! Binary and hex. ! Box with switches and lights. ! 4,328 bits = (255 " 16) + (15 " 16) + (8) = 541 bytes! ! von Neumann architecture.

Size: px
Start display at page:

Download "! Binary and hex. ! Box with switches and lights. ! 4,328 bits = (255 " 16) + (15 " 16) + (8) = 541 bytes! ! von Neumann architecture."

Transcription

1 What We've Learned About TOY TOY II Data representation. Binary and hex. TOY: what's in it, how to use it. Box with switches and lights. 4,328 bits = (255 " 6) + (5 " 6) + (8) = 54 bytes von Neumann architecture. TOY instruction set architecture. 6 instruction types. Sample TOY machine language programs. Arithmetic. Loops. LINC Introduction to Computer Science Robert Sedgewick and Kevin Wayne 2 What We Do Today Standard Output Standard input, standard output. Manipulate addresses. References (pointers). Arrays. TOY simulator in Java. Standard output. Writing to memory location FF sends one word to TOY stdout. 9AFF writes the integer in register A to stdout. : : : 8A RA mem[] a = : 8B RB mem[] b = while(a > ) { 2: 9AFF print RA print a 3: AAB RA RA + RB a = a + b 4: 2BAB RB RA - RB b = a - b 5: DA2 if (RA > ) goto 2 6: halt fibonacci.toy D E DB 63D A8 55 A6D 2AC2 452F 6FF 3 4

2 Fibonacci Numbers Standard Input Fibonacci sequence:,,, 2, 3, 5, 8, 3, 2, 34,... Standard input. Loading from memory address FF loads one word from TOY stdin. 8AFF reads in an integer from stdin and store it in register A. # % Fn = $ % & if n = if n = Fn" + Fn"2 otherwise Ex: read in a sequence of integers and print their sum. In Java, stop reading when EOF. In TOY, stop reading when user enters. while(stdin.isempty()) { a = StdIn.readInt(); sum = sum + a; System.out.println(sum); Pinecone : : : 2: 3: 4: 5: 6: RC <- mem[] read RA if (RA == ) pc RC RC + RA pc write RC halt 8C 8AFF CA5 CCA C 9CFF Cauliflower 5 AE 46 3 F7 5 6 Standard Input and Output: Implications Load Address (a.k.a. Load Constant) Standard input and output enable you to: Put information from real world into machine. Get information out of machine. Process more information than fits in memory. Interact with the computer while it is running. Load address. (opcode 7) Loads an 8-bit integer into a register. 7A3 means load the value 3 into register A. Applications. Load a small constant into a register. Load a 8-bit memory address into a register. register stores "pointer" to a memory cell a = 3; Java code Information can be instructions Booting a computer. Sending programs over the Internet. Sending viruses over the Internet ? 76 A6 opcode dest d 36 6 addr 8

3 Arrays in TOY TOY Implementation of Reverse TOY main memory is a giant array. Can access memory cell 3 using load and store. 8C3 means load mem[3] into register C. Goal: access memory cell i where i is a variable. Store indirect. (opcode A) AC6 means store contents of register C into mem[r6]. Load indirect. (opcode B) a variable index BC6 means load mem[r6] into register C. for (int i = ; i < N; i++) a[i] = StdIn.readInt(); for (int i = ; i < N; i++) System.out.println(a[N-i-]); a variable index TOY implementation of reverse. Read in a sequence of integers and store in memory 3, 3, 32, Stop reading if. Print sequence in reverse order. : 7 R constant : 7A3 RA 3 a[] 2: 7B RB n while(true) { 3: 8CFF read RC c = StdIn.readInt(); 4: CC9 if (RC == ) goto 9 if (c == ) 5: 6AB R6 RA + RB address of a[n] 6: BC6 mem[r6] RC a[n] = c; 7: BB RB RB + R n++; 8: C3 goto 3 read in the data Reverse.java 9 TOY Implementation of Reverse Unsafe Code at any Speed TOY implementation of reverse. Read in a sequence of integers and store in memory 3, 3, 32, Stop reading if. Print sequence in reverse order. What happens if we make array start at instead of 3? Self modifying program. Exploit buffer overrun and run arbitrary code 9: CB2 if (RB == ) goto 2 while (n > ) { A: 6AB R6 RA + RB address of a[n] B: 266 R6 R6 R address of a[n-] C: AC6 RC mem[r6] c = a[n-]; D: 9CFF write RC System.out.println(c); E: 2BB RB RB R n--; F: C9 goto 9 2: halt print in reverse order : 7 R constant : 7A RA a[] 2: 7B RB n while(true) { 3: 8CFF read RC c = StdIn.readInt(); 4: CC9 if (RC == ) goto 9 if (c == ) 5: 6AB R6 RA + RB address of a[n] 6: BC6 mem[r6] RC a[n] = c; 7: BB RB RB + R n++; 8: C3 goto 3 Crazy 8s Input FF C 2

