G&V QUALIFIER SPRING 2010

Size: px
Start display at page:

Download "G&V QUALIFIER SPRING 2010"

Transcription

1 G&V QUALIFIER SPRING 2010 GENERAL (Answer 4 of 6) Smoothing Consider a polygonal loop P (piecewise linear, closed, manifold curve in 3D). Consider a smoothing step A which produces a loop A(P) by computing performing two steps: (1) for each point, compute the average of itself with its two direct neighbors and (2) replace each point by that average. (a) Let A k (P) be the result of applying this process k times. Explain in general terms what will happen if you repeat this process a large number of times: i.e. what happens to A k (P) as k increases. (b) Now consider a split process S(P) which inserts a new vertex in the middle of each edge and a refinement process R(P)=A(S(P)). Explain what happens to R k (P) as k increases. In particular, will the curve converge to any known smooth curve? Locking You are given two polygonal loops P and Q in three dimensions. Each has exactly 3 edges (it is the boundary of a triangle). Provide the details (algorithm, geometric constructions) for testing whether P ad Q are locked, by which we mean that there is no infinite translation that could separate them without collision. Provide a formal justification that your algorithm works. Devil s Ride You are given a highly refined (nearly smooth) polygonal loop P (piecewise linear, closed, manifold curve in 3D). You want to produce an animation where the camera continuously slides along P at constant speed while minimizing tilt. Describe the overall approach and provide the details of the nontrivial geometric constructions. When the camera passes a second time at a particular point on P, will it necessarily have the same orientation? Justify your answer. Stabbing Ray You are given a triangle mesh M represented by a Corner Table of n triangles that bounds a convex solid. You are also given a ray R that starts at a point Q outside of the solid and has tangent T. You want to establish whether R hits M and if so report the first triangle of M hit by R. Let C(n) be the expected cost of doing so. A naïve O(n) algorithm tests each triangle of M, establishes whether it is hit by R, and reports the one with the closest intersection. We want a faster (sub-linear) algorithm. No preprocessing of M is allowed. Explain whether it is possible and justify your answer. If so, provide such an algorithm (describing it at a high level), justify its correctness, and clearly explain what assumptions you are making on M and what is the expected asymptotic cost. Molecular Collisions You have been given the assignment of performing collision detection between two 3D models of molecules, each of which is represented as collections of solid spheres. The spheres of one molecule may possibly intersect with each other, but one molecule's spheres must not overlap in 3D with spheres from the second molecule.

2 (a) Describe an efficient algorithm for determining whether two molecules are overlapping in space. This is a static interference detection problem. What is the time complexity of your algorithm? (b) Assume that both molecules are undergoing translational motion (no rotation). Give an efficient algorithm for determining whether they will collide, and if they collide, provide an exact time of the collision. Note that repeated calls to your solution of part (a) is not efficient, nor will such a solution be exact. Rotations (a) Describe how you can determine whether a 4x4 transformation matrix is a pure rotation (no scaling, translation, or shear). (b) You are given a point (x,y) on the unit circle in 2D, that is, the point is a distance of one from the origin. What pure rotation matrix will transform the point (x,y) onto the x-axis? Do not use trigonometric functions to calculate any part of this matrix. (c) Given a point (x,y,z) in 3D that is a distance of one from the origin, describe how to calculate a pure rotation matrix that transforms the point (x,y,z) onto the x-axis. Again, no trig functions. (d) You are given a point (x,y,z) on a surface, a unit surface normal N and a unit tangent vector T that are both specified at that surface point. Describe how to calculate a rigid transformation (just translation and rotation) that will transform this point to a new position (x',y',z') and will rotate the surface to align N and T with a new unit normal N' and a new unit tangent T'. You may assume that N and T are perpendicular to each other, and that N' and T' are also mutually perpendicular. RENDERING (Answer 2 of 4) Rasterization versus Ray Tracing You have been given the vertex coordinates V1, V2 and V3 for a triangle that is entirely within the viewing frustum of your virtual camera. You are going to render this triangle using a perspective projection. On the screen, the triangle has roughly the same width and height, and it will cover about 200 pixels. (a) Describe the steps that it would take to render the triangle using ray tracing. (b) Describe the standard steps that would be used by an efficient rasterization-based renderer for drawing the triangle. Note that this is not at all the same as performing ray tracing. (c) Give an estimate of the number of arithmetic operations that it will take to render this triangle for each of the two methods from (a) and (b).

