Photogrammetric Procedures for Digital Terrain Model Determination

Size: px
Start display at page:

Download "Photogrammetric Procedures for Digital Terrain Model Determination"

Transcription

1 Photogrammetric Procedures for Digital Terrain Model Determination Hartmut ZIEMANN and Daniel GROHMANN 1 Introduction Photogrammetric procedures for digital terrain model (DTM) data determination fall into a number of categories: Stereocompilation methods: Traditional photogrammetric capture with analytical workstations utilizing direct viewing of film imagery. Capture with digital photogrammetric workstations using either digitized or digital source imagery. Automatic collection of elevation data by digital correlation from digitized film or digital imagery. This is augmented by editing with analytical or digital compilation workstations. Hybrid approaches. Many projects involve the determination of both feature (planimetric) data and elevation data. In regard to elevations, DTM generated by these methods in the past were primarily focused on producing topographic contours. However, the recent large emphasis on digital orthophoto production has brought about the concept of elevation data sets specifically geared toward this effort; these need in general not have the same elevation accuracy und require therefore significantly less time and cost to produce. This paper will discuss the determination of elevation data. 2 Data Collection Methods 2.1 Geo-Referencing Geo-referenced images are defined as those in which three-dimensional ground co-ordinates can be mathematically mapped into a two-dimensional image space, and vice-versa. A number of components are needed for each image to be able to extract geo-referenced data from it: the interior orientation converts the two-dimensional image into a three-dimensional bundle of rays using reference marks defined as part of a camera model, and the exterior orientation provides data to uniquely position and orient each bundle in space. Depending upon image scale and required evaluation accuracies, atmospheric effect, Earth curvature or coordinate system distortions may also be corrected.

2 2 H. Ziemann and D. Grohmann No mapping of any type can begin until all acquired imagery is accurately tied to the ground reference frame. In most cases, this requires a process known as aerotriangulation; in future this process may no longer be needed as the required data will be collected with sufficient accuracy using Airborne GPS (ABGPS) and IMU data. Aerotriangulation refers to the process of measuring a number of points on overlapping images and some suitably located control points, and then determining the exterior orientation elements. This process employs the geometric sensor model and a statistical process that produces a best fit. The output of this process includes terrain coordinates for all points measured on at least two images. With aerotriangulation in mind, imagery is acquired in strips along flight lines and the strips aggregated into a block of imagery covering the project area. Imagery is overlapped within each strip, generally about 60 percent of the image width in the along-flight direction. The strips, in turn, are flown parallel to one another and generally overlapping adjoining strips by about 30 percent of the image width. Using the overlapping imagery, a number of points are measured on each, optimizing the points in multiple overlap areas: control points with known horizontal, vertical, or both horizontal and vertical position, pass points between photos in a strip and tie points between photos in overlapping strips. Most procedures focus on measuring pass points at the center, left center edge, and right center edge (comprising the classical Gruber pattern) of each image along the direction of flight; this results in nearly all points falling in tripleoverlap areas. Tie points are measured at the top and bottom edges of each image where strips overlap and thus many of these will appear on 4 to 6 images. Control points are accurately ground surveyed and either chosen as photo-identifiable points or are targeted prior to flying. They must be chosen to be in localized flat areas, free of obstructions (such as overhanging trees or nearby structures), easily identified, and sized to be accurately measured based on the image scale. Ground control point distribution throughout the block of images is generally focused on a number of points with known position and elevation along the edges of the block and a lesser number of points scattered in the center of the block. Additional control points with known elevation only are needed throughout the block. Sophisticated aerotriangulation packages simultaneously determine the ground co-ordinates of all measured points and exterior orientation elements using the method of least squares adjustment and the sensor's geometric model. All determined parameters (ground coordinates, image measurements and exterior orientation) generally include estimates of accuracy, which are used to increase the stability and rigor of the solution through the least squares process. Aerotriangulation software packages also support the so-called selfcalibration, in which deviations from known interior orientation parameters and film deformation are also determined. The use of ABGPS for exterior orientation can significantly strengthen the aerotriangulation results particularly for smaller scale projects. GPS positions effectively act as additional control points in the process. Therefore, blocks using GPS require fewer ground control points and it is not unusual for only control points to control a block of hundreds of images as long as ABGPS is employed. Incorporation of IMU information, which measures the attitude of the sensor, results in somewhat more strength in the adjustment.

3 Photogrammetric Procedures for Digital Terrain Model Determination Data Collection Systems Photogrammetric data collection has traditionally been carried out by an operator using a stereoscopic plotting instrument (stereoplotter) allowing the creation of stereo models from overlapping images. A floating mark is guided along lines of interest. In the case of contours the floating mark is maintained on the terrain surface while traversing the model methods along lines of constant elevation. In the past, such analog stereoplotters employed optical, mechanical or a combination of optical and mechanical solutions for the recreation of the imaging rays from aerial images. The invention of the analytical plotter by U. V. Helava at the National Research Council of Canada and the continuing development of computers lead from the mid-seventies to a gradual replacement of those plotters with analytical stereoplotters. These still provide direct viewing of the film images but use electronic means to recreate the imaging rays. This changeover eliminated restrictions in regard to camera type and deviations of the camera axis from verticality. A large amount of current-day stereoscopic compilation still involves the use of analytical stereoplotters. The proliferation of these systems and their proven accuracy amounts to a sure approach to generating DTMs on a day-to-day basis. The primary advantages of these types of systems are their proliferation and the large amount of published procedures and specifications surrounding their use. The main disadvantages are the manual setup of each stereomodel, continuous calibration and general requirements to operate in subdued lighting conditions and firm under-flooring, and the inability to use digitally acquired imagery. Analytical stereoplotters usually require indexing points that are derived from the aerotriangulation results (tie points, pass points, and control points) to ensure accuracy. Thus, at least some form of triangulation will be required or photo-identifiable points must be measured on the imagery to allow use of these instruments in the project flow. Software packages handling the capture of data are generally the same as those used by softcopy systems, thus ensuring combined usage within a project. Softcopy stereoplotters systems were first introduced into the commercial production environment in the early 1990s. After a period of proving accuracy and gaining operational acceptance, they began to replace analytical instruments. Some advantages of softcopy compilation workstations are the ability to use either digitized film imagery or digitally acquired imagery, no requirement to use model setup or index points, the ease of hardware and/or software upgrading to keep up with progress in technology, the relatively free sitting and head position for the user as compared to analytical systems, and the ability to be used in common office environments, though subdued lighting is still preferred or even required in some cases. The disadvantages are arguably less stereo viewing quality than direct filmviewing systems and film scanning is required for projects flown with film cameras. The greatest advantage of softcopy workstations is perhaps their extended ability to overlay graphics data in a stereoscopic environment. In the context of DTM generation, this means that all elevation points, and even contours, can be superimposed for review against the actual ground form. The ability to review existing, new, and changed data is easier if all can be selectively reviewed in the same stereoscopic display.

