Bi-Directional Polarised Light Transport

Size: px
Start display at page:

Download "Bi-Directional Polarised Light Transport"

Transcription

1 Bi-Directional Polarised Light Transport M. Mojzík T. Skřivan A. Wilkie J. Křivánek Charles University in Prague 1/37

2 Motivation 2/37 M. Mojzı k, T. Skr ivan, A. Wilkie & J. Kr iva nek Bi-Directional Polarised Light Transport

3 Motivation 3/37 M. Mojzı k, T. Skr ivan, A. Wilkie & J. Kr iva nek Bi-Directional Polarised Light Transport

4 State of Polarisation Support Goal: Support polarised light in bi-directional light transport algorithms 4/37

5 State of Polarisation Support Goal: Support polarised light in bi-directional light transport algorithms Previous implementations: only for uni-directional path-tracer details already gathered [Wilkie et al 2012] 4/37

6 State of Polarisation Support Goal: Support polarised light in bi-directional light transport algorithms Previous implementations: only for uni-directional path-tracer details already gathered [Wilkie et al 2012] Can we use it for bi-directional light transport? 4/37

7 Contribution 5/37

8 Contribution Radiometry of polarised light transport 5/37

9 Contribution Radiometry of polarised light transport Reference implementation of bi-directional algorithms 5/37

10 Proposed theory 6/37

11 Why New Theory? Goal: Generalize Rendering eq.: L o = L e + f(ω i, ω o )L i (ω i ) dωi S 2 Measurement eq.: I = W e (ω)l i (ω) dω S 2 7/37

12 Why New Theory? Goal: Generalize Rendering eq.: L o = L e + f(ω i, ω o )L i (ω i ) dωi S 2 Measurement eq.: I = W e (ω)l i (ω) dω S 2 What is radiance L, BSDF f and importance W in the context of polarised light? Radiance: classical: L : M S }{{} 2 R ray space polarised: L : M S 2? 7/37

13 Brief Overview of Polarised Light 8/37

14 Stokes Vector We describe polarised light with Stokes vector S S = (S 0, S 1, S 2, S 3 ) ( ) ( ) ( ) The Stokes vector depend on the choice of the coordinate system 9/37

15 Mueller Matrix Muller matrix M describes what happens to the light when it bounces of the surface S 0 M 11 M 12 M 13 M 14 S 0 S 1 S 2 = M 21 M 22 M 23 M 24 S 1 M 31 M 32 M 33 M 34 S 2 S 3 M 41 M 42 M 43 M 44 S 3 Its components depend on the coordinate frame of the incoming and outgoing light 10/37

16 Proposed Theory 11/37

17 Radiance Radiance in polarised light transport L : M S 2? 12/37

18 Radiance First guess: L : M S 2 R 4 12/37

19 Radiance First guess: Bad choice: L : M S 2 R 4 missing coordinate frame 12/37

20 Radiance First guess: Bad choice: Solution: L : M S 2 R 4 missing coordinate frame L : (x, ω) [S, F ] 12/37

21 Radiance First guess: Bad choice: Solution: L : M S 2 R 4 missing coordinate frame L : (x, ω) [S, F ] Stokes space S ω : space of all pairs, Stokes vector S and its coordinate frame F L : M S 2 S ω 12/37

22 BSDF BSDF in polarised light transport f : M S 2 S 2? 13/37

23 BSDF First guess: f : M S 2 S 2 R /37

24 BSDF First guess: Bad choice: f : M S 2 S 2 R 4 4 missing coordinate frames 13/37

25 BSDF First guess: Bad choice: Solution: f : M S 2 S 2 R 4 4 missing coordinate frames f : (x, ω i, ω o ) [M, F i, F o ] 13/37

26 BSDF First guess: Bad choice: Solution: f : M S 2 S 2 R 4 4 missing coordinate frames f : (x, ω i, ω o ) [M, F i, F o ] Mueller space M ωo ω i : space of all triplets, Mueller matrix M, incoming frame F i and outgoing frame F o f : M S 2 S 2 M ωo ω i 13/37

27 Operations on S ω and M ω o ω i Define integration and multiplication L o = L e + f(ω i, ω o ) L i (ω i ) dωi S 2 14/37

28 Operations on S ω and M ω o ω i Define integration and multiplication L o = L e + f(ω i, ω o ) L i (ω i ) dωi S 2 Multiplication [M, F i, F o ] [S, F ] = [MF i F }{{ 1 S, F } o ] transformation from F to F i 14/37