3 Path Tracing versus Photon Maps Jim Kajiya's paper The Rendering Equation described how to use path tracing in order to solve the rendering equations. The images that he generated using this method showed various global illumination effects. The Photon Mapping approach to rendering can also simulate global effects. For each of the two phenomena, describe how Path Tracing and Photon Mapping simulate the effect, discuss the quality of the results, and analyze the computational costs: (a) Caustics (b) Indirect illumination between diffuse surfaces Fuzzy Shadows There are many ways of generating fuzzy shadows. Describe each of the methods listed below. Be especially careful to describe any aspect of the method that requires random sampling, and specify how this random sampling should be done. Also for each method, tell whether it approaches creating true penumbra in the limit of using many samples. (a) Distribution ray tracing for shadows with an area light. (b) Lance Williams' two-pass z-buffer method for shadows. (c) Using the method of (b) repeatedly using many point lights to mimic an area light. (d) Percentage closer filtering, as described in [Reeves et al. 1987]. Texture Anti-Aliasing For each of the following kinds of textures, describe how you would anti-alias them for the case of texture minification (when the viewer is far from the textured surface). (a) A standard color texture map, used for diffuse reflectance of the surface. (b) An environment map, used to simulate reflections. (c) A bump map, that is, a mapped height field used to simulate bumps. (d) A normal map, which stores surface normal variations to simulate bumps. PERCEPTION (Answer 2 of 4) Segmentation Formulate the perceptual grouping problem as a graph-partitioning problem. In your formulation also construct how this makes the problem a global segmentation problem as opposed to being driven by local regions. Then relate briefly how algorithms like Normalized Cuts, Min Cuts, and Graph Cuts are (collectively or individually) brought to bear on this problem. Do provide short descriptions of each, and their relationships to each other. Why do researchers who like these graph-based approaches believe they are better than other inference algorithms for MRF models, such as mean field approximation, loopy believe propagation, or MCMC?

4 Plenoptics Describe the Plenoptic Function. What is the relationship between the Plenoptic Function (and Plenoptic modeling) and Image Based Rendering (IBR)? Does this imply any limitations on IMR? Is it possible to sample the whole space of the Plenoptic function? Explain Why or Why Not? Action Recognition The field of action recognition has introduced concepts like Temporal-Templates and Space-Time Shapes. as representations. Describe these representations (and their formulations) and compare them. Is there something common between them? Further work in this area has taken these representations and then used other information to help with recognition of actions. What are the limitations of these representations and what additional information can help with action recognition in real videos (not just jumping jacks!)? What other spatio-temporal information needs to be added to these representations to really make these approaches work in real domains? Object Recognition The recent increase in work on object categorization has been driven by a growth in statistical machine learning techniques. Such techniques allow for linking annotations, dictionaries, labels, and even context to aid in object recognition. Describe (and even present a formulation of) how low-level image features and other appearance metrics can be combined with higher-level information from visual dictionaries and visual context to aid object categorizations. What is statistical machine learning techniques really empowering in this work? How do such approaches scale and how can these techniques work with partial labeling or in unsupervised (or weakly supervised) cases? VR/AR (Answer 2 of 4) Color and Reality (a) What is the relationship between a color specified in the RGB, HSV, LAB and XYZ color spaces? (b) If I had to use one of these color spaces to represent the color of a real-world object (not a more complex specification of surface properties), which one should I use? Why? (c) I am creating a video mixed AR system, with a camera and a display. Describe how the color gamuts of these two devices limit what can be displayed accurately on the system. (d) Consider head-worn and handheld video-mixed AR systems. Which is more tolerant to poor color reproduction, from the viewpoint of a user's perception of the quality of the system, and why? Registration When overlaying graphics on a user's view of the world using see-through head-worn displays, there are a variety of factors that contribute to registration errors. We can roughly consider the registration errors to come from tracking error, calibration error, and system latency. (a) Give a specific technical example of each kind of error. (b) Consider two kinds of tracking, infrastructure-based tracking (e.g., the IS900 used in the Virtual Pit in the AEL) and through-the-lens vision-based tracking (e.g., where the camera is located using computer vision on the video that is also displayed on the AR display). Discuss why a vision-based system might have lower registration error even if the absolute accuracy of the location of the camera relative to the scene is worse than the infrastructure based system.

