10 - ARAP and Linear Blend Skinning

Size: px
Start display at page:

Download "10 - ARAP and Linear Blend Skinning"

Transcription

1 10 - ARAP and Linear Blend Skinning Acknowledgements: Olga Sorkine-Hornung

2 As Rigid As Possible

3 Demo Libigl demo 405

4 As-Rigid-As-Possible Deformation Preserve shape of cells covering the surface Ask each cell i to transform rigidly by best-fitting rotation R i

5 As-Rigid-As-Possible Deformation Optimal R i is uniquely defined by, R i is a nonlinear so-called shape-matching problem, function of x solved by a 3x3 SVD

6 Optimal Rotation Rotation group

7 Shape Matching Problem

8 Shape Matching Problem

9 Shape Matching Problem

10 Shape Matching Problem

11 Shape Matching Problem Align two point sets Find a translation vector t and rotation matrix R so that

12 Shape Matching Solution Solve for translation first (w.r.t. R, p, and q) Point sets {q i } and {Rp i } have the same center of mass

13 Finding the Rotation R To find the optimal R, we bring the centroids of both point sets to the origin We want to find R that minimizes

14 Finding the Rotation R I These terms do not depend on R, so we can ignore them in the minimization

15 Finding the Rotation R

16 Finding the Rotation R R =

17 Finding the Rotation R =

18 Finding the Rotation R Take a look at the Find R that maximizes Matrix Cookbook! SVD: orthonormal matrix

19 Finding the Rotation R We want to maximize M: orthonormal matrix all entries 1

20 Finding the Rotation R Our best shot is m ii = 1, i.e. to make M = I

21 Summary of Rigid Alignment Translate the input points to the centroids Compute the covariance matrix Compute its SVD: The optimal orthonormal R is

22 Sign Correction It is possible that : sometimes reflection is the best orthonormal transform

23 Sign Correction It is possible that : sometimes reflection is the best orthonormal transform

24 Sign Correction To restrict ourselves to rotations only: take the last column of U (corresponding to the smallest singular value) and invert its sign. Why? See

25 As-Rigid-As-Possible Deformation Optimal R i is uniquely defined by, R i is a nonlinear so-called shape-matching problem, function of x solved by a 3x3 SVD

26 As-Rigid-As-Possible Deformation Total ARAP energy: sum up for all the cells i Treat x and R as separate sets of variables Simple local-global iterative optimization process Decreases the energy at each step

27 As-Rigid-As-Possible Deformation Total ARAP energy: sum up for all the cells i Local step: keep x fixed, find optimal R i per cell i Global step: keep R i fixed, solve for x quadratic minimization problem

28 As-Rigid-As-Possible Deformation Total ARAP energy: sum up for all the cells i Local step: keep x fixed, find optimal R per cell i i Global step: keep R fixed, solve for x i quadratic minimization problem The matrix L stays fixed, can pre-factorize

29 Initial Guess Can use naïve Laplacian editing initial guess 1 iteration 2 iterations initial guess 1 iterations 4 iterations

30 Initial Guess Can also use the previous frame Replace all handle vertex positions by the currently prescribed ones Fast convergence

31 Large Rotations Use previous frame as the initial guess

32 Examples

33 Discussion Nonlinear deformation that models a kind of elastic behavior Very simple to implement, no parameters to tune except number of iterations Each step is guaranteed to not increase the energy Compare with Gauss-Newton Each iteration is relatively cheap, no matrix refactorization necessary

34 Discussion Works fine on small meshes On larger meshes: slow convergence Each iteration is more expensive Need more iterations because the conditioning of the system becomes worse as the matrix grows Material stiffness depends on the cell size lots of wrinkles for fine meshes when using 1-rings as cells

35 Acceleration using Subspace Techniques Subspace created by influence weight functions for each handle Drastically reduces the number of degrees of freedom in the optimization Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. Fast Automatic Skinning Transformations, 2012.

36 Acceleration using Subspace Techniques Subspace created by influence weight functions for each handle Drastically reduces the number of degrees of freedom in the optimization Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. Fast Automatic Skinning Transformations, 2012.