29 Operations on S ω and M ω o ω i Define integration and multiplication L o = L e + f(ω i, ω o ) L i (ω i ) dωi S 2 Multiplication Integration addition [M, F i, F o ] [S, F ] = [MF i F }{{ 1 S, F } o ] transformation from F to F i [S, F ]+[T, G] = [S + F } G {{ 1 } T, F ] transformation from G to F 14/37

30 Importance Measurement equation I = W e (ω)l i (ω) dω S 2 Importance camera/eye sensitivity 15/37

31 Measurement S = F } G {{ 1 } S I = 1 ( ) S 1 2 S 2 frame transformation S 3 S 0 16/37

32 Measurement S = F } G {{ 1 } S frame transformation I S I 1 I 2 = S S 2 I S 3 17/37

33 Importance Importance for polarised light transport W T : (x, ω) [W T, F ] 18/37

34 Importance Importance for polarised light transport W T : (x, ω) [W T, F ] Importance space I ωi : space of all pairs, measurement matrix W T and its coordinate frame F W T : M S 2 I ω 18/37

35 Importance Importance for polarised light transport W T : (x, ω) [W T, F ] Importance space I ωi : space of all pairs, measurement matrix W T and its coordinate frame F W T : M S 2 I ω Define multiplication I = We T (ω) L i (ω) dω S 2 18/37

36 Summary of Theory We have defined radiance, BSDF and importance in the context of the polarising light transport Rendering and measurement equations are now well defined Path integral formulation is now well defined too 19/37

37 Reference implementation 20/37

38 Target platform Extending SmallUPBP Non-polarising algorithms already implemented. Better presents the necessary changes. 21/37

39 Polarisation-Capable Uni-Directional Path Tracing 22/37

40 Polarisation-Capable Uni-Directional Path Tracing S ω Light, M ω i ω o Attenuation Light sources and BSDF return them Potential reordering of expressions 22/37

41 Polarisation-Capable Uni-Directional Path Tracing S ω Light, M ω i ω o Attenuation Light sources and BSDF return them Potential reordering of expressions Matches standad polarisation support Data type separation Clear changes to light transport code itself 22/37

42 Polarisation-Capable Bi-Directional Path Tracing Importance Matrix representation of importance Measuring Stokes components identity matrix Coordinate frame based on camera orientation 23/37

43 Polarisation-Capable Bi-Directional Path Tracing Path direction Non-polarising BDPT can disregard path direction with BRDF f(ω i ω o ) = f(ω o ω i ) What about polarising BDPT: f(ω i ω o )? = f(ω o ω i ) 24/37

44 Polarisation-Capable Bi-Directional Path Tracing Path direction Non-polarising BDPT can disregard path direction with BRDF f(ω i ω o ) = f(ω o ω i ) What about polarising BDPT: f(ω i ω o ) f(ω o ω i ) Matrices match, but frames do not. incoming frame must match incoming direction outgoing frame must match outgoing direction Information of path direction propagated 24/37

45 Polarisation-Capable Photon Mapping Tracing works the same Type Light stored in photon map Photons transformed through BSDF into view direction Averaging leads to eligible operations 25/37

46 Polarisation-Capable Volumetric Bi-Directional Path Tracer Equivalent changes to BDPT and VPT Transmittance accumulation + bi-directional = problem Accumulation dependant on path direction 26/37

47 Results and optimizations 27/37

48 Test Scenes diffuse S 0 degree of polarisation overlaid in red 28/37

49 Test Scenes glossy S 0 degree of polarisation overlaid in red 29/37

50 Test Scenes glass S0 M. Mojzı k, T. Skr ivan, A. Wilkie & J. Kr iva nek degree of polarisation overlaid in red Bi-Directional Polarised Light Transport 30/37

51 Test Scenes Volumetric glass S0 M. Mojzı k, T. Skr ivan, A. Wilkie & J. Kr iva nek degree of polarisation overlaid in red Bi-Directional Polarised Light Transport 31/37

52 Bathroom scene S 0 degree of polarisation overlaid in red 32/37

53 Efficiency nonpol naive iterations diffuse glossy glass vol. glass 33/37

54 Efficiency Polarisation support brings overhead Comparing with non-polarising version Optimizations on data types unpolarised Light depolarising Attenuation plain Attenution 34/37

55 Efficiency nonpol naive opti iterations diffuse glossy glass vol. glass 35/37

56 Conclusion Reformulated the radiometry for polarised light Developed reference implmenetation of BDPT, VBDPT and VCM Examined the efficiency of polarisation support and suggested optimizations 36/37

