-led training and for OnDemand selfstudy. The explanations and demonstrations are provided by the instructor in the classroom, or in

More information

Writing and Graphing Linear Equations. Linear equations can be used to represent relationships.

Writing and Graphing Linear Equations. Linear equations can be used to represent relationships. Writing and Graphing Linear Equations Linear equations can be used to represent relationships. Linear equation An equation whose solutions form a straight line on a coordinate plane. Collinear Points that

More information

Objectives This tutorial demonstrates how to perform unsteady sediment transport simulations in SRH-2D.

Objectives This tutorial demonstrates how to perform unsteady sediment transport simulations in SRH-2D. SMS v. 12.2 SRH-2D Tutorial Objectives This tutorial demonstrates how to perform unsteady sediment transport simulations in SRH-2D. Prerequisites SMS Overview tutorial SRH-2D SRH-2D Sediment Transport

More information

Appendix E. HEC-RAS and HEC-Ecosystem Functions Models

Appendix E. HEC-RAS and HEC-Ecosystem Functions Models Appendix E HEC-RAS and HEC-Ecosystem Functions Models 1 Appendix E: Modeled Reaches for the Connecticut River Watershed application of HEC-RAS Separate from the report for the Decision Support System of

More information