Genome Assembly: Preliminary Results

Size: px
Start display at page:

Download "Genome Assembly: Preliminary Results"

Transcription

1 Genome Assembly: Preliminary Results February 3, 2014 Devin Cline Krutika Gaonkar Smitha Janardan Karthikeyan Murugesan Emily Norris Ying Sha Eshaw Vidyaprakash Xingyu Yang

2 Topics 1. Pipeline Review 2. Input data : Samples from CDC 3. Preprocessing 4. Assemblers 5. Preliminary data assembler comparison 6. Visualization 7. The big question: Is it W or C? 8. Revisit pipeline 9. Lab Exercise

3

4 Input Data Number of Single-end reads: 25 Number of Pair-end reads: 25 Number of W serogroup: 23 Number of A serogroup: 1 Number of X serogroup: 1

5

6 Sample Selection Three W serogroups (M22189, M22748, M25543) One A serogroup (M22813) One X serogroup (M24695)

7 Preprocessing Trim start of reads Remove duplicate reads Trim end of reads* Error correction* *Under evaluation

8 Trimming Low Quality Ends of Reads Algorithm: Move window across read until average quality score is below threshold, then remove rest of read from then on. Tools: CG Pipeline run_assembly_trimclean.pl -i <in fastq> -o <out fastq> FastX fastq_quality_filter -Q33 -i <in fastq> -o <out fastq> PRINSEQ prinseq-lite -fastq <in fastq> -out_good <out file name base> -trim_qual_right 30 -trim_qual_type mean -trim_qual_window 10

9 Error Correction Plan has been changed for practical reasons. Tool Algorithm Comments Replacement Coral MSA Works well N/A HiTEC Suffix Tree Requires reads of same length Redeem K-Spectrum Awkward output format Reptile K-Spectrum Awkward output format RACER (newer tool from same developer) N/A BLESS (brand new!)

10 Error Correction Old Plan New Plan Tool Algorithm Tool Algorithm Coral MSA Coral MSA HiTEC Suffix Tree RACER Suffix Tree Redeem K-Spectrum BLESS K-Spectrum Reptile K-Spectrum

11 Error Correction: MSA Algorithm: Align reads and take consensus as an attempt to remove sequencing errors. Tool: Coral coral -fq <in fastq> -o <out fastq>

12 Error Correction: K-Spectrum Algorithm: Replace infrequent k-mers with similar frequent k-mers as an attempt to remove sequencing errors. Tool: BLESS bless -read <in fastq> -prefix <out base file name> -kmerlength 21 (Note that the k-mer length used here differs from the k-mer length used in de novo assembly) Heo Y, Wu XL, Chen D, Ma J, Hwu WM. BLESS: Bloom-filter-based Error Correction Solution for High-throughput Sequencing Reads. Bioinformatics. 2014

13 Error Correction: Suffix Tree Algorithm: Build special data structure (suffix tree) to represent all k-mers present in the reads, replace k-mers found infrequently with neighbors in the tree that are found more frequently. Tool: RACER RACER <in fastq> <out fastq> <estimated genome size> Ilie L, Molnar M. RACER: Rapid and accurate correction of errors in reads. Bioinformatics. 2013;29(19):

14 Assembler Overview Reference: BWA MOSAIK De novo: ABySS MaSuRCA SOAPdenovo2 SPAdes Velvet

15 BWA Reference aligner Commands: # Creating an index/database of reference bwa index -a is <Fasta of Reference> # Aligning reads to reference bwa aln <Fasta for reference> <Fastq of Sample> > <Fastq of sample>.sai # Creating sam files bwa samse <Fasta of Reference> <Fastq of sample>.sai > <Fastq of sample>.sam # Transforming sam file into bam file samtools view -S <Fastq of sample>.sam -b -o <Fastq of sample>.bam # Sorting bam file and creating index of the bam file samtools sort <Fastq of sample>.bam <Fastq of sample> samtools index <Fastq of sample>.bam # Create the consensus samtools mpileup -uf <Fasta of Reference> <Fastq of sample>.bam bcftools view -cg - vcfutils.pl vcf2fq > <Fastq of sample>.cons.fq

16 Mosaik-Aligner Reference aligner Commands: # Creating an index/database of reference MosaikBuild -fr <Reference.fasta> -oa <Reference.dat> # Convert the sample file to mosaik readable file MosaikBuild -q <Sample.fastq> -st <Technology of sequencing> -out <Sample.mkb> #Align the sample file to the reference MosaikAlign -in <Sample.mkb> -out <Sample.mka> -ia < Reference.dat> Mosaik aligner produces two file : Sample.mkb.bam and Sample.mkb.stat #Sorting bam file and creating index of the bam file samtools sort <Sample.mkb.bam> <Samplesort.bam> samtools index <Samplesort.bam> # Create the consensus samtools mpileup -uf <Reference.dat> <Samplesort.bam> bcftools view -cg - vcfutils.pl vcf2fq > <Sample.cons.fq>

17 ABySS de Bruijn assembler Commands: Paired-end reads: abyss-pe k=64 in= pair_file_1.fastq pair_file_2.fastq Single-end reads: abyss-pe k=64 se= single.fastq Both end reads: abyss-pe k=64 lib= pair pair= pair_file_1.fastq pair_file_2.fastq se= single.fastq Results: abyss-fac contig_file.fa

18 MaSuRCA de Bruijn and OLC Commands: Creation of config.txt Includes all parameters including location of paired-end files & kmer length masurca config.txt assemble.sh Output: genome.fasta - scaffold of contigs

19 SPAdes de Brujin Commands: spades.py --only-assembler --careful [options] -o output_dir Options: --pe<#>-1 <forward reads> --pe<#>-2 <reverse reads> --pe<#>-s <unpaired reads> -k int Output is contigs.fa and scaffolds.fa