4 4 H. Ziemann and D. Grohmann 2.3 Data Collection Approaches A number of standard approaches are generally employed in elevation data collection, the plotting of contourlines, the capture of spot elevations and breaklines, and the collection of a point matrix. A breakline is defined as a polyline that defines a slope reversal along its extent and may include both naturally occurring and man-made features. Common examples of breaklines include ridges, valleys, edges of embankments, edges of rivers, curbs/ gutters, etc. Breaklines are augmented by a number of spot elevations that fill in areas devoid of natural or man-made breaks in the terrain surface. A number of spot elevations are collected at identifiable points to leave behind a record of points that can be checked. Spot elevations are also collected at local maxima and minima that are not represented by a contour line. Planimetric compilation can be carried out either to obtain two-dimensional (positional) or three-dimensional data. Since most planimetric features are collected at the bare earth, they can in the latter case be used to extract elevations, some breaklines (such as along a river edge or road edge) and contourlines. Additional spot elevations and breaklines may be added as needed to finalize the DTM; generally only a small amount of additional breaklines are collected but a relatively large amount of spot elevations. If positional data are not part of the overall project, or if it is scheduled at a later date, most mapping firms will use skilled operators to focus on the collection of contourlines or breaklines and spot elevations. In the hands of a skilled operator, the advantage of the latter approach is the collection of a minimal amount of points required to describe the terrain. Some mapping firms use a gridded or profile approach to the collection of elevation data, augmented as needed with breaklines and spot elevations. This is most common in very smooth areas where it is difficult to ensure that subtle changes in the terrain elevation are captured. It is also the most common approach and final format for smaller map scales. The collection of profiles was the first approach used to collect elevation data needed for the production of differentially rectified images called orthophotos. The profiles are first defined in reference to the base of a stereoscopic pair of images, and then followed automatically. A photogrammetric operator has to set the floating mark continuously onto the terrain surface. In order to facility this process, the operator can control the speed of the movement of the floating mark. Grids can be collected using two approaches, the static mode and the dynamic mode. The static grid collection mode places points by means of a grid defined in position and point spacing either in regard to a stereoscopic pair of images or to an overall coordinate system, and a photogrammetric operator adjusts the floating mark to terrain level at those predefined points. The dynamic grid collection mode is more efficient in collecting only points needed to actually represent the terrain surface. An initial static grid is measured and continuously refined by reducing the grid spacing using a factor 2 as long as the elevation value differences determined for the four corners of a grid cell exceed a defined tolerance. A minimum grid spacing is used to stop the process in rough areas. Automatic collection of DTMs by means of digital image correlation has been a topic of research and implementation for over 40 years. With the advent of more powerful desktop computers over the last decade, more robust and intensive algorithms have been implemented. Automatically deriving elevations by digital correlation fundamentally amounts to

5 Photogrammetric Procedures for Digital Terrain Model Determination 5 directly comparing patches of pixels on conjugate images or indirectly comparing information derived from the digital images. Direct comparison techniques were the first to be researched, with increasing work done in comparing derived information, such as features defined by edges in the images. Edge/feature collection techniques tend to be superior in large scale projects, with area-based techniques more common for smaller scale projects. One of the keys to successfully employing automated approaches in day-to-day production is the understanding of the strengths and weaknesses of the technology as a whole. General strengths include the ability to generate a very dense array of elevation points in short periods of time in an unattended mode and a generally good capture of the overall surface of a ground scene especially at smaller map scales. General weaknesses include the need to edit large amounts of data that do not necessarily reflect what would be captured interactively by a human stereo-operator, disregard to breaklines and the difficulty in effectively deriving data for larger product scales. A hybrid approach to data collection may be advantageous and for smaller map scales very effective. Digital correlation can be used to quickly develop a surface over large areas, leaving final editing to softcopy workstations. This hybrid approach supports interim or expedited delivery of digital orthophotos, with the softcopy compilation used to develop breakline information required for topographic contours. 3 Data Collection Issues The foregoing discussion leaves several important issues untouched; six of these will now be introduced. 3.1 Introduction of Digital Aerial Cameras Two digital aerial cameras were introduced into the market recently, the ADS40 by Leica Geosystems and the DMC by Z/I_Imaging. The ADS40 uses linear arrays collecting image data with forward motion (pushbroom system) and acquires stereo images by at the same time looking forward, down and aft. The DMC uses four area arrays to collect partial images later combined into a single rectangular image. The introduction of digital aerial cameras results in significant operational changes. First indications are that accuracies valid for operator-derived data from aerial photographs not longer apply. The authors are involved in the organization of a first operational test aiming at deriving such accuracy reference data. 3.2 Extraction of Features The emphasis in this discussion has been on elevations. Topographic features can be derived by point measurement and line following providing vector data sets. Another approach consists in the derivation of differentially rectified images (orthophotos) which are often combined into mosaics covering larger areas. This approach requires exterior orientation and elevation data. The process is often used when a map is required in a short period of time, especially since the process is highly automated in particular when digital image data and softcopy plotters are used.

6 6 H. Ziemann and D. Grohmann 3.3 Elevation Data Accuracies An important aspect in the generation of a three dimensional DTMs is achievable accuracy. Experiences summarized in Kraus may serve as guidelines for different methods carries out by an operator: contourlines grids profiles 3.4 Image Matching Procedures σ Z = ± 0,20-0,25%o c m I σ Z = ± 0,10-0,15%o c m I σ Z is dependent upon terrain slope and scan speed In photogrammetry matching can be defined as the establishment of correspondence between various data sets, in particular between images. Examples of image matching include interior orientation (the image of a fiducial is matched with a two-dimensional model of the fiducial), relative orientation and point transfer in aerial triangulation (parts of one image are matched with parts of another image in order to generate tie points), absolute orientation (parts of an image are matched with a suitable image of a ground control point) and generation of DTMs (parts of one image are matched with parts of another image in order to generate three-dimensional object points). Image matching procedures can be divided into groups using different approaches, one being based on the two categories of matching primitives, area-based matching (ABM) and feature-based matching (FBM). ABM uses windows composed of grey values which can be extracted fast, and the actual matching process is rather straightforward and in the context of this paper of the greater interest. FBM uses local features like points, edge elements or small region which are first extracted in each image individually. Hierarchical methods are used in many matching algorithms going from coarse to fine, and the results achieved on one resolution level are used as approximations for the next finer level. It is therefore desirable to define images in a variety of resolutions, leading to the socalled image pyramids. 3.5 Use of Satellite Images A number of commercial remote sensing satellite systems are now producing high quality and high dynamic range images. Currently, the highest resolution is 0.6 meters/pixel. Satellite systems vary in their means of acquiring stereo images. Different-pass collection systems are generally based on linear arrays collecting with the vehicle's forward motion, and stereo is generally acquired by rolling the spacecraft axis outboard (normal to the direction of flight) on successive passes. These systems are prone to localized weather conditions between imaging events, which can be as high as 10 days. Same-pass systems acquire by pitching the spacecraft axis forward or aft preceding or succeeding the target area, respectively. These are also generally pushbroom scanners and are the most optimal systems to use in mapping. Satellite systems vary heavily in their design and operation, and satellite geometric sensor models are far more complex than frame cameras or even digital airborne systems. Satellite imagery is very conducive to automated approaches involving elevation extraction, and its availability has spawned a growing demand for the creation of