5 Display All current approaches to AR and VR displays have issues with depth perception. (a) What is more important to our perception of depth in a typical 3D view of the world, stereo vision or motion parallax? Justify your answer. (b) Typical VR displays are focused at a fixed distance from the eye, and thus have issues with conflicts between the display technology and how our eyes deal with a perceive depth (which can cause headaches in some people). Discuss. (c) In an optically transparent display, the fixed focal distance of the display causes different problems with user perception of the combined scene. Discuss. Virtual World Architecture (a) There are two basic approaches to dealing with massive scale in online multiplayer worlds, spatial subdivision (e.g., Second Life) or world partitioning (e.g., into shards, as in World of Warcraft). Summarize each architectural approach, highlighting how each of these deals with the complexity of an MMO (e.g., world size, number of players, etc). (b) Each of these approaches is suited to certain kinds of virtual world experiences. Using SecondLife and WoW as examples, why do these architectures work well for the experiences these worlds provide? ANIMATION (Answer 2 of 4) Joints Both Maya and Poser use three concatenated Euler angles to represent a ball joint. Within the normal range of motion, such as walking or running, this orientation representation seems to work well. However, when Karen animated a hand-spring motion of a diver, the shoulder joints always seem to be problematic no matter how hard she tried. Karen finally concluded that the degrees of freedom on shoulders are simply not enough to model a hand-spring motion. (a) What can possibly go wrong with three concatenated Euler angles? (b) Propose at least two alternative representations of orientation that fix the problem. (c) Are there any issues associated with the representations you proposed? (d) If your animation is tied to a specific software package and you have no choice to use different orientation representation, is there anything you can do to make Euler angles behave better? Tinkertoys The problem of constrained dynamics is to make the particles obey Newton s laws, and at the same time obey the geometric constraints. Penalty method provides a sloppy, approximate constraint mechanism that fails to meet the desired accuracy of constraints in many situations. Baraff and Witkin takes an approach to avoiding the issues with penalty method by directly computing the forces required to maintain the constraints. The job of these constraint forces is to cancel just those parts of the applied

6 forces that act against the constraints. They used a tinkertoys example, a particle constrained to a circle (figure 1), to illustrate how to formulate a geometric constraint and calculate constraint force. Can you use the same idea to solve the following problem with two 3D rigid bodies (figure 2)? Suppose the ball is constrained to the inner surface of a fixed bowl but can roll freely under the influence of gravity. (a) Can you formulate a geometric constraint that enforces the contact between the bowl and the ball? (b) Can you derive constraint force that applies on the ball? (c) Can your formulation prevents the ball from slipping? That is, the relative velocity of the two contacting surfaces at the point of contact is nonzero. (d) Now, assume the bowl is free to move and also being simulated, how does this complicate your method? Is the constraint force you compute in b still valid? Figure1 Figure 2

7 Spacetime Optimization Many of the 12 principles of animation defined by John Lasseter in 1987 were developed for traditional animation, but can be applied to 3D computer animation today. Around the same time, Witkin and Kass proposed Spacetime Optimization to solve for a physically plausible motion sequence automatically. By specifying different objective functions, Spacetime Optimization can produce a variety of output motions under the same physical constraints and boundary conditions. Please describe how to formulate a spacetime optimization for the following three animation principles: (a) Secondary action (b) Arcs (c) Anticipation Joint Angles Consider an articulated rigid body (ARB) system. Your goal is to move the color dots on the ARB system towards their corresponding color circles by changing the joint angles. Assuming you know the dimension of each body part, position of each color circle in the world coordinates, and the position of each solid dot from its nearest joint, (a) Can you come up with an efficient algorithm to determine whether it is possible to reach all three circles? (b) If it is possible, can you describe how to compute the exact joint angles that meet all three constraints?