20 SOAPdenovo2 SOAPdenovo2 usage SOAPdenovo-127mer -s configure_file -K kmer_size An Example of Config file. Insert Length is obtained by map pair end reads to Fam18 with bowtie2

21 Velvet de Bruijn assembler Commands: velveth Single-end reads:./velveth output_dir kmer -fastq -short <SE reads file> Paired-end reads:./velveth output_dir kmer -fastq -shortpaired -separate <PE reads file 1> <PE reads file 2> Single-end & Paired-end reads:./velveth output_dir kmer -fastq -short velvetg <SE reads file> -shortpaired -separate <PE reads file 1> <PE reads file 2>./velvetg output_directory -exp_cov auto -cov_cutoff auto Final output is contigs.fa which are the scaffold files

22 Preliminary Results

23 Assembly Score Determine quality of assembly Calculated using information generated from QUAST

24 Preprocessing

25 Compare Different Trimmers *Single end data only, using SOAP De Novo

26 Different Error Correction Tools *Single end data only, using SOAP De Novo

27 Reference Assembly

28 Mosaik- Reference Aligner single-end reads Sample N50 No. of contigs Total length Assembly score M M M22831(A) M24695(X) No reference No reference No reference No reference M

29 Bwa- Reference Aligner single-end reads Sample N50 No. of contigs Total length Assembly score M M M22831(A) M24695(X) No reference No reference No reference No reference M

30 De novo Assembly

31 Choose the best Kmer Size for each sample Run SOAPdenovo (This assembler runs much faster than others) For all the samples Use kmer size from 51~97

32 Choose the best Kmer Size for each sample The higher, the better. Best Kmer Size: M22189: kmer 85 M22748: kmer 65 M22813: kmer 51 M24695: kmer 59 M25543: kmer 81

33 Paired-End: Sample M22189 Assembler N50 No. of contigs Total length of contigs Assembly score ABySS MaSuRCA SOAPdenovo SPAdes Velvet

34 Comparison of Assemblers Single End

35 Comparison of Assemblers Pair End

36 Comparison of Assemblers Pair End + Single End

37 Comparison of Assemblers

38 Visualization Each of these block outlines surrounds a region of the genome sequence that aligned to part of another genome, and is presumably homologous and internally free from genomic rearrangement. Regions outside blocks lack detectable homology among the input genomes. Inside each block Mauve draws a similarity profile of the genome sequence.

39 Gene transfer between Serogroup C and Serogroup W : Capsule Switching A high mapping percent (>85%) to serogroup C was observed for most of the samples. We investigated the assemblies to find 100% identical Syn G gene(unique to Serogroup W135) but none for SynE gene (unique for serogroup C) in the de-novo assemblies We tried to justify that a certain amount of gene transfer has occurred by the phenomenon of Capsule Switching between the two serogroups.

40 Mapping rate of short reads against reference seq of A, C, W

41 Genetic orientation of capsule biosynthesis and transport loci in Neisseria meningitidis

42 Blast syng against SOAPdenovo2 assemblies of Serogroup W

43 Visualization:Contig Reordering

44

45 Lab Exercise Can be found on the CompGenomics Exercises Wiki page Genome Assembly Lab Exercise Due next week - February 10th

1. Download the data from ENA and QC it:

1. Download the data from ENA and QC it: GenePool-External : Genome Assembly tutorial for NGS workshop 20121016 This page last changed on Oct 11, 2012 by tcezard. This is a whole genome sequencing of a E. coli from the 2011 German outbreak You

More information

De novo sequencing and Assembly. Andreas Gisel International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria

De novo sequencing and Assembly. Andreas Gisel International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria De novo sequencing and Assembly Andreas Gisel International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria The Principle of Mapping reads good, ood_, d_mo, morn, orni, ning, ing_, g_be, beau,

More information

NGS Data Analysis. Roberto Preste

NGS Data Analysis. Roberto Preste NGS Data Analysis Roberto Preste 1 Useful info http://bit.ly/2r1y2dr Contacts: roberto.preste@gmail.com Slides: http://bit.ly/ngs-data 2 NGS data analysis Overview 3 NGS Data Analysis: the basic idea http://bit.ly/2r1y2dr

More information

Next Generation Sequencing Workshop De novo genome assembly

Next Generation Sequencing Workshop De novo genome assembly Next Generation Sequencing Workshop De novo genome assembly Tristan Lefébure TNL7@cornell.edu Stanhope Lab Population Medicine & Diagnostic Sciences Cornell University April 14th 2010 De novo assembly

More information

ABySS. Assembly By Short Sequences

ABySS. Assembly By Short Sequences ABySS Assembly By Short Sequences ABySS Developed at Canada s Michael Smith Genome Sciences Centre Developed in response to memory demands of conventional DBG assembly methods Parallelizability Illumina

More information

Genome Assembly. Preliminary Results and Lab 4 February Jillian Walker Diana Williams

Genome Assembly. Preliminary Results and Lab 4 February Jillian Walker Diana Williams Genome Assembly Preliminary Results and Lab 4 February 2015 Jillian Walker Diana Williams Ke Qi Xin Wu Bhanu Gandham Anuj Gupta Taylor Griswold Yuanbo Wang Sung Im Maxine Harlemon Nicholas Kovacs ObjecSves

More information

Omega: an Overlap-graph de novo Assembler for Metagenomics

Omega: an Overlap-graph de novo Assembler for Metagenomics Omega: an Overlap-graph de novo Assembler for Metagenomics B a h l e l H a i d e r, Ta e - H y u k A h n, B r i a n B u s h n e l l, J u a n j u a n C h a i, A l e x C o p e l a n d, C h o n g l e Pa n