7 Photogrammetric Procedures for Digital Terrain Model Determination 7 DTMs for visualization databases for fly-throughs and perspective scene generation, applications requiring less accuracy. 3.6 Non-Image Procedures A LIDAR (Light Detection And Ranging) system is a complex package of electronic components finding increasing use for the determination of DTMs. It includes a LASER (Light Amplification by Stimulated Emission of Radiation) for the measurement of distances from a platform, an INU (Inertial Measurement Unit) to determine the orientation of the laser axis in space and a GPS (Global Positioning System) to measure the position of the sensor in space. Lasers operating within the infrared part of the electronic spectrum are used over land. They emit pulses which are reflected and returned. Sensors capable of recording multiple returns are available. A first return usually provides information on the elevation of the canopy, a last return the elevation of the ground. At present accuracies in the order of σ Z = ± 0,15 m can be achieved. SAR (Synthetic Aperture Radar) takes advantage of the motion of a platform to synthesize a large antenna to achieve fine along-track resolution. The RADAR (RAdio Detection And Ranging) points in a direction perpendicular to the flight path and measures ranges. By augmenting a SAR system with a second spatially separated receiving antenna it is possible to extract topographical information; such a system is called IFSAR (InterFerometric Synthetic Aperture Radar). They achieve at present accuracies in the order of σ Z = ± 0,5m. 4 Conclusion A review is given of photogrammetric procedures to derive digital terrain models with an emphasis on elevation data. New technological developments are indicated which will cause significant changes to traditional procedures. 5 References Heipke, C.(1996): Overview of Image Matching Techniques. OEEPE Official Publication No. 33: Maune, D.F., (ed) (2001): Digital Elevation Model Technologies and Applications: The DEM Users Manual. American Society for Photogrammetry and Remote Sensing, Bethesda, MA 20814, USA, in particular Chapter 5 (Molander, C.W.: Photogrammetry)

TERRESTRIAL AND NUMERICAL PHOTOGRAMMETRY 1. MID -TERM EXAM Question 4

TERRESTRIAL AND NUMERICAL PHOTOGRAMMETRY 1. MID -TERM EXAM Question 4 TERRESTRIAL AND NUMERICAL PHOTOGRAMMETRY 1. MID -TERM EXAM Question 4 23 November 2001 Two-camera stations are located at the ends of a base, which are 191.46m long, measured horizontally. Photographs

More information

LIDAR MAPPING FACT SHEET

LIDAR MAPPING FACT SHEET 1. LIDAR THEORY What is lidar? Lidar is an acronym for light detection and ranging. In the mapping industry, this term is used to describe an airborne laser profiling system that produces location and

More information

EVOLUTION OF POINT CLOUD

EVOLUTION OF POINT CLOUD Figure 1: Left and right images of a stereo pair and the disparity map (right) showing the differences of each pixel in the right and left image. (source: https://stackoverflow.com/questions/17607312/difference-between-disparity-map-and-disparity-image-in-stereo-matching)

More information

Exterior Orientation Parameters

Exterior Orientation Parameters Exterior Orientation Parameters PERS 12/2001 pp 1321-1332 Karsten Jacobsen, Institute for Photogrammetry and GeoInformation, University of Hannover, Germany The georeference of any photogrammetric product

More information

The Applanix Approach to GPS/INS Integration

The Applanix Approach to GPS/INS Integration Lithopoulos 53 The Applanix Approach to GPS/INS Integration ERIK LITHOPOULOS, Markham ABSTRACT The Position and Orientation System for Direct Georeferencing (POS/DG) is an off-the-shelf integrated GPS/inertial

More information

Introduction Photogrammetry Photos light Gramma drawing Metron measure Basic Definition The art and science of obtaining reliable measurements by mean

Introduction Photogrammetry Photos light Gramma drawing Metron measure Basic Definition The art and science of obtaining reliable measurements by mean Photogrammetry Review Neil King King and Associates Testing is an art Introduction Read the question Re-Read Read The question What is being asked Answer what is being asked Be in the know Exercise the

More information

MATCH-AT: Recent Developments and Performance

MATCH-AT: Recent Developments and Performance 'Photogrammetric Week 01' D. Fritsch & R. Spiller, Eds. Wichmann Verlag, Heidelberg 2001. Sigle, Heuchel 189 MATCH-AT: Recent Developments and Performance MANFRED SIGLE, TOBIAS HEUCHEL, Stuttgart ABSTRACT

More information

Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) Light Detection and Ranging (LiDAR) http://code.google.com/creative/radiohead/ Types of aerial sensors passive active 1 Active sensors for mapping terrain Radar transmits microwaves in pulses determines

More information

Automated Feature Extraction from Aerial Imagery for Forestry Projects

Automated Feature Extraction from Aerial Imagery for Forestry Projects Automated Feature Extraction from Aerial Imagery for Forestry Projects Esri UC 2015 UC706 Tuesday July 21 Bart Matthews - Photogrammetrist US Forest Service Southwestern Region Brad Weigle Sr. Program

More information

POSITIONING A PIXEL IN A COORDINATE SYSTEM

POSITIONING A PIXEL IN A COORDINATE SYSTEM GEOREFERENCING AND GEOCODING EARTH OBSERVATION IMAGES GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF REMOTE SENSING AN INTRODUCTORY TEXTBOOK CHAPTER 6 POSITIONING A PIXEL IN A COORDINATE SYSTEM The essential

More information

Iowa Department of Transportation Office of Design. Photogrammetric Mapping Specifications

Iowa Department of Transportation Office of Design. Photogrammetric Mapping Specifications Iowa Department of Transportation Office of Design Photogrammetric Mapping Specifications March 2015 1 Purpose of Manual These Specifications for Photogrammetric Mapping define the standards and general

More information

Photogrammetry: DTM Extraction & Editing

Photogrammetry: DTM Extraction & Editing Photogrammetry: DTM Extraction & Editing How can one determine the x, y, and z of a location? Approaches to DTM Extraction Ground surveying Digitized topographic maps Traditional photogrammetry Hardcopy

More information

Chapters 1 9: Overview

Chapters 1 9: Overview Chapters 1 9: Overview Chapter 1: Introduction Chapters 2 4: Data acquisition Chapters 5 9: Data manipulation Chapter 5: Vertical imagery Chapter 6: Image coordinate measurements and refinements Chapters

More information

Map Compilation CHAPTER HISTORY

Map Compilation CHAPTER HISTORY CHAPTER 7 Map Compilation 7.1 HISTORY Producing accurate commercial maps from aerial photography began in the 1930s. The technology of stereomapping over the last 70 years has brought vast technological