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

Graphics and Interaction Rendering pipeline & object modelling

Graphics and Interaction Rendering pipeline & object modelling 433-324 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

Course Review. Computer Animation and Visualisation. Taku Komura

Course Review. Computer Animation and Visualisation. Taku Komura Course Review Computer Animation and Visualisation Taku Komura Characters include Human models Virtual characters Animal models Representation of postures The body has a hierarchical structure Many types

More information

I have a meeting with Peter Lee and Bob Cosgrove on Wednesday to discuss the future of the cluster. Computer Graphics

I have a meeting with Peter Lee and Bob Cosgrove on Wednesday to discuss the future of the cluster. Computer Graphics Announcements Assignment 4 will be out later today Problem Set 3 is due today or tomorrow by 9am in my mail box (4 th floor NSH) How are the machines working out? I have a meeting with Peter Lee and Bob

More information

QUAL SPRING This question is about Lance Williams' mipmap techinque for anti-aliasing textures.

QUAL SPRING This question is about Lance Williams' mipmap techinque for anti-aliasing textures. GENERAL (Answer 4 of 6) QUAL SPRING 2009 Counting holes I have a triangle mesh M with t triangles and v vertices. It is edge-connected and forms a manifold with boundary (zero or more manifold border loops).

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Modeling the Virtual World

Modeling the Virtual World Modeling the Virtual World Joaquim Madeira November, 2013 RVA - 2013/2014 1 A VR system architecture Modeling the Virtual World Geometry Physics Haptics VR Toolkits RVA - 2013/2014 2 VR object modeling

More information

CS 464 Review. Review of Computer Graphics for Final Exam

CS 464 Review. Review of Computer Graphics for Final Exam CS 464 Review Review of Computer Graphics for Final Exam Goal: Draw 3D Scenes on Display Device 3D Scene Abstract Model Framebuffer Matrix of Screen Pixels In Computer Graphics: If it looks right then

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics Preview CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles of traditional

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective

More information

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/22/2017

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/22/2017 Computer Graphics Si Lu Fall 2017 http://web.cecs.pdx.edu/~lusi/cs447/cs447_547_comp uter_graphics.htm 11/22/2017 Last time o Splines 2 Today o Raytracing o Final Exam: 14:00-15:30, Novermber 29, 2017

More information

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye Ray Tracing What was the rendering equation? Motivate & list the terms. Relate the rendering equation to forward ray tracing. Why is forward ray tracing not good for image formation? What is the difference

More information

CS559 Computer Graphics Fall 2015

CS559 Computer Graphics Fall 2015 CS559 Computer Graphics Fall 2015 Practice Final Exam Time: 2 hrs 1. [XX Y Y % = ZZ%] MULTIPLE CHOICE SECTION. Circle or underline the correct answer (or answers). You do not need to provide a justification

More information

Wednesday, 26 January 2005, 14:OO - 17:OO h.

Wednesday, 26 January 2005, 14:OO - 17:OO h. Delft University of Technology Faculty Electrical Engineering, Mathematics, and Computer Science Mekelweg 4, Delft TU Delft Examination for Course IN41 5 1-3D Computer Graphics and Virtual Reality Please

More information

Announcements. Written Assignment 2 out (due March 8) Computer Graphics

Announcements. Written Assignment 2 out (due March 8) Computer Graphics Announcements Written Assignment 2 out (due March 8) 1 Advanced Ray Tracing (Recursive) Ray Tracing Antialiasing Motion Blur Distribution Ray Tracing Ray Tracing and Radiosity Assumptions Simple shading

More information

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Topic 12: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Topic 11: Texture Mapping 11/13/2017. Texture sources: Solid textures. Texture sources: Synthesized

Topic 11: Texture Mapping 11/13/2017. Texture sources: Solid textures. Texture sources: Synthesized Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

Shadows in the graphics pipeline

Shadows in the graphics pipeline Shadows in the graphics pipeline Steve Marschner Cornell University CS 569 Spring 2008, 19 February There are a number of visual cues that help let the viewer know about the 3D relationships between objects

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

Topic 11: Texture Mapping 10/21/2015. Photographs. Solid textures. Procedural

Topic 11: Texture Mapping 10/21/2015. Photographs. Solid textures. Procedural Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Topic 11: Photographs Texture Mapping Motivation Sources of texture Texture coordinates

More information

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Computer Graphics Instructor: Brian Curless CSE 457 Spring 2013 Homework #2 Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Assigned: Sunday, May 12 th Due: Thursday,