More information

Manual of SOAPdenovo-Trans-v1.03. Yinlong Xie, Gengxiong Wu, Jingbo Tang,

Manual of SOAPdenovo-Trans-v1.03. Yinlong Xie, Gengxiong Wu, Jingbo Tang, Manual of SOAPdenovo-Trans-v1.03 Yinlong Xie, 2013-07-19 Gengxiong Wu, 2013-07-19 Jingbo Tang, 2013-07-19 ********** Introduction SOAPdenovo-Trans is a de novo transcriptome assembler basing on the SOAPdenovo

More information

Building and Documenting Bioinformatics Workflows with Python-based Snakemake

Building and Documenting Bioinformatics Workflows with Python-based Snakemake Building and Documenting Bioinformatics Workflows with Python-based Snakemake Johannes Köster, Sven Rahmann German Conference on Bioinformatics September 2012 1 / 13 Structure 1 Motivation 2 Snakemake

More information

1 Abstract. 2 Introduction. 3 Requirements

1 Abstract. 2 Introduction. 3 Requirements 1 Abstract 2 Introduction This SOP describes the HMP Whole- Metagenome Annotation Pipeline run at CBCB. This pipeline generates a 'Pretty Good Assembly' - a reasonable attempt at reconstructing pieces

More information

Welcome to MAPHiTS (Mapping Analysis Pipeline for High-Throughput Sequences) tutorial page.

Welcome to MAPHiTS (Mapping Analysis Pipeline for High-Throughput Sequences) tutorial page. Welcome to MAPHiTS (Mapping Analysis Pipeline for High-Throughput Sequences) tutorial page. In this page you will learn to use the tools of the MAPHiTS suite. A little advice before starting : rename your

More information

Bioinformatics in next generation sequencing projects

Bioinformatics in next generation sequencing projects Bioinformatics in next generation sequencing projects Rickard Sandberg Assistant Professor Department of Cell and Molecular Biology Karolinska Institutet March 2011 Once sequenced the problem becomes computational

More information

Taller práctico sobre uso, manejo y gestión de recursos genómicos de abril de 2013 Assembling long-read Transcriptomics

Taller práctico sobre uso, manejo y gestión de recursos genómicos de abril de 2013 Assembling long-read Transcriptomics Taller práctico sobre uso, manejo y gestión de recursos genómicos 22-24 de abril de 2013 Assembling long-read Transcriptomics Rocío Bautista Outline Introduction How assembly Tools assembling long-read

More information

Background & Strategy

Background & Strategy Genome Assembly: Background & Strategy January 27, 2014 Devin Cline Krutika Gaonkar Smitha Janardan Karthikeyan Murugesan Emily Norris Ying Sha Eshaw Vidyaprakash Xingyu Yang Neisseria meningitidis Human-specific,

More information

RNAseq analysis: SNP calling. BTI bioinformatics course, spring 2013

RNAseq analysis: SNP calling. BTI bioinformatics course, spring 2013 RNAseq analysis: SNP calling BTI bioinformatics course, spring 2013 RNAseq overview RNAseq overview Choose technology 454 Illumina SOLiD 3 rd generation (Ion Torrent, PacBio) Library types Single reads

More information

Introduction and tutorial for SOAPdenovo. Xiaodong Fang Department of Science and BGI May, 2012

Introduction and tutorial for SOAPdenovo. Xiaodong Fang Department of Science and BGI May, 2012 Introduction and tutorial for SOAPdenovo Xiaodong Fang fangxd@genomics.org.cn Department of Science and Technology @ BGI May, 2012 Why de novo assembly? Genome is the genetic basis for different phenotypes

More information

Variation among genomes

Variation among genomes Variation among genomes Comparing genomes The reference genome http://www.ncbi.nlm.nih.gov/nuccore/26556996 Arabidopsis thaliana, a model plant Col-0 variety is from Landsberg, Germany Ler is a mutant

More information

11/8/2017 Trinity De novo Transcriptome Assembly Workshop trinityrnaseq/rnaseq_trinity_tuxedo_workshop Wiki GitHub

11/8/2017 Trinity De novo Transcriptome Assembly Workshop trinityrnaseq/rnaseq_trinity_tuxedo_workshop Wiki GitHub trinityrnaseq / RNASeq_Trinity_Tuxedo_Workshop Trinity De novo Transcriptome Assembly Workshop Brian Haas edited this page on Oct 17, 2015 14 revisions De novo RNA-Seq Assembly and Analysis Using Trinity

More information

Quality assessment of NGS data

Quality assessment of NGS data Quality assessment of NGS data Ines de Santiago July 27, 2015 Contents 1 Introduction 1 2 Checking read quality with FASTQC 1 3 Preprocessing with FASTX-Toolkit 2 3.1 Preprocessing with FASTX-Toolkit:

More information

Tutorial for Windows and Macintosh. De Novo Sequence Assembly with Velvet

Tutorial for Windows and Macintosh. De Novo Sequence Assembly with Velvet Tutorial for Windows and Macintosh De Novo Sequence Assembly with Velvet 2017 Gene Codes Corporation Gene Codes Corporation 525 Avis Drive, Ann Arbor, MI 48108 USA 1.800.497.4939 (USA) +1.734.769.7249

More information

de novo assembly Simon Rasmussen 36626: Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis

de novo assembly Simon Rasmussen 36626: Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis de novo assembly Simon Rasmussen 36626: Next Generation Sequencing analysis DTU Bioinformatics 27626 - Next Generation Sequencing Analysis Generalized NGS analysis Data size Application Assembly: Compare