More information

CHAPTER 10. Digital Mapping and Earthwork

CHAPTER 10. Digital Mapping and Earthwork CHAPTER 10 Digital Mapping and Earthwork www.terrainmap.com/rm22.html CE 316 March 2012 348 10.1 Introduction 349 10.2 Single Images 10.2.1 Rectified Photograph With a single photograph, X,Y data can be

More information

STARTING WITH DRONES. Data Collection and Remote Sensing with UAVs, etc. Dr. Bill Hazelton LS

STARTING WITH DRONES. Data Collection and Remote Sensing with UAVs, etc. Dr. Bill Hazelton LS STARTING WITH DRONES Data Collection and Remote Sensing with UAVs, etc. Dr. Bill Hazelton LS What this Talk is About UAV-based data acquisition: What you need to get involved Processes in getting spatial

More information

Technical Considerations and Best Practices in Imagery and LiDAR Project Procurement

Technical Considerations and Best Practices in Imagery and LiDAR Project Procurement Technical Considerations and Best Practices in Imagery and LiDAR Project Procurement Presented to the 2014 WV GIS Conference By Brad Arshat, CP, EIT Date: June 4, 2014 Project Accuracy A critical decision

More information

Merging LiDAR Data with Softcopy Photogrammetry Data

Merging LiDAR Data with Softcopy Photogrammetry Data Merging LiDAR Data with Softcopy Photogrammetry Data Cindy McCallum WisDOT\Bureau of Technical Services Surveying & Mapping Section Photogrammetry Unit Overview Terms and processes Why use data from LiDAR

More information

Photogrammetry: DTM Extraction & Editing

Photogrammetry: DTM Extraction & Editing Photogrammetry: DTM Extraction & Editing Review of terms Vertical aerial photograph Perspective center Exposure station Fiducial marks Principle point Air base (Exposure Station) Digital Photogrammetry:

More information

PHOTOGRAMMETRIC SOLUTIONS OF NON-STANDARD PHOTOGRAMMETRIC BLOCKS INTRODUCTION

PHOTOGRAMMETRIC SOLUTIONS OF NON-STANDARD PHOTOGRAMMETRIC BLOCKS INTRODUCTION PHOTOGRAMMETRIC SOLUTIONS OF NON-STANDARD PHOTOGRAMMETRIC BLOCKS Dor Yalon Co-Founder & CTO Icaros, Inc. ABSTRACT The use of small and medium format sensors for traditional photogrammetry presents a number

More information

ADS40 Calibration & Verification Process. Udo Tempelmann*, Ludger Hinsken**, Utz Recke*

ADS40 Calibration & Verification Process. Udo Tempelmann*, Ludger Hinsken**, Utz Recke* ADS40 Calibration & Verification Process Udo Tempelmann*, Ludger Hinsken**, Utz Recke* *Leica Geosystems GIS & Mapping GmbH, Switzerland **Ludger Hinsken, Author of ORIMA, Konstanz, Germany Keywords: ADS40,

More information

Extracting Elevation from Air Photos

Extracting Elevation from Air Photos Extracting Elevation from Air Photos TUTORIAL A digital elevation model (DEM) is a digital raster surface representing the elevations of a terrain for all spatial ground positions in the image. Traditionally

More information

Leica Systems Overview

Leica Systems Overview RC30 AERIAL CAMERA SYSTEM Leica Systems Overview The Leica RC30 aerial film camera is the culmination of decades of development, started with Wild's first aerial camera in the 1920s. Beautifully engineered

More information

PHODIS Innovations. CHRISTOPH DÖRSTEL, Aalen 1. INTRODUCTION

PHODIS Innovations. CHRISTOPH DÖRSTEL, Aalen 1. INTRODUCTION Dörstel 5 PHODIS Innovations CHRISTOPH DÖRSTEL, Aalen ABSTRACT The contents of this paper are the new applications and functions in the digital photogrammetric image processing system PHODIS. The report

More information

Aalborg Universitet. Published in: Accuracy Publication date: Document Version Early version, also known as pre-print

Aalborg Universitet. Published in: Accuracy Publication date: Document Version Early version, also known as pre-print Aalborg Universitet A method for checking the planimetric accuracy of Digital Elevation Models derived by Airborne Laser Scanning Høhle, Joachim; Øster Pedersen, Christian Published in: Accuracy 2010 Publication

More information

[Youn *, 5(11): November 2018] ISSN DOI /zenodo Impact Factor

[Youn *, 5(11): November 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES AUTOMATIC EXTRACTING DEM FROM DSM WITH CONSECUTIVE MORPHOLOGICAL FILTERING Junhee Youn *1 & Tae-Hoon Kim 2 *1,2 Korea Institute of Civil Engineering

More information

PREPARATIONS FOR THE ON-ORBIT GEOMETRIC CALIBRATION OF THE ORBVIEW 3 AND 4 SATELLITES

PREPARATIONS FOR THE ON-ORBIT GEOMETRIC CALIBRATION OF THE ORBVIEW 3 AND 4 SATELLITES PREPARATIONS FOR THE ON-ORBIT GEOMETRIC CALIBRATION OF THE ORBVIEW 3 AND 4 SATELLITES David Mulawa, Ph.D. ORBIMAGE mulawa.david@orbimage.com KEY WORDS: Geometric, Camera, Calibration, and Satellite ABSTRACT

More information

ALS40 Airborne Laser Scanner

ALS40 Airborne Laser Scanner ALS40 Airborne Laser Scanner Airborne LIDAR for Professionals High Performance Laser Scanning Direct Measurement of Ground Surface from the Air The ALS40 Airborne Laser Scanner measures the topography

More information

9/14/2011. Contents. Lecture 3: Spatial Data Acquisition in GIS. Dr. Bo Wu Learning Outcomes. Data Input Stream in GIS

9/14/2011. Contents. Lecture 3: Spatial Data Acquisition in GIS. Dr. Bo Wu Learning Outcomes. Data Input Stream in GIS Contents Lecture 3: Spatial Data Acquisition in GIS Dr. Bo Wu lsbowu@polyu.edu.hk 1. Learning outcomes. Data acquisition: Manual digitization 3. Data acquisition: Field survey 4. Data acquisition: Remote

More information

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning 1 ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning Petri Rönnholm Aalto University 2 Learning objectives To recognize applications of laser scanning To understand principles

More information

Introduction into Digital Aerotriangulation

Introduction into Digital Aerotriangulation Fritsch 165 Introduction into Digital Aerotriangulation DIETER FRITSCH, Stuttgart ABSTRACT Aerotriangulation has reached a main breakthrough in the sixties and seventies when adjustment techniques solved

More information

AUTOMATIC PHOTO ORIENTATION VIA MATCHING WITH CONTROL PATCHES

AUTOMATIC PHOTO ORIENTATION VIA MATCHING WITH CONTROL PATCHES AUTOMATIC PHOTO ORIENTATION VIA MATCHING WITH CONTROL PATCHES J. J. Jaw a *, Y. S. Wu b Dept. of Civil Engineering, National Taiwan University, Taipei,10617, Taiwan, ROC a jejaw@ce.ntu.edu.tw b r90521128@ms90.ntu.edu.tw

More information

Lecture 5. Relief displacement. Parallax. Monoscopic and stereoscopic height measurement. Photo Project. Soft-copy Photogrammetry.