More information

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/27/2017

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/27/2017 Computer Graphics Si Lu Fall 2017 http://web.cecs.pdx.edu/~lusi/cs447/cs447_547_comp uter_graphics.htm 11/27/2017 Last time o Ray tracing 2 Today o Animation o Final Exam: 14:00-15:30, Novermber 29, 2017

More information

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic. Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

More information

(Refer Slide Time: 00:01:27 min)

(Refer Slide Time: 00:01:27 min) Computer Aided Design Prof. Dr. Anoop Chawla Department of Mechanical engineering Indian Institute of Technology, Delhi Lecture No. # 01 An Introduction to CAD Today we are basically going to introduce

More information

Particle systems, collision detection, and ray tracing. Computer Graphics CSE 167 Lecture 17

Particle systems, collision detection, and ray tracing. Computer Graphics CSE 167 Lecture 17 Particle systems, collision detection, and ray tracing Computer Graphics CSE 167 Lecture 17 CSE 167: Computer graphics Particle systems Collision detection Ray tracing CSE 167, Winter 2018 2 Particle systems

More information

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects Basic Ray Tracing Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as

More information

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1 Ray tracing Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 3/19/07 1 From last time Hidden surface removal Painter s algorithm Clipping algorithms Area subdivision BSP trees Z-Buffer

More information

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Recollection Models Pixels Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Can be computed in different stages 1 So far we came to Geometry model 3 Surface

More information

TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students)

TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students) TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students) Saturday, January 13 th, 2018, 08:30-12:30 Examiner Ulf Assarsson, tel. 031-772 1775 Permitted Technical Aids None, except

More information

CSE 167: Introduction to Computer Graphics Lecture #18: More Effects. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #18: More Effects. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #18: More Effects Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements TA evaluations CAPE Final project blog

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007

Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007 Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007 Programming For this assignment you will write a simple ray tracer. It will be written in C++ without

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

SUMMARY. CS380: Introduction to Computer Graphics Ray tracing Chapter 20. Min H. Kim KAIST School of Computing 18/05/29. Modeling

SUMMARY. CS380: Introduction to Computer Graphics Ray tracing Chapter 20. Min H. Kim KAIST School of Computing 18/05/29. Modeling CS380: Introduction to Computer Graphics Ray tracing Chapter 20 Min H. Kim KAIST School of Computing Modeling SUMMARY 2 1 Types of coordinate function Explicit function: Line example: Implicit function:

More information

Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping

Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Shadow Buffer Theory Observation:

More information

Computer Graphics Introduction. Taku Komura

Computer Graphics Introduction. Taku Komura Computer Graphics Introduction Taku Komura What s this course all about? We will cover Graphics programming and algorithms Graphics data structures Applied geometry, modeling and rendering Not covering

More information

Real-Time Shadows. Last Time? Textures can Alias. Schedule. Questions? Quiz 1: Tuesday October 26 th, in class (1 week from today!

Real-Time Shadows. Last Time? Textures can Alias. Schedule. Questions? Quiz 1: Tuesday October 26 th, in class (1 week from today! Last Time? Real-Time Shadows Perspective-Correct Interpolation Texture Coordinates Procedural Solid Textures Other Mapping Bump Displacement Environment Lighting Textures can Alias Aliasing is the under-sampling

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

DH2323 DGI13. Lab 2 Raytracing

DH2323 DGI13. Lab 2 Raytracing DH2323 DGI13 Lab 2 Raytracing In this lab you will implement a Raytracer, which draws images of 3D scenes by tracing the light rays reaching the simulated camera. The lab is divided into several steps.