More information

Sequence Analysis Pipeline

Sequence Analysis Pipeline Sequence Analysis Pipeline Transcript fragments 1. PREPROCESSING 2. ASSEMBLY (today) Removal of contaminants, vector, adaptors, etc Put overlapping sequence together and calculate bigger sequences 3. Analysis/Annotation

More information

Maize genome sequence in FASTA format. Gene annotation file in gff format

Maize genome sequence in FASTA format. Gene annotation file in gff format Exercise 1. Using Tophat/Cufflinks to analyze RNAseq data. Step 1. One of CBSU BioHPC Lab workstations has been allocated for your workshop exercise. The allocations are listed on the workshop exercise

More information

High-throughout sequencing and using short-read aligners. Simon Anders

High-throughout sequencing and using short-read aligners. Simon Anders High-throughout sequencing and using short-read aligners Simon Anders High-throughput sequencing (HTS) Sequencing millions of short DNA fragments in parallel. a.k.a.: next-generation sequencing (NGS) massively-parallel

More information

SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching

SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching Ilya Y. Zhbannikov 1, Samuel S. Hunter 1,2, Matthew L. Settles 1,2, and James

More information

Under the Hood of Alignment Algorithms for NGS Researchers

Under the Hood of Alignment Algorithms for NGS Researchers Under the Hood of Alignment Algorithms for NGS Researchers April 16, 2014 Gabe Rudy VP of Product Development Golden Helix Questions during the presentation Use the Questions pane in your GoToWebinar window

More information

Sequencing. Short Read Alignment. Sequencing. Paired-End Sequencing 6/10/2010. Tobias Rausch 7 th June 2010 WGS. ChIP-Seq. Applied Biosystems.

Sequencing. Short Read Alignment. Sequencing. Paired-End Sequencing 6/10/2010. Tobias Rausch 7 th June 2010 WGS. ChIP-Seq. Applied Biosystems. Sequencing Short Alignment Tobias Rausch 7 th June 2010 WGS RNA-Seq Exon Capture ChIP-Seq Sequencing Paired-End Sequencing Target genome Fragments Roche GS FLX Titanium Illumina Applied Biosystems SOLiD

More information

DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies

DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies Chengxi Ye 1, Christopher M. Hill 1, Shigang Wu 2, Jue Ruan 2, Zhanshan (Sam) Ma

More information

Galaxy workshop at the Winter School Igor Makunin

Galaxy workshop at the Winter School Igor Makunin Galaxy workshop at the Winter School 2016 Igor Makunin i.makunin@uq.edu.au Winter school, UQ, July 6, 2016 Plan Overview of the Genomics Virtual Lab Introduce Galaxy, a web based platform for analysis

More information

Input files: Trim reads: Create bwa index: Align trimmed reads: Convert sam to bam: Sort bam: Remove duplicates: Index sorted, no-duplicates bam:

Input files: Trim reads: Create bwa index: Align trimmed reads: Convert sam to bam: Sort bam: Remove duplicates: Index sorted, no-duplicates bam: Input files: 11B-872-3.Ac4578.B73xEDMX-2233_palomero-1.fq 11B-872-3.Ac4578.B73xEDMX-2233_palomero-2.fq Trim reads: java -jar trimmomatic-0.32.jar PE -threads $PBS_NUM_PPN -phred33 \ [...]-1.fq [...]-2.fq

More information

Ensembl RNASeq Practical. Overview

Ensembl RNASeq Practical. Overview Ensembl RNASeq Practical The aim of this practical session is to use BWA to align 2 lanes of Zebrafish paired end Illumina RNASeq reads to chromosome 12 of the zebrafish ZV9 assembly. We have restricted

More information

Finishing Circular Assemblies. J Fass UCD Genome Center Bioinformatics Core Thursday April 16, 2015

Finishing Circular Assemblies. J Fass UCD Genome Center Bioinformatics Core Thursday April 16, 2015 Finishing Circular Assemblies J Fass UCD Genome Center Bioinformatics Core Thursday April 16, 2015 Assembly Strategies de Bruijn graph Velvet, ABySS earlier, basic assemblers IDBA, SPAdes later, multi-k

More information

Genomic Files. University of Massachusetts Medical School. October, 2014

Genomic Files. University of Massachusetts Medical School. October, 2014 .. Genomic Files University of Massachusetts Medical School October, 2014 2 / 39. A Typical Deep-Sequencing Workflow Samples Fastq Files Fastq Files Sam / Bam Files Various files Deep Sequencing Further

More information

Performance analysis of parallel de novo genome assembly in shared memory system

Performance analysis of parallel de novo genome assembly in shared memory system IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Performance analysis of parallel de novo genome assembly in shared memory system To cite this article: Syam Budi Iryanto et al 2018

More information

Mapping and Viewing Deep Sequencing Data bowtie2, samtools, igv

Mapping and Viewing Deep Sequencing Data bowtie2, samtools, igv Mapping and Viewing Deep Sequencing Data bowtie2, samtools, igv Frederick J Tan Bioinformatics Research Faculty Carnegie Institution of Washington, Department of Embryology tan@ciwemb.edu 27 August 2013

More information

Seminar III: R/Bioconductor

Seminar III: R/Bioconductor Leonardo Collado Torres lcollado@lcg.unam.mx Bachelor in Genomic Sciences www.lcg.unam.mx/~lcollado/ August - December, 2009 1 / 25 Class outline Working with HTS data: a simulated case study Intro R for

More information

Mar%n Norling. Uppsala, November 15th 2016

Mar%n Norling. Uppsala, November 15th 2016 Mar%n Norling Uppsala, November 15th 2016 Sequencing recap This lecture is focused on illumina, but the techniques are the same for all short-read sequencers. Short reads are (generally) high quality and

More information

RCAC. Job files Example: Running seqyclean (a module)