4 What Can Happen When We Lose Control (in C or C++)? Dumping Buffer overflow. Array buffer[] has size. User might enter 2 characters. Might lose control of machine behavior. Majority of viruses and worms caused by similar errors. #include <stdio.h> int main(void) { char buffer[]; scanf("%s", buffer); printf("%s\n", buffer); return ; unsafe C program Dumping. Work all day to develop operating system. How do you save it for tomorrow? leave computer on? write short program dump.toy run dump.toy to dump contents of memory onto tape Robert Morris Internet Worm. Cornell grad student injected worm into Internet in 988. Exploited buffer overrun in finger daemon fingerd. Java enforces security. Type safety. Array bounds checking. Not foolproof. (Appel '3: shine 5W bulb at DRAM.) : 7 R : 72 R2 i = 2: 73FF R3 FF do { 3: AA2 RA mem[r2] a = mem[i] 4: 9AFF write RA print a 5: 22 R2 R2 + R i++ 6: 2432 R4 R3 - R2 7: D43 if (R4 > ) goto 3 while (i < 255) 8: halt 3 dump.toy 5 Booting TOY Simulator Booting. How do you get it back? Turn on computer, old memory values gone. Write short program boot.toy. Read contents of memory from tape by running boot.toy. Use original program. : 7 R : 72 R2 i = 2: 73FF R3 FF do { 3: 8AFF read RA read a 4: BA2 mem[r2] RA mem[i] = a 5: 22 R2 R2 + R i++ 6: 2432 R4 R3 - R2 7: D43 if (R4 > ) goto 3 while (i < 255) 8: halt boot.toy 6 Write a program to "simulate" the behavior of the TOY machine. TOY simulator in Java. TOY simulator in TOY public class TOY { public static void main(string[] args) { int pc = x; // program counter int[] R = new int[6]; // registers int[] mem = new int[256]; // main memory // READ IN.toy FILE while(true) { // FETCH INSTRUCTION and DECODE... // EXECUTE... % java TOY add-stdin.toy A2 2B A3D 7

5 TOY Simulator: Fetch TOY Simulator: Execute Extract destination register of CAB by shifting and masking. if (op == ) // halt 6 C 6 A 6 B C F C 6 int inst = mem[pc++]; // fetch and increment int op = (inst >> 2) & 5; // opcode (bits 2-5) int d = (inst >> 8) & 5; // dest d (bits 8-) int s = (inst >> 4) & 5; // source s (bits 4-7) int t = (inst >> ) & 5; // source t (bits -3) int addr = (inst >> ) & 255; // addr (bits -7) inst inst >> 8 5 (inst >> 8) & 5 switch (op) { case : R[d] = R[s] + R[t]; case 2: R[d] = R[s] - R[t]; case 3: R[d] = R[s] & R[t]; case 4: R[d] = R[s] ^ R[t]; case 5: R[d] = R[s] << R[t]; case 6: R[d] = R[s] >> R[t]; case 7: R[d] = addr; case 8: R[d] = mem[addr]; case 9: mem[addr] = R[d]; case : R[d] = mem[r[t]]; case : mem[r[t]] = R[d]; case 2: if (R[d] == ) pc = addr; case 3: if (R[d] > ) pc = addr; case 4: pc = R[d]; case 5: R[d] = pc; pc = addr; 8 9 TOY Simulator: Missing Details Simulation See TOY.java for full details. Register is always. reset R[]= after each fetch-execute step Standard input and output. if addr is FF and opcode is load (indirect) then read in data if addr is FF and opcode is store (indirect) then write out data Consequences of simulation. Test out new machine or microprocessor using simulator. cheaper and faster than building actual machine Easy to add new functionality to simulator. trace, single-step, breakpoint debugging simulator more useful than TOY itself Reuse software from old machines. TOY registers are 6-bit integers; program counter is 8-bit. Java int is 32 bits use casts and bit-whacking Ancient programs still running on modern computers. Ticketron. Lode Runner on Apple IIe. 2 2