37 Acceleration using Subspace Techniques Subspace created by influence weight functions for each handle Drastically reduces the number of degrees of freedom in the optimization Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. Fast Automatic Skinning Transformations, 2012.

38 Demo Libigl demo 406

39 Linear Blend Skinning Acknowledgements: Alec Jacobson

40 LBS generalizes to different handle types skeletons regions points cages

41 Linear Blend Skinning rigging preferred for its realtime performance place handles in shape

42 Linear Blend Skinning rigging preferred for its realtime performance place handles in shape paint weights

43 Linear Blend Skinning rigging preferred for its realtime performance place handles in shape paint weights deform handles

44 Linear Blend Skinning rigging preferred for its realtime performance place handles in shape paint weights deform handles

45 Linear Blend Skinning rigging preferred for its realtime performance place handles in shape paint weights deform handles

46 Challenges with LBS Weight functions w j Need intuitive, general and automatic weights Degrees of freedom T j Let the energy decide! Richness of achievable deformations Want to avoid common LBS pitfalls candy wrapper, collapses

47 Bounded Biharmonic Weights Alec Jacobson, Ilya Baran, Jovan Popović, Olga Sorkine-Hornung

48 Automatic weights that unify points, skeletons and cages

49 Weights should be smooth, shape-aware, positive and intuitive

50 Weights must be smooth everywhere, especially at handles Bounded Biharmonic Weights Extension of Harmonic Coordinates [Joshi et al. 2005]

51 Weights must be smooth everywhere, especially at handles Bounded Biharmonic Weights Extension of Harmonic Coordinates [Joshi et al. 2005]

52 Shape-awareness ensures respect of domain s features Bounded Biharmonic Weights Non-shape-aware methods e.g. [Schaefer et al. 2006]

53 Non-negative weights are necessary for intuitive response Bounded Biharmonic Weights Unconstrained biharmonic [Botsch and Kobbelt 2004]

54 Weights must maintain other simple, but important properties Handle vertices is linear along cage faces Partition of unity Interpolation of handles

55 How about w j (x 0 ) = d (x 0, H j ) 1?

56 Inverse distance methods inherently suffer from fall-off effect

57 Inverse distance methods inherently suffer from fall-off effect

58 Inverse distance methods inherently suffer from fall-off effect Approaching 0.5

59 Inverse distance methods inherently suffer from fall-off effect Inverse- distance weights BBW

60 Bounded biharmonic weights enforce properties as constraints to minimization is linear along cage faces

61 Bounded biharmonic weights enforce properties as constraints to minimization Constant inequality constraints Partition of unity is linear along cage faces

62 Bounded biharmonic weights enforce properties as constraints to minimization Constant inequality constraints Solve independently and normalize is linear along cage faces

63 Weights optimized as precomputation at bind-time is linear along cage faces FEM discretization 2D! Triangle mesh 3D! Tet mesh

64 Weights optimized as precomputation at bind-time is linear along cage faces Sparse quadratic programming with constant inequality constraints 2D! less than second per handle 3D! tens of seconds per handle

65 Some examples of BBW in action

66 Some examples of BBW in action

67 Some examples of BBW in action

68 3D Characters

69 Demo Libigl demo 403

70 Thank you

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2009 Advanced Computer Graphics Project details and tools 1 Project Topics Computer Animation Geometric Modeling Computational Photography Image processing 2 Optimization All projects

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (1) May 19, 2016 Kenshi Takayama Skeleton-based animation Simple Intuitive Low comp. cost https://www.youtube.com/watch?v=dsonab58qva 2 Representing a pose using

More information

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1 CS 523: Computer Graphics, Spring 2011 Shape Modeling Skeletal deformation 4/12/2011 1 Believable character animation Computers games and movies Skeleton: intuitive, low-dimensional subspace Clip courtesy