RCAC. Job files Example: Running seqyclean (a module) RCAC Job files Why? When you log into an RCAC server you are using a special server designed for multiple users. This is called a frontend node ( or sometimes a head node). There are (I think) three front

More information

Mapping NGS reads for genomics studies

Mapping NGS reads for genomics studies Mapping NGS reads for genomics studies Valencia, 28-30 Sep 2015 BIER Alejandro Alemán aaleman@cipf.es Genomics Data Analysis CIBERER Where are we? Fastq Sequence preprocessing Fastq Alignment BAM Visualization

More information

NGS Analysis Using Galaxy

NGS Analysis Using Galaxy NGS Analysis Using Galaxy Sequences and Alignment Format Galaxy overview and Interface Get;ng Data in Galaxy Analyzing Data in Galaxy Quality Control Mapping Data History and workflow Galaxy Exercises

More information

Variant calling using SAMtools

Variant calling using SAMtools Variant calling using SAMtools Calling variants - a trivial use of an Interactive Session We are going to conduct the variant calling exercises in an interactive idev session just so you can get a feel

More information

Genomic Files. University of Massachusetts Medical School. October, 2015

Genomic Files. University of Massachusetts Medical School. October, 2015 .. Genomic Files University of Massachusetts Medical School October, 2015 2 / 55. A Typical Deep-Sequencing Workflow Samples Fastq Files Fastq Files Sam / Bam Files Various files Deep Sequencing Further

More information

Assembly of the Ariolimax dolicophallus genome with Discovar de novo. Chris Eisenhart, Robert Calef, Natasha Dudek, Gepoliano Chaves

Assembly of the Ariolimax dolicophallus genome with Discovar de novo. Chris Eisenhart, Robert Calef, Natasha Dudek, Gepoliano Chaves Assembly of the Ariolimax dolicophallus genome with Discovar de novo Chris Eisenhart, Robert Calef, Natasha Dudek, Gepoliano Chaves Overview -Introduction -Pair correction and filling -Assembly theory

More information

Super-Fast Genome BWA-Bam-Sort on GLAD

Super-Fast Genome BWA-Bam-Sort on GLAD 1 Hututa Technologies Limited Super-Fast Genome BWA-Bam-Sort on GLAD Zhiqiang Ma, Wangjun Lv and Lin Gu May 2016 1 2 Executive Summary Aligning the sequenced reads in FASTQ files and converting the resulted

More information

Meraculous De Novo Assembly of the Ariolimax dolichophallus Genome. Charles Cole, Jake Houser, Kyle McGovern, and Jennie Richardson

Meraculous De Novo Assembly of the Ariolimax dolichophallus Genome. Charles Cole, Jake Houser, Kyle McGovern, and Jennie Richardson Meraculous De Novo Assembly of the Ariolimax dolichophallus Genome Charles Cole, Jake Houser, Kyle McGovern, and Jennie Richardson Meraculous Assembler Published by the US Department of Energy Joint Genome

More information

Performance of Trinity RNA-seq de novo assembly on an IBM POWER8 processor-based system

Performance of Trinity RNA-seq de novo assembly on an IBM POWER8 processor-based system Performance of Trinity RNA-seq de novo assembly on an IBM POWER8 processor-based system Ruzhu Chen and Mark Nellen IBM Systems and Technology Group ISV Enablement August 2014 Copyright IBM Corporation,

More information

Next generation sequencing: de novo assembly. Overview

Next generation sequencing: de novo assembly. Overview Next generation sequencing: de novo assembly Laurent Falquet, Vital-IT Helsinki, June 4, 2010 Overview What is de novo assembly? Methods Greedy OLC de Bruijn Tools Issues File formats Paired-end vs mate-pairs

More information

Illumina Next Generation Sequencing Data analysis

Illumina Next Generation Sequencing Data analysis Illumina Next Generation Sequencing Data analysis Chiara Dal Fiume Sr Field Application Scientist Italy 2010 Illumina, Inc. All rights reserved. Illumina, illuminadx, Solexa, Making Sense Out of Life,

More information

De novo genome assembly

De novo genome assembly BioNumerics Tutorial: De novo genome assembly 1 Aims This tutorial describes a de novo assembly of a Staphylococcus aureus genome, using single-end and pairedend reads generated by an Illumina R Genome

More information

SVMerge (v1.2) Pipeline Documentation. August 8, 2012

SVMerge (v1.2) Pipeline Documentation. August 8, 2012 SVMerge (v1.2) Pipeline Documentation August 8, 2012 Contents Introduction 2 Additional Software 3 1 Configuration file 4 2 Set up a new project 4 3 Run the SV callers 5 4 Filter and merge calls 11 5 De

More information

Calling variants in diploid or multiploid genomes

Calling variants in diploid or multiploid genomes Calling variants in diploid or multiploid genomes Diploid genomes The initial steps in calling variants for diploid or multi-ploid organisms with NGS data are the same as what we've already seen: 1. 2.