6 Backwards Compatibility Backwards Compatibility Q. Why is standard US rail gauge 4 feet, 8.5 inches? Q. Why is Space Shuttle SRB long and narrow? Simulation and Backwards Compatibility Napoleon's march on Russia. Progress slower than expected. Eastern European ruts didn't match Roman gauge. Stuck in the field during Russian winter instead of Moscow. Lost war. Simulation tradeoff: Simulation essential to reuse old software. Maintaining backward compatibility can lead to inelegance and inefficiency. Simulation needed to conquer world. 27

TOY II LINC LINC. !1 Introduction to Computer Science Sedgewick and Wayne Copyright 2007

TOY II LINC LINC. !1 Introduction to Computer Science Sedgewick and Wayne Copyright 2007 TOY II Introduction to Computer Science Sedgewick and Wayne Copyright 27 http://www.cs.princeton.edu/introcs 2 LINC LINC 5 6 What We've Learned About TOY Quick Review: Multiply Data representation. Binary

More information

12/11/ The TOY Machine II. Data Representation. What We've Learned About TOY. What We Do Today. Adding and Subtracting Binary Numbers

12/11/ The TOY Machine II. Data Representation. What We've Learned About TOY. What We Do Today. Adding and Subtracting Binary Numbers // What We've Learned About TOY. The TOY Machine II TOY machine. Box with switches and lights. 6-bit memory locations, 6-bit registers, 8-bit pc. 4,38 bits = ( 6) + ( 6) + (8) = 4 bytes! von Neumann architecture.

More information

5. The TOY Machine II

5. The TOY Machine II 5. The TOY Machine II Laboratory Instrument Computer (LINC) Introduction to Computer Science: An Interdisciplinary Approach Robert Sedgewick and Kevin Wayne Copyright 2002 2011 2/18/2013 9:52:08 AM What

More information

Lecture A2: X-TOY Programming

Lecture A2: X-TOY Programming Lecture A2: X-TOY Programming What We ve Learned About X-TOY X-TOY: what s in it, how to use it. Bo with switches and lights. 436 bits = 256 6 + 6 6 + 8. von Neumann architecture. Data representation.

More information

What is TOY? An imaginary machine similar to: ! Ancient computers. ! Today's microprocessors.

What is TOY? An imaginary machine similar to: ! Ancient computers. ! Today's microprocessors. 5. The TOY Machine Introduction to Programming in Java: An Interdisciplinary Approach Robert Sedgewick and Kevin Wayne Copyright 3// 5:3 AM! What is TOY? An imaginary machine similar to:! Ancient computers.!

More information

11. A Computing Machine

11. A Computing Machine COMPUTER SCIENCE S E D G E W I C K / W A Y N E Computer Science Including Programming in Java 11. A Computing Machine Section 5.1 http://introcs.cs.princeton.edu COMPUTER SCIENCE S E D G E W I C K / W

More information

Computer Science. 18. von Neumann Machines. Computer Science COMPUTER SCIENCE. Sections

Computer Science. 18. von Neumann Machines. Computer Science COMPUTER SCIENCE. Sections COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science Computer Science An Interdisciplinary Approach ROBERT SEDGEWICK K E

More information

! Ancient computers. ! Today's microprocessors. Memory. ! Stores data and programs. ! 256 "words." (16 bits each) ! Special word for stdin / stdout.

! Ancient computers. ! Today's microprocessors. Memory. ! Stores data and programs. ! 256 words. (16 bits each) ! Special word for stdin / stdout. What is TOY?. The TOY Machine An imaginary machine similar to:! Ancient computers.! Today's microprocessors. Introduction to Computer Science Sedgewick and Wayne Copyright http://www.cs.princeton.edu/introcs

More information

COS 126 Midterm 1 Written Exam Spring 2015

COS 126 Midterm 1 Written Exam Spring 2015 COS 126 Midterm 1 Written Exam Spring 2015 There are 9 questions on this exam, weighted as indicated below. The exam is closed book, though you are allowed to use a single-page one-sided hand-written cheatsheet.

More information

CIS 110 Introduction to Computer Programming. 17 December 2012 Final Exam

CIS 110 Introduction to Computer Programming. 17 December 2012 Final Exam CIS 110 Introduction to Computer Programming 17 December 2012 Final Exam Name: Recitation # (e.g. 201): Pennkey (e.g. bjbrown): My signature below certifies that I have complied with the University of

More information

COS 126 General Computer Science Fall Exam 1

COS 126 General Computer Science Fall Exam 1 COS 126 General Computer Science Fall 2005 Exam 1 This test has 9 questions worth a total of 50 points. You have 120 minutes. The exam is closed book, except that you are allowed to use a one page cheatsheet,