More information

CS 775: Advanced Computer Graphics. Lecture 4: Skinning

CS 775: Advanced Computer Graphics. Lecture 4: Skinning CS 775: Advanced Computer Graphics Lecture 4: http://www.okino.com/conv/skinning.htm Binding Binding Always done in a standard rest or bind pose. Binding Always done in a standard rest or bind pose. Associate

More information

Skeletal deformation

Skeletal deformation CS 523: Computer Graphics, Spring 2009 Shape Modeling Skeletal deformation 4/22/2009 1 Believable character animation Computers games and movies Skeleton: intuitive, low dimensional subspace Clip courtesy

More information

Locally Injective Mappings

Locally Injective Mappings 8/6/ Locally Injective Mappings Christian Schüller 1 Ladislav Kavan 2 Daniele Panozzo 1 Olga Sorkine-Hornung 1 1 ETH Zurich 2 University of Pennsylvania Locally Injective Mappings Popular tasks in geometric

More information

Animation. Motion over time

Animation. Motion over time Animation Animation Motion over time Animation Motion over time Usually focus on character animation but environment is often also animated trees, water, fire, explosions, Animation Motion over time Usually

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Stretchable and Twistable Bones for Skeletal Shape Deformation

Stretchable and Twistable Bones for Skeletal Shape Deformation Stretchable and Twistable Bones for Skeletal Shape Deformation Alec Jacobson Olga Sorkine New York University & ETH Zurich Original LBS DQS STBS Figure 1: Left to right: the Beast model is rigged to a

More information

Character animation Christian Miller CS Fall 2011

Character animation Christian Miller CS Fall 2011 Character animation Christian Miller CS 354 - Fall 2011 Exam 2 grades Avg = 74.4, std. dev. = 14.4, min = 42, max = 99 Characters Everything is important in an animation But people are especially sensitive

More information

Animation of 3D surfaces

Animation of 3D surfaces Animation of 3D surfaces 2013-14 Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible

More information

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides Rigging / Skinning based on Taku Komura, Jehee Lee and Charles B.Own's slides Skeletal Animation Victoria 2 CSE 872 Dr. Charles B. Owen Advanced Computer Graphics Skinning http://www.youtube.com/watch?

More information

Skeleton Based As-Rigid-As-Possible Volume Modeling

Skeleton Based As-Rigid-As-Possible Volume Modeling Skeleton Based As-Rigid-As-Possible Volume Modeling Computer Science Department, Rutgers University As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

A skeleton/cage hybrid paradigm for digital animation

A skeleton/cage hybrid paradigm for digital animation A skeleton/cage hybrid paradigm for digital animation Fabrizio Corda 1 1 Università degli studi di Cagliari Abstract. Digital animators require simple tools and techniques that allow them to create computer

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Shape Deformation via Interior RBF

Shape Deformation via Interior RBF Shape Deformation via Interior RBF Zohar Levi and David Levin (a) Source (b) IRBF deformed poses Figure 1: Troll. (b) IRBF deformation with interior distances. Abstract We present a new framework for real-time

More information

05 Mesh Animation. Steve Marschner CS5625 Spring 2016

05 Mesh Animation. Steve Marschner CS5625 Spring 2016 05 Mesh Animation Steve Marschner CS5625 Spring 2016 Basic surface deformation methods Blend shapes: make a mesh by combining several meshes Mesh skinning: deform a mesh based on an underlying skeleton

More information

An Intuitive Framework for Real-Time Freeform Modeling

An Intuitive Framework for Real-Time Freeform Modeling An Intuitive Framework for Real-Time Freeform Modeling Leif Kobbelt Shape Deformation Complex shapes Complex deformations User Interaction Very limited user interface 2D screen & mouse Intuitive metaphor

More information

Assignment 5: Shape Deformation

Assignment 5: Shape Deformation CSCI-GA.3033-018 - Geometric Modeling Assignment 5: Shape Deformation Goal of this exercise In this exercise, you will implement an algorithm to interactively deform 3D models. You will construct a two-level

More information

Skinning Mesh Animations

Skinning Mesh Animations Doug L. James, Christopher D. Twigg Carnegie Mellon University presented by Johannes Schmid 1 Outline Introduction & Motivation Overview & Details Results Discussion 2 Introduction Mesh sequence: 3 General