More information

Genome 373: Mapping Short Sequence Reads III. Doug Fowler

Genome 373: Mapping Short Sequence Reads III. Doug Fowler Genome 373: Mapping Short Sequence Reads III Doug Fowler What is Galaxy? Galaxy is a free, open source web platform for running all sorts of computational analyses including pretty much all of the sequencing-related

More information

Read mapping with BWA and BOWTIE

Read mapping with BWA and BOWTIE Read mapping with BWA and BOWTIE Before We Start In order to save a lot of typing, and to allow us some flexibility in designing these courses, we will establish a UNIX shell variable BASE to point to

More information

Quality Control of Sequencing Data

Quality Control of Sequencing Data Quality Control of Sequencing Data Surya Saha Sol Genomics Network (SGN) Boyce Thompson Institute, Ithaca, NY ss2489@cornell.edu // Twitter:@SahaSurya BTI Plant Bioinformatics Course 2017 3/27/2017 BTI

More information

Reads Alignment and Variant Calling

Reads Alignment and Variant Calling Reads Alignment and Variant Calling CB2-201 Computational Biology and Bioinformatics February 22, 2016 Emidio Capriotti http://biofold.org/ Institute for Mathematical Modeling of Biological Systems Department

More information

RESEARCH TOPIC IN BIOINFORMANTIC

RESEARCH TOPIC IN BIOINFORMANTIC RESEARCH TOPIC IN BIOINFORMANTIC GENOME ASSEMBLY Instructor: Dr. Yufeng Wu Noted by: February 25, 2012 Genome Assembly is a kind of string sequencing problems. As we all know, the human genome is very

More information

User Manual. This is the example for Oases: make color 'VELVET_DIR=/full_path_of_velvet_dir/' 'MAXKMERLENGTH=63' 'LONGSEQUENCES=1'

User Manual. This is the example for Oases: make color 'VELVET_DIR=/full_path_of_velvet_dir/' 'MAXKMERLENGTH=63' 'LONGSEQUENCES=1' SATRAP v0.1 - Solid Assembly TRAnslation Program User Manual Introduction A color space assembly must be translated into bases before applying bioinformatics analyses. SATRAP is designed to accomplish

More information

Decrypting your genome data privately in the cloud

Decrypting your genome data privately in the cloud Decrypting your genome data privately in the cloud Marc Sitges Data Manager@Made of Genes @madeofgenes The Human Genome 3.200 M (x2) Base pairs (bp) ~20.000 genes (~30%) (Exons ~1%) The Human Genome Project

More information

Exeter Sequencing Service

Exeter Sequencing Service Exeter Sequencing Service A guide to your denovo RNA-seq results An overview Once your results are ready, you will receive an email with a password-protected link to them. Click the link to access your

More information

Resequencing and Mapping. Andreas Gisel Inernational Institute of Tropical Agriculture (IITA) Ibadan, Nigeria

Resequencing and Mapping. Andreas Gisel Inernational Institute of Tropical Agriculture (IITA) Ibadan, Nigeria Resequencing and Mapping Andreas Gisel Inernational Institute of Tropical Agriculture (IITA) Ibadan, Nigeria The Principle of Mapping reads good, ood_, d_mo, morn, orni, ning, ing_, g_be, beau, auti, utif,

More information

Performing de novo assemblies using the NBIC Galaxy instance

Performing de novo assemblies using the NBIC Galaxy instance Performing de novo assemblies using the NBIC Galaxy instance In this part of the practicals, we are going to assemble the same data of Staphylococcus aureus as yesterday. The main difference is that instead

More information

HiPGA: A High Performance Genome Assembler for Short Read Sequence Data

HiPGA: A High Performance Genome Assembler for Short Read Sequence Data 2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops HiPGA: A High Performance Genome Assembler for Short Read Sequence Data Xiaohui Duan, Kun Zhao, Weiguo Liu* School of

More information

BLAST & Genome assembly

BLAST & Genome assembly BLAST & Genome assembly Solon P. Pissis Tomáš Flouri Heidelberg Institute for Theoretical Studies November 17, 2012 1 Introduction Introduction 2 BLAST What is BLAST? The algorithm 3 Genome assembly De

More information

Lecture 12. Short read aligners

Lecture 12. Short read aligners Lecture 12 Short read aligners Ebola reference genome We will align ebola sequencing data against the 1976 Mayinga reference genome. We will hold the reference gnome and all indices: mkdir -p ~/reference/ebola

More information

Analysis of ChIP-seq data

Analysis of ChIP-seq data Before we start: 1. Log into tak (step 0 on the exercises) 2. Go to your lab space and create a folder for the class (see separate hand out) 3. Connect to your lab space through the wihtdata network and

More information

USING BRAT-BW Table 1. Feature comparison of BRAT-bw, BRAT-large, Bismark and BS Seeker (as of on March, 2012)

USING BRAT-BW Table 1. Feature comparison of BRAT-bw, BRAT-large, Bismark and BS Seeker (as of on March, 2012) USING BRAT-BW-2.0.1 BRAT-bw is a tool for BS-seq reads mapping, i.e. mapping of bisulfite-treated sequenced reads. BRAT-bw is a part of BRAT s suit. Therefore, input and output formats for BRAT-bw are

More information

CBSU/3CPG/CVG Joint Workshop Series Reference genome based sequence variation detection

CBSU/3CPG/CVG Joint Workshop Series Reference genome based sequence variation detection CBSU/3CPG/CVG Joint Workshop Series Reference genome based sequence variation detection Computational Biology Service Unit (CBSU) Cornell Center for Comparative and Population Genomics (3CPG) Center for

More information

Next generation sequencing: assembly by mapping reads. Laurent Falquet, Vital-IT Helsinki, June 3, 2010

Next generation sequencing: assembly by mapping reads. Laurent Falquet, Vital-IT Helsinki, June 3, 2010 Next generation sequencing: assembly by mapping reads Laurent Falquet, Vital-IT Helsinki, June 3, 2010 Overview What is assembly by mapping? Methods BWT File formats Tools Issues Visualization Discussion

More information

Next Generation Sequence Alignment on the BRC Cluster. Steve Newhouse 22 July 2010

Next Generation Sequence Alignment on the BRC Cluster. Steve Newhouse 22 July 2010 Next Generation Sequence Alignment on the BRC Cluster Steve Newhouse 22 July 2010 Overview Practical guide to processing next generation sequencing data on the cluster No details on the inner workings