57 Thank you. Acknowledgement Work supported by grants GAR S and SVV /37

SOME THEORY BEHIND REAL-TIME RENDERING

SOME THEORY BEHIND REAL-TIME RENDERING SOME THEORY BEHIND REAL-TIME RENDERING Jaroslav Křivánek Charles University in Prague Off-line realistic rendering (not yet in rea-time) Ray tracing 3 4 Image created by Bertrand Benoit Rendered in Corona

More information

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008) Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in

More information

Choosing the Right Algorithm & Guiding

Choosing the Right Algorithm & Guiding Choosing the Right Algorithm & Guiding PHILIPP SLUSALLEK & PASCAL GRITTMANN Topics for Today What does an implementation of a high-performance renderer look like? Review of algorithms which to choose for

More information

Illumination Algorithms

Illumination Algorithms Global Illumination Illumination Algorithms Digital Lighting and Rendering CGT 340 The goal of global illumination is to model all possible paths of light to the camera. Global Illumination Global illumination

More information

Assignment 3: Path tracing

Assignment 3: Path tracing Assignment 3: Path tracing EDAN30 April 2, 2011 In this assignment you will be asked to extend your ray tracer to support path tracing. In order to pass the assignment you need to complete all tasks. Make

More information

Global Illumination. COMP 575/770 Spring 2013

Global Illumination. COMP 575/770 Spring 2013 Global Illumination COMP 575/770 Spring 2013 Final Exam and Projects COMP 575 Final Exam Friday, May 3 4:00 pm COMP 770 (and 575 extra credit) Projects Final report due by end of day, May 1 Presentations:

More information

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes Miloš Hašan Jaroslav Křivánek * Bruce Walter Kavita Bala Cornell University * Charles University in Prague Global Illumination Effects

More information

Participating Media. Part I: participating media in general. Oskar Elek MFF UK Prague

Participating Media. Part I: participating media in general. Oskar Elek MFF UK Prague Participating Media Part I: participating media in general Oskar Elek MFF UK Prague Outline Motivation Introduction Properties of participating media Rendering equation Storage strategies Non-interactive

More information

A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University

A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University A Brief Overview of Global Illumination Thomas Larsson, Afshin Ameri Mälardalen University 1 What is Global illumination? Global illumination is a general name for realistic rendering algorithms Global

More information

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping Advanced Graphics Path Tracing and Photon Mapping Part 2 Path Tracing and Photon Mapping Importance Sampling Combine importance sampling techniques Reflectance function (diffuse + specular) Light source

More information

Lecture 7 - Path Tracing

Lecture 7 - Path Tracing INFOMAGR Advanced Graphics Jacco Bikker - November 2016 - February 2017 Lecture 7 - I x, x = g(x, x ) ε x, x + S ρ x, x, x I x, x dx Welcome! Today s Agenda: Introduction Advanced Graphics 3 Introduction

More information

Efficient Caustic Rendering with Lightweight Photon Mapping

Efficient Caustic Rendering with Lightweight Photon Mapping Efficient Caustic Rendering with Lightweight Photon Mapping Pascal Grittmann 1,3 Arsène Pérard-Gayot 1 Philipp Slusallek 1,2 Jaroslav Kr ivánek 3,4 1 Saarland University 2 DFKI Saarbrücken 3 Charles University,

More information

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons Reflectance 1 Lights, Surfaces, and Cameras Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons 2 Light at Surfaces Many effects when light strikes a surface -- could be:

More information

The Rendering Equation & Monte Carlo Ray Tracing

The Rendering Equation & Monte Carlo Ray Tracing Last Time? Local Illumination & Monte Carlo Ray Tracing BRDF Ideal Diffuse Reflectance Ideal Specular Reflectance The Phong Model Radiosity Equation/Matrix Calculating the Form Factors Aj Ai Reading for

More information

Reflection models and radiometry Advanced Graphics

Reflection models and radiometry Advanced Graphics Reflection models and radiometry Advanced Graphics Rafał Mantiuk Computer Laboratory, University of Cambridge Applications To render realistic looking materials Applications also in computer vision, optical

More information

To Do. Advanced Computer Graphics. Course Outline. Course Outline. Illumination Models. Diffuse Interreflection

To Do. Advanced Computer Graphics. Course Outline. Course Outline. Illumination Models. Diffuse Interreflection Advanced Computer Graphics CSE 163 [Spring 017], Lecture 11 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment due May 19 Should already be well on way. Contact us for difficulties etc. This

More information

COMBINING VOLUMETRIC ESTIMATORS

COMBINING VOLUMETRIC ESTIMATORS COMBINING VOLUMETRIC ESTIMATORS Jaroslav Křivánek Charles University Render Legion Chaos Group UNIFYING POINTS, BEAMS, AND PATHS IN VOLUMETRIC LIGHT TRANSPORT SIMULATION Jaroslav Křivánek Charles University