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Topic 10: Scene Management, Particle Systems and Normal Mapping. CITS4242: Game Design and Multimedia

Topic 10: Scene Management, Particle Systems and Normal Mapping. CITS4242: Game Design and Multimedia CITS4242: Game Design and Multimedia Topic 10: Scene Management, Particle Systems and Normal Mapping Scene Management Scene management means keeping track of all objects in a scene. - In particular, keeping

More information

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017 CS354 Computer Graphics Ray Tracing Qixing Huang Januray 24th 2017 Graphics Pipeline Elements of rendering Object Light Material Camera Geometric optics Modern theories of light treat it as both a wave

More information

Today. Rendering algorithms. Rendering algorithms. Images. Images. Rendering Algorithms. Course overview Organization Introduction to ray tracing

Today. Rendering algorithms. Rendering algorithms. Images. Images. Rendering Algorithms. Course overview Organization Introduction to ray tracing Today Rendering Algorithms Course overview Organization Introduction to ray tracing Spring 2009 Matthias Zwicker Universität Bern Rendering algorithms Problem statement Given computer representation of

More information

9. Visible-Surface Detection Methods

9. Visible-Surface Detection Methods 9. Visible-Surface Detection Methods More information about Modelling and Perspective Viewing: Before going to visible surface detection, we first review and discuss the followings: 1. Modelling Transformation:

More information

Single-view 3D Reconstruction

Single-view 3D Reconstruction Single-view 3D Reconstruction 10/12/17 Computational Photography Derek Hoiem, University of Illinois Some slides from Alyosha Efros, Steve Seitz Notes about Project 4 (Image-based Lighting) You can work

More information

lecture 18 - ray tracing - environment mapping - refraction

lecture 18 - ray tracing - environment mapping - refraction lecture 18 - ray tracing - environment mapping - refraction Recall Ray Casting (lectures 7, 8) for each pixel (x,y) { cast a ray through that pixel into the scene, and find the closest surface along the

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Computer Graphics. Lecture 9 Environment mapping, Mirroring

Computer Graphics. Lecture 9 Environment mapping, Mirroring Computer Graphics Lecture 9 Environment mapping, Mirroring Today Environment Mapping Introduction Cubic mapping Sphere mapping refractive mapping Mirroring Introduction reflection first stencil buffer

More information

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted.

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted. CS 184: Foundations of Computer Graphics page 1 of 12 Student Name: Student ID: Instructions: Read them carefully! The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

Some Thoughts on Visibility

Some Thoughts on Visibility Some Thoughts on Visibility Frédo Durand MIT Lab for Computer Science Visibility is hot! 4 papers at Siggraph 4 papers at the EG rendering workshop A wonderful dedicated workshop in Corsica! A big industrial

More information

COMP30019 Graphics and Interaction Rendering pipeline & object modelling

COMP30019 Graphics and Interaction Rendering pipeline & object modelling COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

Lecture outline. COMP30019 Graphics and Interaction Rendering pipeline & object modelling. Introduction to modelling

Lecture outline. COMP30019 Graphics and Interaction Rendering pipeline & object modelling. Introduction to modelling Lecture outline COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Introduction to Modelling Polygonal geometry The rendering

More information

Models and The Viewing Pipeline. Jian Huang CS456

Models and The Viewing Pipeline. Jian Huang CS456 Models and The Viewing Pipeline Jian Huang CS456 Vertex coordinates list, polygon table and (maybe) edge table Auxiliary: Per vertex normal Neighborhood information, arranged with regard to vertices and

More information

Graphics for VEs. Ruth Aylett

Graphics for VEs. Ruth Aylett Graphics for VEs Ruth Aylett Overview VE Software Graphics for VEs The graphics pipeline Projections Lighting Shading VR software Two main types of software used: off-line authoring or modelling packages

More information

Today. Anti-aliasing Surface Parametrization Soft Shadows Global Illumination. Exercise 2. Path Tracing Radiosity

Today. Anti-aliasing Surface Parametrization Soft Shadows Global Illumination. Exercise 2. Path Tracing Radiosity Today Anti-aliasing Surface Parametrization Soft Shadows Global Illumination Path Tracing Radiosity Exercise 2 Sampling Ray Casting is a form of discrete sampling. Rendered Image: Sampling of the ground

More information

Introduction to 3D Concepts

Introduction to 3D Concepts PART I Introduction to 3D Concepts Chapter 1 Scene... 3 Chapter 2 Rendering: OpenGL (OGL) and Adobe Ray Tracer (ART)...19 1 CHAPTER 1 Scene s0010 1.1. The 3D Scene p0010 A typical 3D scene has several

More information

Raycasting. Chapter Raycasting foundations. When you look at an object, like the ball in the picture to the left, what do

Raycasting. Chapter Raycasting foundations. When you look at an object, like the ball in the picture to the left, what do Chapter 4 Raycasting 4. Raycasting foundations When you look at an, like the ball in the picture to the left, what do lamp you see? You do not actually see the ball itself. Instead, what you see is the

More information

CEng 477 Introduction to Computer Graphics Fall 2007

CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection Visible surface detection or hidden surface removal. Realistic scenes: closer objects occludes the

More information

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted.