More information

Mesh-Based Inverse Kinematics

Mesh-Based Inverse Kinematics CS468, Wed Nov 9 th 2005 Mesh-Based Inverse Kinematics R. W. Sumner, M. Zwicker, C. Gotsman, J. Popović SIGGRAPH 2005 The problem 1 General approach Learn from experience... 2 As-rigid-as-possible shape

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2010 Advanced Computer Graphics Project details and tools 1 Projects Details of each project are on the website under Projects Please review all the projects and come see me if you would

More information

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION Rémi Ronfard, Animation, M2R MOSIG 2 Outline Principles of animation Keyframe interpolation Rigging, skinning and walking

More information

Scanning Real World Objects without Worries 3D Reconstruction

Scanning Real World Objects without Worries 3D Reconstruction Scanning Real World Objects without Worries 3D Reconstruction 1. Overview Feng Li 308262 Kuan Tian 308263 This document is written for the 3D reconstruction part in the course Scanning real world objects

More information

Animation of 3D surfaces.

Animation of 3D surfaces. Animation of 3D surfaces Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible =

More information

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama Introduction to Computer Graphics Image Processing (1) June 8, 2017 Kenshi Takayama Today s topics Edge-aware image processing Gradient-domain image processing 2 Image smoothing using Gaussian Filter Smoothness

More information

Geometric Modeling Assignment 5: Shape Deformation

Geometric Modeling Assignment 5: Shape Deformation Geometric Modeling Assignment 5: Shape Deformation Acknowledgements: Olga Diamanti, Julian Panetta Shape Deformation Step 1: Select and Deform Handle Regions Draw vertex selection with mouse H 2 Move one

More information

arxiv: v1 [cs.gr] 14 Aug 2014

arxiv: v1 [cs.gr] 14 Aug 2014 Regularized Harmonic Surface Deformation Yeara Kozlov, Janick Martinez Esturo, Hans-Peter Seidel, and Tino Weinkauf Max Planck Institute for Informatics, Germany {ykozlov,janick,hpseidel,weinkauf}@mpi-inf.mpg.de

More information

Fast Automatic Skinning Transformations

Fast Automatic Skinning Transformations Fast Automatic Skinning Transformations Alec Jacobson 1 Ilya Baran 2 Ladislav Kavan 1 Jovan Popović 3 Olga Sorkine 1 1 ETH Zurich 2 Disney Research, Zurich 3 Adobe Systems, Inc. Figure 1: We present a

More information

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION 1 Invariant shape similarity Alexer & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 2 Invariant shape similarity 048921 Advanced topics in vision Processing Analysis

More information

Image Coding with Active Appearance Models

Image Coding with Active Appearance Models Image Coding with Active Appearance Models Simon Baker, Iain Matthews, and Jeff Schneider CMU-RI-TR-03-13 The Robotics Institute Carnegie Mellon University Abstract Image coding is the task of representing

More information

Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation

Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation TVCG-2013-10-0283 1 Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation Zohar Levi and Craig Gotsman Abstract In recent years, the As-Rigid-As-Possible (ARAP) shape deformation and shape interpolation

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Animating Characters in Pictures

Animating Characters in Pictures Animating Characters in Pictures Shih-Chiang Dai jeffrey@cmlab.csie.ntu.edu.tw Chun-Tse Hsiao hsiaochm@cmlab.csie.ntu.edu.tw Bing-Yu Chen robin@ntu.edu.tw ABSTRACT Animating pictures is an interesting

More information

Real-Time Shape Editing using Radial Basis Functions

Real-Time Shape Editing using Radial Basis Functions Real-Time Shape Editing using Radial Basis Functions, Leif Kobbelt RWTH Aachen Boundary Constraint Modeling Prescribe irregular constraints Vertex positions Constrained energy minimization Optimal fairness

More information

Easy modeling generate new shapes by deforming existing ones

Easy modeling generate new shapes by deforming existing ones Deformation I Deformation Motivation Easy modeling generate new shapes by deforming existing ones Motivation Easy modeling generate new shapes by deforming existing ones Motivation Character posing for

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

计算机图形学. Computer Graphics 刘利刚.