More information

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing by Stephen Kazmierczak Introduction Unbiased light transport algorithms can sometimes take a large number of rays to

More information

BRDF Computer Graphics (Spring 2008)

BRDF Computer Graphics (Spring 2008) BRDF Computer Graphics (Spring 2008) COMS 4160, Lecture 20: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Reflected Radiance proportional to Irradiance Constant proportionality: BRDF [CW

More information

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker Rendering Algorithms: Real-time indirect illumination Spring 2010 Matthias Zwicker Today Real-time indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant

More information

Today. Participating media. Participating media. Rendering Algorithms: Participating Media and. Subsurface scattering

Today. Participating media. Participating media. Rendering Algorithms: Participating Media and. Subsurface scattering Today Rendering Algorithms: Participating Media and Subsurface Scattering Introduction Rendering participating media Rendering subsurface scattering Spring 2009 Matthias Zwicker Participating media Participating

More information

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184 Overview Lighting and shading key in computer graphics HW 2 etc. ad-hoc shading models,

More information

I present Adjoint-Driven Russian Roulette and Splitting for efficient light transport simulation which is a part of my PhD.

I present Adjoint-Driven Russian Roulette and Splitting for efficient light transport simulation which is a part of my PhD. I present Adjoint-Driven Russian Roulette and Splitting for efficient light transport simulation which is a part of my PhD. work at Charles University in Prague. 1 The simulation becomes expensive especially

More information

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map Part I The Basic Algorithm 1 Principles of A two-pass global illumination method Pass I Computing the photon map A rough representation of the lighting in the scene Pass II rendering Regular (distributed)

More information

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays

More information

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination Global Illumination Why Global Illumination Last lecture Basic rendering concepts Primitive-based rendering Today: Global illumination Ray Tracing, and Radiosity (Light-based rendering) What s Global Illumination

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Angel Ch. 11] 1 Global Illumination

More information

Motivation: Monte Carlo Rendering. Sampling and Reconstruction of Visual Appearance. Caustics. Illumination Models. Overview of lecture.

Motivation: Monte Carlo Rendering. Sampling and Reconstruction of Visual Appearance. Caustics. Illumination Models. Overview of lecture. Sampling and Reconstruction of Visual Appearance CSE 74 [Winter 8], Lecture 3 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation: Monte Carlo Rendering Key application area for sampling/reconstruction

More information

The Rendering Equation and Path Tracing

The Rendering Equation and Path Tracing The Rendering Equation and Path Tracing Louis Feng April 22, 2004 April 21, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics The rendering equation Original form Meaning of the terms Integration Path

More information

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz Outline Jan Kautz Basic terms in radiometry Radiance Reflectance The operator form of the radiance equation Meaning of the operator form Approximations to the radiance equation 2005 Mel Slater, 2006 Céline

More information

Queen s University CISC 454 Final Exam. April 19, :00pm Duration: 3 hours. One two sided aid sheet allowed. Initial of Family Name:

Queen s University CISC 454 Final Exam. April 19, :00pm Duration: 3 hours. One two sided aid sheet allowed. Initial of Family Name: Page 1 of 11 Queen s University CISC 454 Final Exam April 19, 2005 2:00pm Duration: 3 hours One two sided aid sheet allowed. Initial of Family Name: Student Number: (Write this at the top of every page.)

More information

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013)

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013) Advanced Computer Graphics (Spring 2013 CS 283, Lecture 12: Recent Advances in Monte Carlo Offline Rendering Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Some slides/ideas courtesy Pat Hanrahan,

More information

Korrigeringar: An introduction to Global Illumination. Global Illumination. Examples of light transport notation light

Korrigeringar: An introduction to Global Illumination. Global Illumination. Examples of light transport notation light An introduction to Global Illumination Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Korrigeringar: Intel P4 (200): ~42M transistorer Intel P4 EE (2004): 78M

More information

In this part, I will mostly talk about the vertex merging technique (a.k.a. kernel estimation).