Lecture 5. Relief displacement. Parallax. Monoscopic and stereoscopic height measurement. Photo Project. Soft-copy Photogrammetry. NRMT 2270, Photogrammetry/Remote Sensing Lecture 5 Relief displacement. Parallax. Monoscopic and stereoscopic height measurement. Photo Project. Soft-copy Photogrammetry. Tomislav Sapic GIS Technologist

More information

TrueOrtho with 3D Feature Extraction

TrueOrtho with 3D Feature Extraction TrueOrtho with 3D Feature Extraction PCI Geomatics has entered into a partnership with IAVO to distribute its 3D Feature Extraction (3DFE) software. This software package compliments the TrueOrtho workflow

More information

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA M. Lorraine Tighe Director, Geospatial Solutions Intermap Session: Photogrammetry & Image Processing

More information

Chapters 1 7: Overview

Chapters 1 7: Overview Chapters 1 7: Overview Chapter 1: Introduction Chapters 2 4: Data acquisition Chapters 5 7: Data manipulation Chapter 5: Vertical imagery Chapter 6: Image coordinate measurements and refinements Chapter

More information

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE HYPERSPECTRAL (e.g. AVIRIS) SLAR Real Aperture

More information

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI AT09.98 Applied GIS and Remote Sensing for Disaster Mitigation #6 Data Acquisition for Built Environment 9 October, 2002 Fumio YAMAZAKI yamazaki@ait.ac.th http://www.star.ait.ac.th/~yamazaki/ Course Outline

More information

Chapter 1: Overview. Photogrammetry: Introduction & Applications Photogrammetric tools:

Chapter 1: Overview. Photogrammetry: Introduction & Applications Photogrammetric tools: Chapter 1: Overview Photogrammetry: Introduction & Applications Photogrammetric tools: Rotation matrices Photogrammetric point positioning Photogrammetric bundle adjustment This chapter will cover the

More information

Training i Course Remote Sensing Basic Theory & Image Processing Methods September 2011

Training i Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training i Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Geometric Operations Michiel Damen (September 2011) damen@itc.nl ITC FACULTY OF GEO-INFORMATION SCIENCE AND

More information

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology Maziana Muhamad Summarising LiDAR (Airborne Laser Scanning) LiDAR is a reliable survey technique, capable of: acquiring

More information

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications N.J.P.L.S. An Introduction to LiDAR Concepts and Applications Presentation Outline LIDAR Data Capture Advantages of Lidar Technology Basics Intensity and Multiple Returns Lidar Accuracy Airborne Laser

More information

DIGITAL PHOTOGRAMMETRY, DEVELOPMENTS AT ORDNANCE SURVEY

DIGITAL PHOTOGRAMMETRY, DEVELOPMENTS AT ORDNANCE SURVEY DIGITAL PHOTOGRAMMETRY, DEVELOPMENTS AT ORDNANCE SURVEY Lynne ALLAN *, David HOLLAND ** Ordnance Survey, Southampton, GB * lallan@ordsvy.gov.uk ** dholland@ordsvy.gov.uk KEY WORDS: Photogrammetry, Digital,

More information

APPLICATION AND ACCURACY EVALUATION OF LEICA ADS40 FOR LARGE SCALE MAPPING

APPLICATION AND ACCURACY EVALUATION OF LEICA ADS40 FOR LARGE SCALE MAPPING APPLICATION AND ACCURACY EVALUATION OF LEICA ADS40 FOR LARGE SCALE MAPPING WenYuan Hu a, GengYin Yang b, Hui Yuan c,* a, b ShanXi Provincial Survey and Mapping Bureau, China - sxgcchy@public.ty.sx.cn c

More information

DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY

DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY Jacobsen, K. University of Hannover, Institute of Photogrammetry and Geoinformation, Nienburger Str.1, D30167 Hannover phone +49

More information

U.S. Geological Survey (USGS) - National Geospatial Program (NGP) and the American Society for Photogrammetry and Remote Sensing (ASPRS)

U.S. Geological Survey (USGS) - National Geospatial Program (NGP) and the American Society for Photogrammetry and Remote Sensing (ASPRS) U.S. Geological Survey (USGS) - National Geospatial Program (NGP) and the American Society for Photogrammetry and Remote Sensing (ASPRS) Summary of Research and Development Efforts Necessary for Assuring

More information

ROAD SURFACE STRUCTURE MONITORING AND ANALYSIS USING HIGH PRECISION GPS MOBILE MEASUREMENT SYSTEMS (MMS)

ROAD SURFACE STRUCTURE MONITORING AND ANALYSIS USING HIGH PRECISION GPS MOBILE MEASUREMENT SYSTEMS (MMS) ROAD SURFACE STRUCTURE MONITORING AND ANALYSIS USING HIGH PRECISION GPS MOBILE MEASUREMENT SYSTEMS (MMS) Bonifacio R. Prieto PASCO Philippines Corporation, Pasig City, 1605, Philippines Email: bonifacio_prieto@pascoph.com

More information

LIDAR and Terrain Models: In 3D!

LIDAR and Terrain Models: In 3D! LIDAR and Terrain Models: In 3D! Stuart.green@teagasc.ie http://www.esri.com/library/whitepapers/pdfs/lidar-analysis-forestry.pdf http://www.csc.noaa.gov/digitalcoast/_/pdf/refinement_of_topographic_lidar_to_create_a_bare_e

More information

New Features in SOCET SET Stewart Walker, San Diego, USA

New Features in SOCET SET Stewart Walker, San Diego, USA New Features in SOCET SET Stewart Walker, San Diego, USA 2610083107A EXPORT CONTROL DATA. This presentation is approved for export as of 31 August 2007. The actual product and its technical information

More information

Lecture 4: Digital Elevation Models

Lecture 4: Digital Elevation Models Lecture 4: Digital Elevation Models GEOG413/613 Dr. Anthony Jjumba 1 Digital Terrain Modeling Terms: DEM, DTM, DTEM, DSM, DHM not synonyms. The concepts they illustrate are different Digital Terrain Modeling

More information

An Overview of Applanix.