计算机图形学. Computer Graphics 刘利刚. 计算机图形学 Computer Graphics 刘利刚 lgliu@ustc.edu.cn http://staff.ustc.edu.cn/~lgliu Computer Animation Skinning and Enveloping The slide are from Durand from MIT. Before getting started One more word about

More information

08 - Designing Approximating Curves

08 - Designing Approximating Curves 08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

More information

CMSC 425: Lecture 10 Skeletal Animation and Skinning

CMSC 425: Lecture 10 Skeletal Animation and Skinning CMSC 425: Lecture 10 Skeletal Animation and Skinning Reading: Chapt 11 of Gregory, Game Engine Architecture. Recap: Last time we introduced the principal elements of skeletal models and discussed forward

More information

Deformation II. Disney/Pixar

Deformation II. Disney/Pixar Deformation II Disney/Pixar 1 Space Deformation Deformation function on ambient space f : n n Shape S deformed by applying f to points of S S = f (S) f (x,y)=(2x,y) S S 2 Motivation Can be applied to any

More information

Efficient Collision Detection for Example-Based Deformable Bodies

Efficient Collision Detection for Example-Based Deformable Bodies Efficient Collision Detection for Example-Based Deformable Bodies ABSTRACT Ben Jones University of Utah benjones@cs.utah.edu Tamar Shinar University of California, Riverside We introduce a new collision

More information

Animation. CS 465 Lecture 22

Animation. CS 465 Lecture 22 Animation CS 465 Lecture 22 Animation Industry production process leading up to animation What animation is How animation works (very generally) Artistic process of animation Further topics in how it works

More information

CSE 554 Lecture 6: Fairing and Simplification

CSE 554 Lecture 6: Fairing and Simplification CSE 554 Lecture 6: Fairing and Simplification Fall 2012 CSE554 Fairing and simplification Slide 1 Review Iso-contours in grayscale images and volumes Piece-wise linear representations Polylines (2D) and

More information

Multi-level Partition of Unity Implicits

Multi-level Partition of Unity Implicits Multi-level Partition of Unity Implicits Diego Salume October 23 rd, 2013 Author: Ohtake, et.al. Overview Goal: Use multi-level partition of unity (MPU) implicit surface to construct surface models. 3

More information

Additional Key Words and Phrases: character animation, skinning, projective dynamics

Additional Key Words and Phrases: character animation, skinning, projective dynamics Projective Skinning MARTIN KOMARITZAN, Computer Graphics Group, Bielefeld University MARIO BOTSCH, Computer Graphics Group, Bielefeld University 12 Fig. 1. Projective skinning avoids the artifacts of Linear

More information

FEM Convergence Requirements

FEM Convergence Requirements 19 FEM Convergence Requirements IFEM Ch 19 Slide 1 Convergence Requirements for Finite Element Discretization Convergence: discrete (FEM) solution approaches the analytical (math model) solution in some

More information

Fast and Reliable Example-Based Mesh IK for Stylized Deformations

Fast and Reliable Example-Based Mesh IK for Stylized Deformations Fast and Reliable Example-Based Mesh IK for Stylized Deformations Kevin Wampler Adobe Systems Inc. Abstract Example-based shape deformation allows a mesh to be easily manipulated or animated with simple

More information

Robust Human Body Shape and Pose Tracking

Robust Human Body Shape and Pose Tracking Robust Human Body Shape and Pose Tracking Chun-Hao Huang 1 Edmond Boyer 2 Slobodan Ilic 1 1 Technische Universität München 2 INRIA Grenoble Rhône-Alpes Marker-based motion capture (mocap.) Adventages:

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient Optimization Last time Root finding: definition, motivation Algorithms: Bisection, false position, secant, Newton-Raphson Convergence & tradeoffs Example applications of Newton s method Root finding in

More information

THIS paper presents the recent advances in mesh deformation

THIS paper presents the recent advances in mesh deformation 1 On Linear Variational Surface Deformation Methods Mario Botsch Computer Graphics Laboratory ETH Zurich Olga Sorkine Computer Graphics Group TU Berlin Abstract This survey reviews the recent advances

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Deformation Sensitive Decimation

Deformation Sensitive Decimation Deformation Sensitive Decimation Alex Mohr Michael Gleicher University of Wisconsin, Madison Abstract In computer graphics, many automatic methods for simplifying polygonal meshes have been developed.