In this part, I will mostly talk about the vertex merging technique (a.k.a. kernel estimation). 1 As it was thoroughly discussed by the previous course speakers, photon mapping methods are good at handling such difficult light transport methods, as caustics and reflected caustics. However, on the

More information

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] 1 Global Illumination

More information

Photon Mapping. Kadi Bouatouch IRISA

Photon Mapping. Kadi Bouatouch IRISA Kadi Bouatouch IRISA Email: kadi@irisa.fr 1 Photon emission and transport 2 Photon caching 3 Spatial data structure for fast access 4 Radiance estimation 5 Kd-tree Balanced Binary Tree When a splitting

More information

Shading and Illumination

Shading and Illumination Shading and Illumination OpenGL Shading Without Shading With Shading Physics Bidirectional Reflectance Distribution Function (BRDF) f r (ω i,ω ) = dl(ω ) L(ω i )cosθ i dω i = dl(ω ) L(ω i )( ω i n)dω

More information

Interactive Indirect Illumination Using Voxel Cone Tracing

Interactive Indirect Illumination Using Voxel Cone Tracing Interactive Indirect Illumination Using Voxel Cone Tracing Andreas Heider Technische Universität München heidera@in.tum.de Abstract Plausible illumination is crucial for rendering realistic images, but

More information

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination Raytracing & Epsilon intersects light @ t = 25.2 intersects sphere1 @ t = -0.01 & Monte Carlo Ray Tracing intersects sphere1 @ t = 10.6 Solution: advance the ray start position epsilon distance along the

More information

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ]

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ] CSCI 420 Computer Graphics Lecture 15 Ray Tracing Ray Casting Shadow Rays Reflection and Transmission [Ch. 13.2-13.3] Jernej Barbic University of Southern California 1 Local Illumination Object illuminations

More information

- Volume Rendering -

- Volume Rendering - Computer Graphics - Volume Rendering - Pascal Grittmann, Jaroslav Křivánek Using pictures from: Monte Carlo Methods for Physically Based Volume Rendering; SIGGRAPH 2018 Course; Jan Novák, Iliyan Georgiev,

More information

GLOBAL ILLUMINATION. Christopher Peters INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION

GLOBAL ILLUMINATION. Christopher Peters INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION DH2323 DGI17 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION GLOBAL ILLUMINATION Christopher Peters CST, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Ground Truth. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Ground Truth. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2015 - Lecture 10: Ground Truth Welcome! Today s Agenda: Limitations of Whitted-style Ray Tracing Monte Carlo Path Tracing INFOGR Lecture 10 Ground Truth

More information

rendering equation camera all

rendering equation camera all 1 Even the most recent existing methods are either not good at or not capable of handling complex illumination, such as reflected caustics on the floor. In this work we will show how to combine the strengths

More information

- Volume Rendering -

- Volume Rendering - Computer Graphics - Volume Rendering - Pascal Grittmann Using pictures from: Monte Carlo Methods for Physically Based Volume Rendering; SIGGRAPH 2018 Course; Jan Novák, Iliyan Georgiev, Johannes Hanika,

More information

782 Schedule & Notes

782 Schedule & Notes 782 Schedule & Notes Tentative schedule - subject to change at a moment s notice. This is only a guide and not meant to be a strict schedule of how fast the material will be taught. The order of material

More information

Question 2: Linear algebra and transformations matrices rotation vectors linear transformation T=U*D*VT

Question 2: Linear algebra and transformations matrices rotation vectors linear transformation T=U*D*VT You must answer all questions. For full credit, an answer must be both correct and well-presented (clear and concise). If you feel a question is ambiguous, state any assumptions that you need to make.

More information

rendering equation computer graphics rendering equation 2009 fabio pellacini 1

rendering equation computer graphics rendering equation 2009 fabio pellacini 1 rendering equation computer graphics rendering equation 2009 fabio pellacini 1 physically-based rendering synthesis algorithms that compute images by simulation the physical behavior of light computer

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 480 Computer Graphics Lecture 18 Global Illumination BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] March 28, 2012 Jernej Barbic University of Southern California

More information

The Rendering Equation. Computer Graphics CMU /15-662

The Rendering Equation. Computer Graphics CMU /15-662 The Rendering Equation Computer Graphics CMU 15-462/15-662 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area perpendicular

More information

Biased Monte Carlo Ray Tracing:

Biased Monte Carlo Ray Tracing: Biased Monte Carlo Ray Tracing: Filtering, Irradiance Caching and Photon Mapping Dr. Henrik Wann Jensen Stanford University May 24, 2001 Unbiased and consistent Monte Carlo methods Unbiased estimator:

More information

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity Schedule Review Session: Tuesday November 18 th, 7:30 pm, Room 2-136 bring lots of questions! MIT 6.837 Monte-Carlo Ray Tracing Quiz 2: Thursday November 20 th, in class (one weeks from today) MIT EECS