An Overview of Applanix. An Overview of Applanix The Company The Industry Leader in Developing Aided Inertial Technology Founded on Canadian Aerospace and Defense Industry Expertise Providing Precise Position and Orientation Systems

More information

Trimble Geospatial Division Integrated Solutions for Geomatics professions. Volker Zirn Regional Sales Representative

Trimble Geospatial Division Integrated Solutions for Geomatics professions. Volker Zirn Regional Sales Representative Trimble Geospatial Division Integrated Solutions for Geomatics professions Volker Zirn Regional Sales Representative 1 Agenda Trimble GeoSpatial Division Airborne System Solutions Trimble Inpho Software

More information

Chapters 1 5. Photogrammetry: Definition, introduction, and applications. Electro-magnetic radiation Optics Film development and digital cameras

Chapters 1 5. Photogrammetry: Definition, introduction, and applications. Electro-magnetic radiation Optics Film development and digital cameras Chapters 1 5 Chapter 1: Photogrammetry: Definition, introduction, and applications Chapters 2 4: Electro-magnetic radiation Optics Film development and digital cameras Chapter 5: Vertical imagery: Definitions,

More information

An Introduction to Lidar & Forestry May 2013

An Introduction to Lidar & Forestry May 2013 An Introduction to Lidar & Forestry May 2013 Introduction to Lidar & Forestry Lidar technology Derivatives from point clouds Applied to forestry Publish & Share Futures Lidar Light Detection And Ranging

More information

Orthophotography and LiDAR Terrain Data Collection Rogue River, Oregon Final Report

Orthophotography and LiDAR Terrain Data Collection Rogue River, Oregon Final Report Orthophotography and LiDAR Terrain Data Collection Rogue River, Oregon Final Report Prepared by Sky Research, Inc. 445 Dead Indian Memorial Road Ashland, OR 97520 Prepared for Rogue Valley Council of Governments

More information

THE INTERIOR AND EXTERIOR CALIBRATION FOR ULTRACAM D

THE INTERIOR AND EXTERIOR CALIBRATION FOR ULTRACAM D THE INTERIOR AND EXTERIOR CALIBRATION FOR ULTRACAM D K. S. Qtaishat, M. J. Smith, D. W. G. Park Civil and Environment Engineering Department, Mu ta, University, Mu ta, Karak, Jordan, 61710 khaldoun_q@hotamil.com

More information

APPLANIX DIRECT GEOREFERENCING FOR AIRBORNE MAPPING. and FLIGHT MANAGEMENT SYSTEMS. The Better Way to Reduce the Cost of Airborne Mapping

APPLANIX DIRECT GEOREFERENCING FOR AIRBORNE MAPPING. and FLIGHT MANAGEMENT SYSTEMS. The Better Way to Reduce the Cost of Airborne Mapping APPLANIX DIRECT GEOREFERENCING and FLIGHT MANAGEMENT SYSTEMS FOR AIRBORNE MAPPING The Better Way to Reduce the Cost of Airborne Mapping capture everything. precisely. Applanix Direct Georeferencing and

More information

UNIT 22. Remote Sensing and Photogrammetry. Start-up. Reading. In class discuss the following questions:

UNIT 22. Remote Sensing and Photogrammetry. Start-up. Reading. In class discuss the following questions: UNIT 22 Remote Sensing and Photogrammetry Start-up In class discuss the following questions: A. What do you know about remote sensing? B. What does photogrammetry do? C. Is there a connection between the

More information

Chapters 1 5. Photogrammetry: Definition, introduction, and applications. Electro-magnetic radiation Optics Film development and digital cameras

Chapters 1 5. Photogrammetry: Definition, introduction, and applications. Electro-magnetic radiation Optics Film development and digital cameras Chapters 1 5 Chapter 1: Photogrammetry: Definition, introduction, and applications Chapters 2 4: Electro-magnetic radiation Optics Film development and digital cameras Chapter 5: Vertical imagery: Definitions,

More information

A COMPARISON OF LIDAR TERRAIN DATA WITH AUTOCORRELATED DSM EXTRACTED FROM DIGITALLY ACQUIRED HIGH OVERLAP PHOTOGRAPHY BACKGROUND

A COMPARISON OF LIDAR TERRAIN DATA WITH AUTOCORRELATED DSM EXTRACTED FROM DIGITALLY ACQUIRED HIGH OVERLAP PHOTOGRAPHY BACKGROUND A COMPARISON OF LIDAR TERRAIN DATA WITH AUTOCORRELATED DSM EXTRACTED FROM DIGITALLY ACQUIRED HIGH OVERLAP PHOTOGRAPHY Devin Kelley, Project Manager, Certified Photogrammetrist (ASPRS) Thomas Loecherbach,

More information

GALILEO SISCAM APPROACH TO DIGITAL PHOTOGRAMMETRY. F. Flamigni A. Viti Galileo Siscam S.p.A.

GALILEO SISCAM APPROACH TO DIGITAL PHOTOGRAMMETRY. F. Flamigni A. Viti Galileo Siscam S.p.A. GALILEO SISCAM APPROACH TO DIGITAL PHOTOGRAMMETRY F. Flamigni A. Viti Galileo Siscam S.p.A. ABSTRACT: The application of the least squares matching procedure to an analytical stereoplotter is described.

More information

Aerial and Mobile LiDAR Data Fusion

Aerial and Mobile LiDAR Data Fusion Creating Value Delivering Solutions Aerial and Mobile LiDAR Data Fusion Dr. Srini Dharmapuri, CP, PMP What You Will Learn About LiDAR Fusion Mobile and Aerial LiDAR Technology Components & Parameters Project

More information

APPENDIX E2. Vernal Pool Watershed Mapping

APPENDIX E2. Vernal Pool Watershed Mapping APPENDIX E2 Vernal Pool Watershed Mapping MEMORANDUM To: U.S. Fish and Wildlife Service From: Tyler Friesen, Dudek Subject: SSHCP Vernal Pool Watershed Analysis Using LIDAR Data Date: February 6, 2014

More information

III. TESTING AND IMPLEMENTATION

III. TESTING AND IMPLEMENTATION MAPPING ACCURACY USING SIDE-LOOKING RADAR I MAGES ON TIlE ANALYTI CAL STEREOPLOTTER Sherman S.C. Wu, Francis J. Schafer and Annie Howington-Kraus U.S Geological Survey, 2255 N. Gemini Drive, Flagstaff,

More information

ACCURACY ANALYSIS AND SURFACE MAPPING USING SPOT 5 STEREO DATA

ACCURACY ANALYSIS AND SURFACE MAPPING USING SPOT 5 STEREO DATA ACCURACY ANALYSIS AND SURFACE MAPPING USING SPOT 5 STEREO DATA Hannes Raggam Joanneum Research, Institute of Digital Image Processing Wastiangasse 6, A-8010 Graz, Austria hannes.raggam@joanneum.at Commission

More information

ABSOLUTE AND EXTERIOR ORIENTATION USING LINEAR FEATURES

ABSOLUTE AND EXTERIOR ORIENTATION USING LINEAR FEATURES ABSOLUTE AND EXTERIOR ORIENTATION USING LINEAR FEATURES Martin J. SMITH, David W. G. PARK Institute of Engineering Surveying and Geodesy The University of Nottingham, UK martin.smith@nottingham.ac.uk david.park@nottingham.ac.uk