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted. CS 184: Foundations of Computer Graphics page 1 of 10 Student Name: Class Account Username: Instructions: Read them carefully! The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when

More information

CPSC GLOBAL ILLUMINATION

CPSC GLOBAL ILLUMINATION CPSC 314 21 GLOBAL ILLUMINATION Textbook: 20 UGRAD.CS.UBC.CA/~CS314 Mikhail Bessmeltsev ILLUMINATION MODELS/ALGORITHMS Local illumination - Fast Ignore real physics, approximate the look Interaction of

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS2401 COMPUTER GRAPHICS QUESTION BANK PART A UNIT I-2D PRIMITIVES 1. Define Computer graphics. 2. Define refresh

More information

Three Main Themes of Computer Graphics

Three Main Themes of Computer Graphics Three Main Themes of Computer Graphics Modeling How do we represent (or model) 3-D objects? How do we construct models for specific objects? Animation How do we represent the motion of objects? How do

More information

A Qualitative Analysis of 3D Display Technology

A Qualitative Analysis of 3D Display Technology A Qualitative Analysis of 3D Display Technology Nicholas Blackhawk, Shane Nelson, and Mary Scaramuzza Computer Science St. Olaf College 1500 St. Olaf Ave Northfield, MN 55057 scaramum@stolaf.edu Abstract

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

Ragdoll Physics. Abstract. 2 Background. 1 Introduction. Gabe Mulley, Matt Bittarelli. April 25th, Previous Work

Ragdoll Physics. Abstract. 2 Background. 1 Introduction. Gabe Mulley, Matt Bittarelli. April 25th, Previous Work Ragdoll Physics Gabe Mulley, Matt Bittarelli April 25th, 2007 Abstract The goal of this project was to create a real-time, interactive, and above all, stable, ragdoll physics simulation. This simulation

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics Regular and Diffuse Reflection Sections 23-1 to 23-2. How We See Weseebecauselightreachesoureyes. There are two ways, therefore, in which we see: (1) light from a luminous object

More information

Triangle Rasterization

Triangle Rasterization Triangle Rasterization Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/07/07 1 From last time Lines and planes Culling View frustum culling Back-face culling Occlusion culling

More information

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

More information

Homework #2 and #3 Due Friday, October 12 th and Friday, October 19 th

Homework #2 and #3 Due Friday, October 12 th and Friday, October 19 th Homework #2 and #3 Due Friday, October 12 th and Friday, October 19 th 1. a. Show that the following sequences commute: i. A rotation and a uniform scaling ii. Two rotations about the same axis iii. Two

More information

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University Ray Tracing III Wen-Chieh (Steve) Lin National Chiao-Tung University Shirley, Fundamentals of Computer Graphics, Chap 10 Doug James CG slides, I-Chen Lin s CG slides Ray-tracing Review For each pixel,

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

CS 498 VR. Lecture 19-4/9/18. go.illinois.edu/vrlect19

CS 498 VR. Lecture 19-4/9/18. go.illinois.edu/vrlect19 CS 498 VR Lecture 19-4/9/18 go.illinois.edu/vrlect19 Review from previous lectures Image-order Rendering and Object-order Rendering Image-order Rendering: - Process: Ray Generation, Ray Intersection, Assign

More information

CV: 3D sensing and calibration

CV: 3D sensing and calibration CV: 3D sensing and calibration Coordinate system changes; perspective transformation; Stereo and structured light MSU CSE 803 1 roadmap using multiple cameras using structured light projector 3D transformations

More information

3D Rendering and Ray Casting

3D Rendering and Ray Casting 3D Rendering and Ray Casting Michael Kazhdan (601.457/657) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 Rendering Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D)

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11

Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11 Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11 Student Name: Class Account Username: Instructions: Read them carefully! The exam begins at 2:40pm and ends at 4:00pm. You must turn your