More information

Adjoint-Driven Russian Roulette and Splitting in Light Transport Simulation

Adjoint-Driven Russian Roulette and Splitting in Light Transport Simulation Adjoint-Driven Russian Roulette and Splitting in Light Transport Simulation Jir ı Vorba Charles University in Prague Weta Digital, Wellington path tracing RMSE: 5.22x10-3 Jaroslav Kr iva nek Charles University

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2016 - Lecture 10: Shading Models Welcome! Today s Agenda: Introduction Light Transport Materials Sensors Shading INFOGR Lecture 10 Shading Models 3 Introduction

More information

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao GAMES Webinar: Rendering Tutorial 2 Monte Carlo Methods Shuang Zhao Assistant Professor Computer Science Department University of California, Irvine GAMES Webinar Shuang Zhao 1 Outline 1. Monte Carlo integration

More information

Rendering Part I (Basics & Ray tracing) Lecture 25 December 1, 2015

Rendering Part I (Basics & Ray tracing) Lecture 25 December 1, 2015 Rendering Part I (Basics & Ray tracing) Lecture 25 December 1, 2015 What is rendering? Generating an image from a 3D scene model Ingredients Representation of 3D geometry Specification for camera & lights

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 15 RAY TRACING 1 Announcements Programming Assignment 3 out today - overview @ end of the class Ray Tracing 2 Lecture Overview Review of last class Ray Tracing 3 Local

More information

Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps

Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps Efficient Simulation of ight Transport in Scenes ith Participating Media using Photon Maps Paper by Henrik Wann Jensen Per H. Christensen Presented by Abhinav Golas 1 Overvie What is participative media?

More information

Monte Carlo Path Tracing. The Rendering Equation

Monte Carlo Path Tracing. The Rendering Equation Monte Carlo Path Tracing Today Path tracing starting from the eye Path tracing starting from the lights Which direction is best? Bidirectional ray tracing Random walks and Markov chains Next Irradiance

More information

Lighting and Shading

Lighting and Shading Lighting and Shading Today: Local Illumination Solving the rendering equation is too expensive First do local illumination Then hack in reflections and shadows Local Shading: Notation light intensity in,

More information

COMPUTER GRAPHICS COURSE. LuxRender. Light Transport Foundations

COMPUTER GRAPHICS COURSE. LuxRender. Light Transport Foundations COMPUTER GRAPHICS COURSE LuxRender Light Transport Foundations Georgios Papaioannou - 2015 Light Transport Light is emitted at the light sources and scattered around a 3D environment in a practically infinite

More information

Voxel-Based Global-Illumination

Voxel-Based Global-Illumination Voxel-Based Global-Illumination By Thiedemann, Henrich, Grosch, and Müller Real-Time Near-Field Global Illumination on a Voxel Model (Morteza), M.Sc. Marc Treib Overview Illumination What is voxelization?

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Final Project: Real-Time Global Illumination with Radiance Regression Functions

Final Project: Real-Time Global Illumination with Radiance Regression Functions Volume xx (200y), Number z, pp. 1 5 Final Project: Real-Time Global Illumination with Radiance Regression Functions Fu-Jun Luan Abstract This is a report for machine learning final project, which combines

More information

Improved Radiance Gradient Computation

Improved Radiance Gradient Computation Improved Radiance Gradient Computation Jaroslav Křivánek Pascal Gautron Kadi Bouatouch Sumanta Pattanaik Czech Technical University New gradients Gradients by [Křivánek et al. 2005] Figure 1: Right: The

More information

Biased Monte Carlo Ray Tracing

Biased Monte Carlo Ray Tracing Biased Monte Carlo Ray Tracing Filtering, Irradiance Caching, and Photon Mapping Henrik Wann Jensen Stanford University May 23, 2002 Unbiased and Consistent Unbiased estimator: E{X} =... Consistent estimator:

More information

Global Illumination and the Rendering Equation

Global Illumination and the Rendering Equation CS294-13: Special Topics Lecture #3 Advanced Computer Graphics University of California, Berkeley Handout Date??? Global Illumination and the Rendering Equation Lecture #3: Wednesday, 9 September 2009

More information

Photon Mapping. Michael Doggett Department of Computer Science Lund university

Photon Mapping. Michael Doggett Department of Computer Science Lund university Photon Mapping Michael Doggett Department of Computer Science Lund university Outline Photon Mapping (ch. 14 in textbook) Progressive Stochastic 2011 Michael Doggett How to make light sampling faster?