More information

Deformation Transfer for Triangle Meshes

Deformation Transfer for Triangle Meshes Deformation Transfer for Triangle Meshes a Paper (SIGGRAPH 2004) by Robert W. Sumner & Jovan Popovic presented by Roni Oeschger Deformation Transfer Source deformed Target deformed 1 Outline of my presentation

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Local Barycentric Coordinates

Local Barycentric Coordinates Local Barycentric Coordinates Juyong Zhang Bailin Deng Zishun Liu Giuseppe Patanè Sofien Bouaziz Kai Hormann Ligang Liu USTC EPFL USTC CNR-IMATI EPFL USI USTC Introduction Given a point p inside a polygon

More information

Surface Registration. Gianpaolo Palma

Surface Registration. Gianpaolo Palma Surface Registration Gianpaolo Palma The problem 3D scanning generates multiple range images Each contain 3D points for different parts of the model in the local coordinates of the scanner Find a rigid

More information

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling CIVL 7/8117 1/43 Chapter 7 Learning Objectives To present concepts that should be considered when modeling for a situation by the finite element method, such as aspect ratio, symmetry, natural subdivisions,

More information

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

animation computer graphics animation 2009 fabio pellacini 1

animation computer graphics animation 2009 fabio pellacini 1 animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

Computing and Processing Correspondences with Functional Maps

Computing and Processing Correspondences with Functional Maps Computing and Processing Correspondences with Functional Maps SIGGRAPH 2017 course Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal,

More information

Shape articulation transforms a lifeless geometric

Shape articulation transforms a lifeless geometric Editor: Jim Foley Breathing Life into Shapes Alec Jacobson Columbia University Shape articulation transforms a lifeless geometric object into a vibrant character. Given a sufficient shape deformation interface,

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation

Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation J.P. Lewis Matt Cordner Nickson Fong Presented by 1 Talk Outline Character Animation Overview Problem Statement

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

ixcube 4-10 Brief introduction for membrane and cable systems.

ixcube 4-10 Brief introduction for membrane and cable systems. ixcube 4-10 Brief introduction for membrane and cable systems. ixcube is the evolution of 20 years of R&D in the field of membrane structures so it takes a while to understand the basic features. You must

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 1 Don t you just invert

More information

Mesh Puppetry: Cascading Optimization of Mesh Deformation with Inverse Kinematics

Mesh Puppetry: Cascading Optimization of Mesh Deformation with Inverse Kinematics Mesh Puppetry: Cascading Optimization of Mesh Deformation with Inverse Kinematics Xiaohan Shi Kun Zhou Yiying Tong Mathieu Desbrun Hujun Bao Baining Guo State Key Lab of CAD&CG, Zhejiang University Microsoft

More information

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (2) May 26, 2016 Kenshi Takayama Physically-based deformations 2 Simple example: single mass & spring in 1D Mass m, position x, spring coefficient k, rest length

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

Solid and shell elements

Solid and shell elements Solid and shell elements Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Overview 2D and 3D solid elements Types of elements Effects of element distortions Incompatible modes elements u/p elements for incompressible

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

Elasticity-Inspired Deformers for Character Articulation

Elasticity-Inspired Deformers for Character Articulation ACM SIGGRAPH Asia 202, Singapore, November 29 December, 202 Elasticity-Inspired Deformers for Character Articulation Ladislav Kavan ETH Zurich (c) (b) (a) Olga Sorkine (d) (e) method BBW method Figure