More information

Homework #2. Shading, Ray Tracing, and Texture Mapping

Homework #2. Shading, Ray Tracing, and Texture Mapping Computer Graphics Prof. Brian Curless CSE 457 Spring 2000 Homework #2 Shading, Ray Tracing, and Texture Mapping Prepared by: Doug Johnson, Maya Widyasari, and Brian Curless Assigned: Monday, May 8, 2000

More information

Movie: For The Birds. Announcements. Ray Tracing 1. Programming 2 Recap. Programming 3 Info Test data for part 1 (Lines) is available

Movie: For The Birds. Announcements. Ray Tracing 1. Programming 2 Recap. Programming 3 Info Test data for part 1 (Lines) is available Now Playing: Movie: For The Birds Pixar, 2000 Liar Built To Spill from You In Reverse Released April 11, 2006 Ray Tracing 1 Rick Skarbez, Instructor COMP 575 November 1, 2007 Announcements Programming

More information

2D/3D Geometric Transformations and Scene Graphs

2D/3D Geometric Transformations and Scene Graphs 2D/3D Geometric Transformations and Scene Graphs Week 4 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 A little quick math background

More information

Soft shadows. Steve Marschner Cornell University CS 569 Spring 2008, 21 February

Soft shadows. Steve Marschner Cornell University CS 569 Spring 2008, 21 February Soft shadows Steve Marschner Cornell University CS 569 Spring 2008, 21 February Soft shadows are what we normally see in the real world. If you are near a bare halogen bulb, a stage spotlight, or other

More information

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, Willi-Hans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Computer Graphics Instructor: Brian Curless CSEP 557 Autumn 2016 Homework #2 Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Assigned: Wednesday, Nov 16 th Due: Wednesday, Nov 30

More information

Real Time Rendering of Complex Height Maps Walking an infinite realistic landscape By: Jeffrey Riaboy Written 9/7/03

Real Time Rendering of Complex Height Maps Walking an infinite realistic landscape By: Jeffrey Riaboy Written 9/7/03 1 Real Time Rendering of Complex Height Maps Walking an infinite realistic landscape By: Jeffrey Riaboy Written 9/7/03 Table of Contents 1 I. Overview 2 II. Creation of the landscape using fractals 3 A.

More information

3D Rendering and Ray Casting

3D Rendering and Ray Casting 3D Rendering and Ray Casting Michael Kazhdan (601.457/657) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 Rendering Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D)

More information

Visible-Surface Detection Methods. Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin

Visible-Surface Detection Methods. Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin Visible-Surface Detection Methods Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin The Visibility Problem [Problem Statement] GIVEN: a set of 3-D surfaces, a projection from 3-D to 2-D screen,

More information

Advanced Shading I: Shadow Rasterization Techniques

Advanced Shading I: Shadow Rasterization Techniques Advanced Shading I: Shadow Rasterization Techniques Shadow Terminology umbra: light totally blocked penumbra: light partially blocked occluder: object blocking light Shadow Terminology umbra: light totally

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Welcome to the lectures on computer graphics. We have

More information

Graphics and Games. Penny Rheingans University of Maryland Baltimore County

Graphics and Games. Penny Rheingans University of Maryland Baltimore County Graphics and Games IS 101Y/CMSC 104Y First Year IT Penny Rheingans University of Maryland Baltimore County Announcements Quizzes Project Questions Other questions Questions about Reading Asst Games with

More information

Shadow Algorithms. CSE 781 Winter Han-Wei Shen

Shadow Algorithms. CSE 781 Winter Han-Wei Shen Shadow Algorithms CSE 781 Winter 2010 Han-Wei Shen Why Shadows? Makes 3D Graphics more believable Provides additional cues for the shapes and relative positions of objects in 3D What is shadow? Shadow:

More information

Models and Architectures

Models and Architectures Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation

More information

Midterm Exam! CS 184: Foundations of Computer Graphics! page 1 of 13!

Midterm Exam! CS 184: Foundations of Computer Graphics! page 1 of 13! Midterm Exam! CS 184: Foundations of Computer Graphics! page 1 of 13! Student Name:!! Class Account Username:! Instructions: Read them carefully!! The exam begins at 1:10pm and ends at 2:30pm. You must

More information