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

Motivation: Monte Carlo Path Tracing. Sampling and Reconstruction of Visual Appearance. Monte Carlo Path Tracing. Monte Carlo Path Tracing

Motivation: Monte Carlo Path Tracing. Sampling and Reconstruction of Visual Appearance. Monte Carlo Path Tracing. Monte Carlo Path Tracing Sampling and Reconstruction of Visual Appearance CSE 274 [Winter 2018], Lecture 4 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation: Key application area for sampling/reconstruction Core method

More information

Implementation of Dispersion Rendering Capabilities in the Advanced Rendering Toolkit

Implementation of Dispersion Rendering Capabilities in the Advanced Rendering Toolkit Technische Universität Wien Departamento de Engenharia Informática, Universidade de Coimbra Implementation of Dispersion Rendering Capabilities in the Advanced Rendering Toolkit Nuno Daniel Raposo Subtil

More information

CS 428: Fall Introduction to. Radiosity. Andrew Nealen, Rutgers, /7/2009 1

CS 428: Fall Introduction to. Radiosity. Andrew Nealen, Rutgers, /7/2009 1 CS 428: Fall 2009 Introduction to Computer Graphics Radiosity 12/7/2009 1 Problems with diffuse lighting A Daylight Experiment, John Ferren 12/7/2009 2 Problems with diffuse lighting 12/7/2009 3 Direct

More information

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces)

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) Photon Mapping 1/36 Photon Maps The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) As opposed to the radiosity method that stores information on surface

More information

Outline of Lecture. Real-Time High Quality Rendering. Geometry or Vertex Pipeline. Basic Hardware Pipeline. Pixel or Fragment Pipeline

Outline of Lecture. Real-Time High Quality Rendering. Geometry or Vertex Pipeline. Basic Hardware Pipeline. Pixel or Fragment Pipeline Real-Time High Quality Rendering CSE 274 [Fall 2015], Lecture 2 Graphics Hardware Pipeline, Reflection and Rendering Equations, Taonomy of Methods http://www.cs.ucsd.edu/~ravir Outline of Lecture Taonomy

More information

TDA361/DIT220 Computer Graphics, January 15 th 2016

TDA361/DIT220 Computer Graphics, January 15 th 2016 TDA361/DIT220 Computer Graphics, January 15 th 2016 EXAM (Same exam for both CTH- and GU students) Friday January 15 th, 2016, 8.30 12.30 Examiner Ulf Assarsson, tel. 0701-738535 Permitted Technical Aids

More information

Distributed Ray Tracing

Distributed Ray Tracing CT5510: Computer Graphics Distributed Ray Tracing BOCHANG MOON Distributed Ray Tracing Motivation The classical ray tracing produces very clean images (look fake) Perfect focus Perfect reflections Sharp

More information

Local vs. Global Illumination & Radiosity

Local vs. Global Illumination & Radiosity Last Time? Local vs. Global Illumination & Radiosity Ray Casting & Ray-Object Intersection Recursive Ray Tracing Distributed Ray Tracing An early application of radiative heat transfer in stables. Reading

More information

The Rendering Equation Philip Dutré. Course 4. State of the Art in Monte Carlo Global Illumination Sunday, Full Day, 8:30 am - 5:30 pm

The Rendering Equation Philip Dutré. Course 4. State of the Art in Monte Carlo Global Illumination Sunday, Full Day, 8:30 am - 5:30 pm The Rendering Equation Philip Dutré Course 4. State of the Art in Monte Carlo Global Illumination Sunday, Full Day, 8:30 am - 5:30 pm 1 Overview Rendering Equation Path tracing Path Formulation Various

More information

Irradiance Gradients. Media & Occlusions

Irradiance Gradients. Media & Occlusions Irradiance Gradients in the Presence of Media & Occlusions Wojciech Jarosz in collaboration with Matthias Zwicker and Henrik Wann Jensen University of California, San Diego June 23, 2008 Wojciech Jarosz

More information

Retro-rendering with Vector-Valued Light: Producing Local Illumination from the Transport Equation

Retro-rendering with Vector-Valued Light: Producing Local Illumination from the Transport Equation Retro-rendering with Vector-Valued Light: Producing Local Illumination from the Transport Equation David C. Banks and Kevin M. Beason Florida State University, Tallahassee, USA ABSTRACT Many rendering

More information

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple 1 In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple times) until they are absorbed. On their way, they

More information

Monte-Carlo Ray Tracing. Antialiasing & integration. Global illumination. Why integration? Domains of integration. What else can we integrate?