More information

DEVELOPMENT OF ORIENTATION AND DEM/ORTHOIMAGE GENERATION PROGRAM FOR ALOS PRISM

DEVELOPMENT OF ORIENTATION AND DEM/ORTHOIMAGE GENERATION PROGRAM FOR ALOS PRISM DEVELOPMENT OF ORIENTATION AND DEM/ORTHOIMAGE GENERATION PROGRAM FOR ALOS PRISM Izumi KAMIYA Geographical Survey Institute 1, Kitasato, Tsukuba 305-0811 Japan Tel: (81)-29-864-5944 Fax: (81)-29-864-2655

More information

HIGH RESOLUTION DEMs AND ORTHO-IMAGE BASEMAPS FOR LOCAL GOVERNMENT APPLICATIONS

HIGH RESOLUTION DEMs AND ORTHO-IMAGE BASEMAPS FOR LOCAL GOVERNMENT APPLICATIONS HIGH RESOLUTION DEMs AND ORTHO-IMAGE BASEMAPS FOR LOCAL GOVERNMENT APPLICATIONS STATEMENT OF PROBLEM Digital Elevation Models (DEMs) are the digital representation of topographic and/or manmade features

More information

GEOMETRY AND INFORMATION CONTENTS OF LARGE SIZE DIGITAL FRAME CAMERAS

GEOMETRY AND INFORMATION CONTENTS OF LARGE SIZE DIGITAL FRAME CAMERAS GEOMETRY AND INFORMATION CONTENTS OF LARGE SIZE DIGITAL FRAME CAMERAS Karsten Jacobsen Institute of Photogrammetry and Geoinformation Leibniz University Hannover jacobsen@ipi.uni-hannover.de KEY WORDS:

More information

ICC experiences on Inertial / GPS sensor orientation. A. Baron, W.Kornus, J.Talaya Institut Cartogràfic de Catalunya, ICC

ICC experiences on Inertial / GPS sensor orientation. A. Baron, W.Kornus, J.Talaya Institut Cartogràfic de Catalunya, ICC ICC experiences on Inertial / GPS sensor orientation A. Baron, W.Kornus, J.Talaya Institut Cartogràfic de Catalunya, ICC Keywords: GPS/INS orientation, robustness Abstract In the last few years the photogrammetric

More information

Chapters 1-4: Summary

Chapters 1-4: Summary Chapters 1-4: Summary So far, we have been investigating the image acquisition process. Chapter 1: General introduction Chapter 2: Radiation source and properties Chapter 3: Radiation interaction with

More information

GIS Data Collection. This chapter reviews the main methods of GIS data capture and transfer and introduces key practical management issues.

GIS Data Collection. This chapter reviews the main methods of GIS data capture and transfer and introduces key practical management issues. 9 GIS Data Collection OVERVIEW This chapter reviews the main methods of GIS data capture and transfer and introduces key practical management issues. It distinguishes between primary (direct measurement)

More information

Airborne Laser Survey Systems: Technology and Applications

Airborne Laser Survey Systems: Technology and Applications Abstract Airborne Laser Survey Systems: Technology and Applications Guangping HE Lambda Tech International, Inc. 2323B Blue Mound RD., Waukesha, WI-53186, USA Email: he@lambdatech.com As mapping products

More information

Using ArcGIS Server Data to Assist in Planimetric Update Process. Jim Stout - IMAGIS Rick Hammond Woolpert

Using ArcGIS Server Data to Assist in Planimetric Update Process. Jim Stout - IMAGIS Rick Hammond Woolpert Using ArcGIS Server Data to Assist in Planimetric Update Process Jim Stout - IMAGIS Rick Hammond Woolpert Using ArcGIS Server Data to Assist in Planimetric Update Process Jim Stout - IMAGIS Rick Hammond

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Published in SPIE Proceedings, Vol.3084, 1997, p 336-343 Computer 3-d site model generation based on aerial images Sergei Y. Zheltov, Yuri B. Blokhinov, Alexander A. Stepanov, Sergei V. Skryabin, Alexander

More information

AN INTEGRATED SENSOR ORIENTATION SYSTEM FOR AIRBORNE PHOTOGRAMMETRIC APPLICATIONS

AN INTEGRATED SENSOR ORIENTATION SYSTEM FOR AIRBORNE PHOTOGRAMMETRIC APPLICATIONS AN INTEGRATED SENSOR ORIENTATION SYSTEM FOR AIRBORNE PHOTOGRAMMETRIC APPLICATIONS M. J. Smith a, *, N. Kokkas a, D.W.G. Park b a Faculty of Engineering, The University of Nottingham, Innovation Park, Triumph

More information

Geometry of Aerial photogrammetry. Panu Srestasathiern, PhD. Researcher Geo-Informatics and Space Technology Development Agency (Public Organization)

Geometry of Aerial photogrammetry. Panu Srestasathiern, PhD. Researcher Geo-Informatics and Space Technology Development Agency (Public Organization) Geometry of Aerial photogrammetry Panu Srestasathiern, PhD. Researcher Geo-Informatics and Space Technology Development Agency (Public Organization) Image formation - Recap The geometry of imaging system

More information

ON THE USE OF MULTISPECTRAL AND STEREO DATA FROM AIRBORNE SCANNING SYSTEMS FOR DTM GENERATION AND LANDUSE CLASSIFICATION

ON THE USE OF MULTISPECTRAL AND STEREO DATA FROM AIRBORNE SCANNING SYSTEMS FOR DTM GENERATION AND LANDUSE CLASSIFICATION ON THE USE OF MULTISPECTRAL AND STEREO DATA FROM AIRBORNE SCANNING SYSTEMS FOR DTM GENERATION AND LANDUSE CLASSIFICATION Norbert Haala, Dirk Stallmann and Christian Stätter Institute for Photogrammetry

More information

CE 59700: LASER SCANNING

CE 59700: LASER SCANNING Digital Photogrammetry Research Group Lyles School of Civil Engineering Purdue University, USA Webpage: http://purdue.edu/ce/ Email: ahabib@purdue.edu CE 59700: LASER SCANNING 1 Contact Information Instructor:

More information

Automatic Aerial Triangulation Software Of Z/I Imaging

Automatic Aerial Triangulation Software Of Z/I Imaging 'Photogrammetric Week 01' D. Fritsch & R. Spiller, Eds. Wichmann Verlag, Heidelberg 2001. Dörstel et al. 177 Automatic Aerial Triangulation Software Of Z/I Imaging CHRISTOPH DÖRSTEL, Oberkochen LIANG TANG,

More information

SimActive and PhaseOne Workflow case study. By François Riendeau and Dr. Yuri Raizman Revision 1.0

SimActive and PhaseOne Workflow case study. By François Riendeau and Dr. Yuri Raizman Revision 1.0 SimActive and PhaseOne Workflow case study By François Riendeau and Dr. Yuri Raizman Revision 1.0 Contents 1. Introduction... 2 1.1. Simactive... 2 1.2. PhaseOne Industrial... 2 2. Testing Procedure...