More information

Benchmarking of RNA-seq aligners

Benchmarking of RNA-seq aligners Lecture 17 RNA-seq Alignment STAR Benchmarking of RNA-seq aligners Benchmarking of RNA-seq aligners Benchmarking of RNA-seq aligners Benchmarking of RNA-seq aligners Based on this analysis the most reliable

More information

Phylogeny Yun Gyeong, Lee ( )

Phylogeny Yun Gyeong, Lee ( ) SpiltsTree Instruction Phylogeny Yun Gyeong, Lee ( ylee307@mail.gatech.edu ) 1. Go to cygwin-x (if you don t have cygwin-x, you can either download it or use X-11 with brand new Mac in 306.) 2. Log in

More information

Examining De Novo Transcriptome Assemblies via a Quality Assessment Pipeline

Examining De Novo Transcriptome Assemblies via a Quality Assessment Pipeline Examining De Novo Transcriptome Assemblies via a Quality Assessment Pipeline Noushin Ghaffari, Osama A. Arshad, Hyundoo Jeong, John Thiltges, Michael F. Criscitiello, Byung-Jun Yoon, Aniruddha Datta, Charles

More information

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg High-throughput sequencing: Alignment and related topic Simon Anders EMBL Heidelberg Established platforms HTS Platforms Illumina HiSeq, ABI SOLiD, Roche 454 Newcomers: Benchtop machines: Illumina MiSeq,

More information

Error Correction in Next Generation DNA Sequencing Data

Error Correction in Next Generation DNA Sequencing Data Western University Scholarship@Western Electronic Thesis and Dissertation Repository December 2012 Error Correction in Next Generation DNA Sequencing Data Michael Z. Molnar The University of Western Ontario

More information

NGS Data Visualization and Exploration Using IGV

NGS Data Visualization and Exploration Using IGV 1 What is Galaxy Galaxy for Bioinformaticians Galaxy for Experimental Biologists Using Galaxy for NGS Analysis NGS Data Visualization and Exploration Using IGV 2 What is Galaxy Galaxy for Bioinformaticians

More information

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg High-throughput sequencing: Alignment and related topic Simon Anders EMBL Heidelberg Established platforms HTS Platforms Illumina HiSeq, ABI SOLiD, Roche 454 Newcomers: Benchtop machines 454 GS Junior,

More information

Gap Filling as Exact Path Length Problem

Gap Filling as Exact Path Length Problem Gap Filling as Exact Path Length Problem RECOMB 2015 Leena Salmela 1 Kristoffer Sahlin 2 Veli Mäkinen 1 Alexandru I. Tomescu 1 1 University of Helsinki 2 KTH Royal Institute of Technology April 12th, 2015

More information

Genome Assembly and De Novo RNAseq

Genome Assembly and De Novo RNAseq Genome Assembly and De Novo RNAseq BMI 7830 Kun Huang Department of Biomedical Informatics The Ohio State University Outline Problem formulation Hamiltonian path formulation Euler path and de Bruijin graph

More information

RNA-Seq in Galaxy: Tuxedo protocol. Igor Makunin, UQ RCC, QCIF

RNA-Seq in Galaxy: Tuxedo protocol. Igor Makunin, UQ RCC, QCIF RNA-Seq in Galaxy: Tuxedo protocol Igor Makunin, UQ RCC, QCIF Acknowledgments Genomics Virtual Lab: gvl.org.au Galaxy for tutorials: galaxy-tut.genome.edu.au Galaxy Australia: galaxy-aust.genome.edu.au

More information

ChIP-seq Analysis. BaRC Hot Topics - Feb 23 th 2016 Bioinformatics and Research Computing Whitehead Institute.

ChIP-seq Analysis. BaRC Hot Topics - Feb 23 th 2016 Bioinformatics and Research Computing Whitehead Institute. ChIP-seq Analysis BaRC Hot Topics - Feb 23 th 2016 Bioinformatics and Research Computing Whitehead Institute http://barc.wi.mit.edu/hot_topics/ Outline ChIP-seq overview Experimental design Quality control/preprocessing

More information

RPGC Manual. You will also need python 2.7 or above to run our home-brew python scripts.

RPGC Manual. You will also need python 2.7 or above to run our home-brew python scripts. Introduction Here we present a new approach for producing de novo whole genome sequences--recombinant population genome construction (RPGC)--that solves many of the problems encountered in standard genome

More information

NGS Data and Sequence Alignment

NGS Data and Sequence Alignment Applications and Servers SERVER/REMOTE Compute DB WEB Data files NGS Data and Sequence Alignment SSH WEB SCP Manpreet S. Katari App Aug 11, 2016 Service Terminal IGV Data files Window Personal Computer/Local

More information

CS 68: BIOINFORMATICS. Prof. Sara Mathieson Swarthmore College Spring 2018

CS 68: BIOINFORMATICS. Prof. Sara Mathieson Swarthmore College Spring 2018 CS 68: BIOINFORMATICS Prof. Sara Mathieson Swarthmore College Spring 2018 Outline: Jan 31 DBG assembly in practice Velvet assembler Evaluation of assemblies (if time) Start: string alignment Candidate

More information

ChIP-Seq data analysis workshop

ChIP-Seq data analysis workshop ChIP-Seq data analysis workshop Exercise 1. ChIP-Seq peak calling 1. Using Putty (Windows) or Terminal (Mac) to connect to your assigned computer. Create a directory /workdir/myuserid (replace myuserid

More information

From the Schnable Lab:

From the Schnable Lab: From the Schnable Lab: Yang Zhang and Daniel Ngu s Pipeline for Processing RNA-seq Data (As of November 17, 2016) yzhang91@unl.edu dngu2@huskers.unl.edu Pre-processing the reads: The alignment software

More information

ChIP-seq Analysis. BaRC Hot Topics - March 21 st 2017 Bioinformatics and Research Computing Whitehead Institute.