Monte-Carlo Ray Tracing. Antialiasing & integration. Global illumination. Why integration? Domains of integration. What else can we integrate? Monte-Carlo Ray Tracing Antialiasing & integration So far, Antialiasing as signal processing Now, Antialiasing as integration Complementary yet not always the same in particular for jittered sampling Image

More information

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing Real-Time High Quality Rendering CSE 274 [Fall 2015], Lecture 5 Tour of Modern Offline Rendering To Do Project milestone (1-2 pages), final project proposal Due on Oct 27 Please get in touch with me if

More information

rendering equation computer graphics rendering equation 2009 fabio pellacini 1

rendering equation computer graphics rendering equation 2009 fabio pellacini 1 rendering equation computer graphics rendering equation 2009 fabio pellacini 1 phsicall-based rendering snthesis algorithms that compute images b simulation the phsical behavior of light computer graphics

More information

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662 Monte Carlo Ray Tracing Computer Graphics CMU 15-462/15-662 TODAY: Monte Carlo Ray Tracing How do we render a photorealistic image? Put together many of the ideas we ve studied: - color - materials - radiometry

More information

Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination

Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination Ian C. Doidge Mark W. Jones Benjamin Mora Swansea University, Wales Thursday 14 th June Computer Graphics International 2012

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

Interactive Light Transport with Virtual Point Lights

Interactive Light Transport with Virtual Point Lights Interactive Light Transport with Virtual Point Lights 1,2 1 ENTPE: Ecole Nationale des Travaux Publics de l Etat 2 LIRIS: Laboratoire d InfoRmatique en Image et Systèmes d information 1/59 Presentation

More information

Radiometry and reflectance

Radiometry and reflectance Radiometry and reflectance http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 16 Course announcements Homework 4 is still ongoing - Any questions?

More information

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces

More information

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray Photometric stereo Radiance Pixels measure radiance This pixel Measures radiance along this ray Where do the rays come from? Rays from the light source reflect off a surface and reach camera Reflection:

More information

Lightscape A Tool for Design, Analysis and Presentation. Architecture Integrated Building Systems

Lightscape A Tool for Design, Analysis and Presentation. Architecture Integrated Building Systems Lightscape A Tool for Design, Analysis and Presentation Architecture 4.411 Integrated Building Systems Lightscape A Tool for Design, Analysis and Presentation Architecture 4.411 Building Technology Laboratory

More information

Shading. Brian Curless CSE 557 Autumn 2017

Shading. Brian Curless CSE 557 Autumn 2017 Shading Brian Curless CSE 557 Autumn 2017 1 Reading Optional: Angel and Shreiner: chapter 5. Marschner and Shirley: chapter 10, chapter 17. Further reading: OpenGL red book, chapter 5. 2 Basic 3D graphics

More information

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye Ray Tracing What was the rendering equation? Motivate & list the terms. Relate the rendering equation to forward ray tracing. Why is forward ray tracing not good for image formation? What is the difference

More information

Shading. Reading. Pinhole camera. Basic 3D graphics. Brian Curless CSE 557 Fall Required: Shirley, Chapter 10

Shading. Reading. Pinhole camera. Basic 3D graphics. Brian Curless CSE 557 Fall Required: Shirley, Chapter 10 Reading Required: Shirley, Chapter 10 Shading Brian Curless CSE 557 Fall 2014 1 2 Basic 3D graphics With affine matrices, we can now transform virtual 3D objects in their local coordinate systems into

More information

Representativity for Robust and Adaptive Multiple Importance Sampling

Representativity for Robust and Adaptive Multiple Importance Sampling IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. Y, MONTH 9 1 Representativity for Robust and Adaptive Multiple Importance Sampling Anthony Pajot, Loïc Barthe, Mathias Paulin, and

More information

RAYTRACING. Christopher Peters INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION. HPCViz, KTH Royal Institute of Technology, Sweden

RAYTRACING. Christopher Peters INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION. HPCViz, KTH Royal Institute of Technology, Sweden DH2323 DGI15 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION RAYTRACING HPCViz, KTH Royal Institute of Technology, Sweden http://kth.academia.edu/christopheredwardpeters Based on DGI12 notes by Carl

More information

CS 5625 Lec 2: Shading Models

CS 5625 Lec 2: Shading Models CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?

More information

Interactive Rendering of Globally Illuminated Glossy Scenes

Interactive Rendering of Globally Illuminated Glossy Scenes Interactive Rendering of Globally Illuminated Glossy Scenes Wolfgang Stürzlinger, Rui Bastos Dept. of Computer Science, University of North Carolina at Chapel Hill {stuerzl bastos}@cs.unc.edu Abstract.

More information

These are the annotated slides of the real time part of the Many Lights Rendering

These are the annotated slides of the real time part of the Many Lights Rendering These are the annotated slides of the real time part of the Many Lights Rendering course at SIGGRAPH 12. This part covers techniques for making many lights methods suitable for (high quality) real time

More information