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

Handle-Aware Isolines for Scalable Shape Editing

Handle-Aware Isolines for Scalable Shape Editing Handle-Aware Isolines for Scalable Shape Editing Oscar Kin-Chung Au Hongbo Fu Chiew-Lan Tai Hong Kong University of Science and Technology Daniel Cohen-Or Tel Aviv University Figure 1: Our method uses

More information

5.2 Surface Registration

5.2 Surface Registration Spring 2018 CSCI 621: Digital Geometry Processing 5.2 Surface Registration Hao Li http://cs621.hao-li.com 1 Acknowledgement Images and Slides are courtesy of Prof. Szymon Rusinkiewicz, Princeton University

More information

Question 2: Linear algebra and transformations matrices rotation vectors linear transformation T=U*D*VT

Question 2: Linear algebra and transformations matrices rotation vectors linear transformation T=U*D*VT You must answer all questions. For full credit, an answer must be both correct and well-presented (clear and concise). If you feel a question is ambiguous, state any assumptions that you need to make.

More information

As-Rigid-As-Possible Shape Manipulation

As-Rigid-As-Possible Shape Manipulation As-Rigid-As-Possible Shape Manipulation T. Igarashi 1, T. Mascovich 2 J. F. Hughes 3 1 The University of Tokyo 2 Brown University 3 PRESTO, JST SIGGRAPH 2005 Presented by: Prabin Bariya Interactive shape

More information

Calculation of initial pretension for a cable-stayed bridge using Cable Force Tuning function in midas Civil

Calculation of initial pretension for a cable-stayed bridge using Cable Force Tuning function in midas Civil Calculation of initial pretension for a cable-stayed bridge using Cable Force Tuning function in midas Civil Revision Date : 2013.05.13 Program Version : Civil2013 v2.1 00. Contents 01. Overview 3 02.

More information

CageIK: Dual-Laplacian Cage-Based Inverse Kinematics

CageIK: Dual-Laplacian Cage-Based Inverse Kinematics CageIK: Dual-Laplacian Cage-Based Inverse Kinematics Yann Savoye and Jean-Sébastien Franco LaBRI-INRIA Sud-Ouest, University of Bordeaux {yann.savoye,jean-sebastien.franco}@inria.fr Abstract. Cage-based

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

Fracture & Tetrahedral Models

Fracture & Tetrahedral Models Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. What are the horizontal and face velocities after 1, 2, and many iterations of divergence adjustment for an incompressible fluid? Fracture

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

Shape Modeling with Point-Sampled Geometry

Shape Modeling with Point-Sampled Geometry Shape Modeling with Point-Sampled Geometry Mark Pauly Richard Keiser Leif Kobbelt Markus Gross ETH Zürich ETH Zürich RWTH Aachen ETH Zürich Motivation Surface representations Explicit surfaces (B-reps)

More information

Surgery Simulation and Planning

Surgery Simulation and Planning Surgery Simulation and Planning S. H. Martin Roth Dr. Rolf M. Koch Daniel Bielser Prof. Dr. Markus Gross Facial surgery project in collaboration with Prof. Dr. Dr. H. Sailer, University Hospital Zurich,

More information

Alec Jacobson Research Statement

Alec Jacobson Research Statement Alec Jacobson Research Statement My work in geometry processing makes sense of existing geometric data and provides interfaces to put that data to further use. Barriers stand between geometric data and

More information

Graphical Models. Robust mesh editing using Laplacian coordinates. Shaoting Zhang, Junzhou Huang, Dimitris N. Metaxas. abstract

Graphical Models. Robust mesh editing using Laplacian coordinates. Shaoting Zhang, Junzhou Huang, Dimitris N. Metaxas. abstract Graphical Models 73 (2010) 10 19 Contents lists available at ScienceDirect Graphical Models journal homepage: www.elsevier.com/locate/gmod Robust mesh editing using Laplacian coordinates Shaoting Zhang,

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data

An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data Dr. Marco Evangelos Biancolini Tor Vergata University, Rome, Italy Dr.

More information