ChIP-seq Analysis. BaRC Hot Topics - March 21 st 2017 Bioinformatics and Research Computing Whitehead Institute. ChIP-seq Analysis BaRC Hot Topics - March 21 st 2017 Bioinformatics and Research Computing Whitehead Institute http://barc.wi.mit.edu/hot_topics/ Outline ChIP-seq overview Experimental design Quality control/preprocessing

More information

IDBA - A practical Iterative de Bruijn Graph De Novo Assembler

IDBA - A practical Iterative de Bruijn Graph De Novo Assembler IDBA - A practical Iterative de Bruijn Graph De Novo Assembler Speaker: Gabriele Capannini May 21, 2010 Introduction De Novo Assembly assembling reads together so that they form a new, previously unknown

More information

RNA-seq. Manpreet S. Katari

RNA-seq. Manpreet S. Katari RNA-seq Manpreet S. Katari Evolution of Sequence Technology Normalizing the Data RPKM (Reads per Kilobase of exons per million reads) Score = R NT R = # of unique reads for the gene N = Size of the gene

More information

Tutorial: De Novo Assembly of Paired Data

Tutorial: De Novo Assembly of Paired Data : De Novo Assembly of Paired Data September 20, 2013 CLC bio Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 Fax: +45 86 20 12 22 www.clcbio.com support@clcbio.com : De Novo Assembly

More information

I519 Introduction to Bioinformatics, Genome assembly. Yuzhen Ye School of Informatics & Computing, IUB

I519 Introduction to Bioinformatics, Genome assembly. Yuzhen Ye School of Informatics & Computing, IUB I519 Introduction to Bioinformatics, 2014 Genome assembly Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Contents Genome assembly problem Approaches Comparative assembly The string

More information

NGS Sequence data. Jason Stajich. UC Riverside. jason.stajich[at]ucr.edu. twitter:hyphaltip stajichlab

NGS Sequence data. Jason Stajich. UC Riverside. jason.stajich[at]ucr.edu. twitter:hyphaltip stajichlab NGS Sequence data Jason Stajich UC Riverside jason.stajich[at]ucr.edu twitter:hyphaltip stajichlab Lecture available at http://github.com/hyphaltip/cshl_2012_ngs 1/58 NGS sequence data Quality control

More information

Galaxy Platform For NGS Data Analyses

Galaxy Platform For NGS Data Analyses Galaxy Platform For NGS Data Analyses Weihong Yan wyan@chem.ucla.edu Collaboratory Web Site http://qcb.ucla.edu/collaboratory Collaboratory Workshops Workshop Outline ü Day 1 UCLA galaxy and user account

More information

Read Naming Format Specification

Read Naming Format Specification Read Naming Format Specification Karel Břinda Valentina Boeva Gregory Kucherov Version 0.1.3 (4 August 2015) Abstract This document provides a standard for naming simulated Next-Generation Sequencing (Ngs)

More information

BGGN-213: FOUNDATIONS OF BIOINFORMATICS (Lecture 14)

BGGN-213: FOUNDATIONS OF BIOINFORMATICS (Lecture 14) BGGN-213: FOUNDATIONS OF BIOINFORMATICS (Lecture 14) Genome Informatics (Part 1) https://bioboot.github.io/bggn213_f17/lectures/#14 Dr. Barry Grant Nov 2017 Overview: The purpose of this lab session is

More information

Scrible: Ultra-Accurate Error-Correction of Pooled Sequenced Reads

Scrible: Ultra-Accurate Error-Correction of Pooled Sequenced Reads Scrible: Ultra-Accurate Error-Correction of Pooled Sequenced Reads Denise Duma 1, Francesca Cordero 4, Marco Beccuti 4, Gianfranco Ciardo 5, Timothy J. Close 2, and Stefano Lonardi 2 1 Baylor College of

More information

Sequence mapping and assembly. Alistair Ward - Boston College

Sequence mapping and assembly. Alistair Ward - Boston College Sequence mapping and assembly Alistair Ward - Boston College Sequenced a genome? Fragmented a genome -> DNA library PCR amplification Sequence reads (ends of DNA fragment for mate pairs) We no longer have

More information

Bioinformatics for High-throughput Sequencing

Bioinformatics for High-throughput Sequencing Bioinformatics for High-throughput Sequencing An Overview Simon Anders EBI is an Outstation of the European Molecular Biology Laboratory. Overview In recent years, new sequencing schemes, also called high-throughput

More information

Run Setup and Bioinformatic Analysis. Accel-NGS 2S MID Indexing Kits

Run Setup and Bioinformatic Analysis. Accel-NGS 2S MID Indexing Kits Run Setup and Bioinformatic Analysis Accel-NGS 2S MID Indexing Kits Sequencing MID Libraries For MiSeq, HiSeq, and NextSeq instruments: Modify the config file to create a fastq for index reads Using the

More information

Title:- Instructions to run GS Assembler and Mapper Course # BIOL 8803 Special Topic on Computational Genomics Assembly Group

Title:- Instructions to run GS Assembler and Mapper Course # BIOL 8803 Special Topic on Computational Genomics Assembly Group Title:- Instructions to run GS Assembler and Mapper Course # BIOL 8803 Special Topic on Computational Genomics Assembly Group Contents 1. Genome Assembly... 3 1.0. Data and Projects... 3 1.1. GS De Novo

More information

MaSuRCA Genome Assembler Quick Start Guide

MaSuRCA Genome Assembler Quick Start Guide University of Maryland Institute for Physical Science and Technology MaSuRCA-3.1.0 Genome Assembler Quick Start Guide The MaSuRCA ( Ma ryland Su per R ead C abog A ssembler) assembler combines the benefits

More information