More information

Geometric Rectification of Remote Sensing Images

Geometric Rectification of Remote Sensing Images Geometric Rectification of Remote Sensing Images Airborne TerrestriaL Applications Sensor (ATLAS) Nine flight paths were recorded over the city of Providence. 1 True color ATLAS image (bands 4, 2, 1 in

More information

COMBINED BUNDLE BLOCK ADJUSTMENT VERSUS DIRECT SENSOR ORIENTATION ABSTRACT

COMBINED BUNDLE BLOCK ADJUSTMENT VERSUS DIRECT SENSOR ORIENTATION ABSTRACT COMBINED BUNDLE BLOCK ADJUSTMENT VERSUS DIRECT SENSOR ORIENTATION Karsten Jacobsen Institute for Photogrammetry and Engineering Surveys University of Hannover Nienburger Str.1 D-30167 Hannover, Germany

More information

About LIDAR Data. What Are LIDAR Data? How LIDAR Data Are Collected

About LIDAR Data. What Are LIDAR Data? How LIDAR Data Are Collected 1 of 6 10/7/2006 3:24 PM Project Overview Data Description GIS Tutorials Applications Coastal County Maps Data Tools Data Sets & Metadata Other Links About this CD-ROM Partners About LIDAR Data What Are

More information

A NEW TOOL FOR ARCHITECTURAL PHOTOGRAMMETRY: THE 3D NAVIGATOR S. Dequal, A. Lingua, F. Rinaudo - Politecnico di Torino - ITALY

A NEW TOOL FOR ARCHITECTURAL PHOTOGRAMMETRY: THE 3D NAVIGATOR S. Dequal, A. Lingua, F. Rinaudo - Politecnico di Torino - ITALY A NEW TOOL FOR ARCHITECTURAL PHOTOGRAMMETRY: THE 3D NAVIGATOR S. Dequal, A. Lingua, F. Rinaudo - Politecnico di Torino - ITALY KEY WORDS: 3D navigation, Digital Images, LIS, Archiving, ABSTRACT People

More information

STATE-OF-THE-ART TRENDS IN MAPPING PAST, PRESENT AND FUTURE

STATE-OF-THE-ART TRENDS IN MAPPING PAST, PRESENT AND FUTURE STATE-OF-THE-ART TRENDS IN MAPPING PAST, PRESENT AND FUTURE Karsten Jacobsen Institute for Photogrammetry and GeoInformation University of Hannover Nienburger Str. 1 D-30167 Hannover Germany jacobsen@ipi.uni-hannover.de

More information

Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most

Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most accurate and reliable representation of the topography of the earth. As lidar technology advances

More information

University of Technology Building & Construction Department / Remote Sensing & GIS lecture

University of Technology Building & Construction Department / Remote Sensing & GIS lecture 5. Corrections 5.1 Introduction 5.2 Radiometric Correction 5.3 Geometric corrections 5.3.1 Systematic distortions 5.3.2 Nonsystematic distortions 5.4 Image Rectification 5.5 Ground Control Points (GCPs)

More information

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration JAMIE YOUNG Senior Manager LiDAR Solutions Topics Terrestrial GPS reference Planning and Collection Considerations

More information

Overview. Image Geometric Correction. LA502 Special Studies Remote Sensing. Why Geometric Correction?

Overview. Image Geometric Correction. LA502 Special Studies Remote Sensing. Why Geometric Correction? LA502 Special Studies Remote Sensing Image Geometric Correction Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview Image rectification Geometric

More information

PERFORMANCE ANALYSIS OF FAST AT FOR CORRIDOR AERIAL MAPPING

PERFORMANCE ANALYSIS OF FAST AT FOR CORRIDOR AERIAL MAPPING PERFORMANCE ANALYSIS OF FAST AT FOR CORRIDOR AERIAL MAPPING M. Blázquez, I. Colomina Institute of Geomatics, Av. Carl Friedrich Gauss 11, Parc Mediterrani de la Tecnologia, Castelldefels, Spain marta.blazquez@ideg.es

More information

Calibration of IRS-1C PAN-camera

Calibration of IRS-1C PAN-camera Calibration of IRS-1C PAN-camera Karsten Jacobsen Institute for Photogrammetry and Engineering Surveys University of Hannover Germany Tel 0049 511 762 2485 Fax -2483 Email karsten@ipi.uni-hannover.de 1.

More information

Reality Modeling Drone Capture Guide

Reality Modeling Drone Capture Guide Reality Modeling Drone Capture Guide Discover the best practices for photo acquisition-leveraging drones to create 3D reality models with ContextCapture, Bentley s reality modeling software. Learn the

More information

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Buyuksalih, G.*, Oruc, M.*, Topan, H.*,.*, Jacobsen, K.** * Karaelmas University Zonguldak, Turkey **University

More information

Hamilton County Enhances GIS Base Mapping with 1-foot Contours

Hamilton County Enhances GIS Base Mapping with 1-foot Contours Hamilton County Enhances GIS Base Mapping with 1-foot Contours Presented by Larry Stout, Hamilton County GIS Manager Brad Fugate, Woolpert Inc. Today s Presentation Hamilton County s 2004 Base Mapping

More information

Assimilation of Break line and LiDAR Data within ESRI s Terrain Data Structure (TDS) for creating a Multi-Resolution Terrain Model

Assimilation of Break line and LiDAR Data within ESRI s Terrain Data Structure (TDS) for creating a Multi-Resolution Terrain Model Assimilation of Break line and LiDAR Data within ESRI s Terrain Data Structure (TDS) for creating a Multi-Resolution Terrain Model Tarig A. Ali Department of Civil Engineering American University of Sharjah,

More information

A NEW APPROACH FOR GENERATING A MEASURABLE SEAMLESS STEREO MODEL BASED ON MOSAIC ORTHOIMAGE AND STEREOMATE

A NEW APPROACH FOR GENERATING A MEASURABLE SEAMLESS STEREO MODEL BASED ON MOSAIC ORTHOIMAGE AND STEREOMATE A NEW APPROACH FOR GENERATING A MEASURABLE SEAMLESS STEREO MODEL BASED ON MOSAIC ORTHOIMAGE AND STEREOMATE Mi Wang State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing

More information

DIGITAL TERRAIN MODELS

DIGITAL TERRAIN MODELS DIGITAL TERRAIN MODELS 1 Digital Terrain Models Dr. Mohsen Mostafa Hassan Badawy Remote Sensing Center GENERAL: A Digital Terrain Models (DTM) is defined as the digital representation of the spatial distribution

More information

LPS Project Manager User s Guide. November 2009

LPS Project Manager User s Guide. November 2009 LPS Project Manager User s Guide November 2009 Copyright 2009 ERDAS, Inc. All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property

More information

MODELLING FOREST CANOPY USING AIRBORNE LIDAR DATA

MODELLING FOREST CANOPY USING AIRBORNE LIDAR DATA MODELLING FOREST CANOPY USING AIRBORNE LIDAR DATA Jihn-Fa JAN (Taiwan) Associate Professor, Department of Land Economics National Chengchi University 64, Sec. 2, Chih-Nan Road, Taipei 116, Taiwan Telephone:

More information