More information

COS 126 General Computer Science Fall Midterm 1

COS 126 General Computer Science Fall Midterm 1 COS 126 General Computer Science Fall 2001 Midterm 1 This test has 11 questions worth a total of 50 points. You have 120 minutes. The exam is closed book, except that you are allowed to use a one page

More information

Computer Architecture /

Computer Architecture / Computer Architecture 02-201 / 02-601 The Conceptual Architecture of a Computer PC CPU register 0 register 1 register 2 registers hold small amounts of data for processing by the CPU Reading / writing

More information

CIS 110 Introduction to Computer Programming. 7 May 2012 Final Exam

CIS 110 Introduction to Computer Programming. 7 May 2012 Final Exam CIS 110 Introduction to Computer Programming 7 May 2012 Final Exam Name: Recitation # (e.g. 201): Pennkey (e.g. bjbrown): My signature below certifies that I have complied with the University of Pennsylvania

More information

COS 126 General Computer Science Fall Exam 1

COS 126 General Computer Science Fall Exam 1 COS 126 General Computer Science Fall 2008 Exam 1 This test has 11 questions worth a total of 50 points. You have 120 minutes. The exam is closed book, except that you are allowed to use a one page cheatsheet,

More information

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( )

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( ) 6. Combinational Circuits George Boole (85 864) Claude Shannon (96 2) Signals and Wires Digital signals Binary (or logical ) values: or, on or off, high or low voltage Wires. Propagate digital signals

More information

Virtual machines. Virtual machines. Abstractions for computers. Abstractions for computers. Virtual machines

Virtual machines. Virtual machines. Abstractions for computers. Abstractions for computers. Virtual machines 1 2 Problems with programming using machine code Difficult to remember instructions Difficult to remember variables Hard to calculate addresses/relocate variables or functions Need to handle instruction

More information

are Softw Instruction Set Architecture Microarchitecture are rdw

are Softw Instruction Set Architecture Microarchitecture are rdw Program, Application Software Programming Language Compiler/Interpreter Operating System Instruction Set Architecture Hardware Microarchitecture Digital Logic Devices (transistors, etc.) Solid-State Physics

More information

Chapter. Computer Architecture

Chapter. Computer Architecture Chapter 4 Computer Architecture Figure 4.1 Input device Central processing unit Main memory Output device Bus Data flow Control Figure 4.2 Central processing unit () Status bits ( ) Accumulator ( ) Index

More information

COS 126 General Computer Science Spring Written Exam 1

COS 126 General Computer Science Spring Written Exam 1 COS 126 General Computer Science Spring 2014 Written Exam 1 This exam is closed book, except that you are allowed to use a one-page single-sided cheatsheet. No calculators or other electronic devices are

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

C++ to assembly to machine code

C++ to assembly to machine code IBCM 1 C++ to assembly to machine code hello.cpp #include int main() { std::cout

More information

COS 126 Written Exam 2 (Spring 2015)

COS 126 Written Exam 2 (Spring 2015) COS 126 Written Exam 2 (Spring 2015) There are 8 questions on this exam, weighted as indicated below. This exam is closed book. You may use a single-page two-sided hand-written cheatsheet. There is a blank

More information

Lecture 10: Simple Data Path

Lecture 10: Simple Data Path Lecture 10: Simple Data Path Course so far Performance comparisons Amdahl s law ISA function & principles What do bits mean? Computer math Today Take QUIZ 6 over P&H.1-, before 11:59pm today How do computers

More information

18. Machine Language. Computer Systems. COMP1917: Computing 1. Machine Language Programming. History of Computer Technology

18. Machine Language. Computer Systems. COMP1917: Computing 1. Machine Language Programming. History of Computer Technology COMP1917 13s2 18. Machine Language 1 COMP1917: Computing 1 18. Machine Language Computer Systems Recall: modern computer systems are layered. Applications Programming Language Operating System Assembly

More information

Buffer overflows (a security interlude) Address space layout the stack discipline + C's lack of bounds-checking HUGE PROBLEM

Buffer overflows (a security interlude) Address space layout the stack discipline + C's lack of bounds-checking HUGE PROBLEM Buffer overflows (a security interlude) Address space layout the stack discipline + C's lack of bounds-checking HUGE PROBLEM x86-64 Linux Memory Layout 0x00007fffffffffff not drawn to scale Stack... Caller

More information

Introduction to Digital Logic

Introduction to Digital Logic Introduction to Digital Logic Lecture 5 Simple CPU Overview Instruction Set Software Process Software Program High Level Language Description if (x > ) x = x + y - z; a = b*x; Compiler JLEZ X,SKIP MOVE.W

More information

Designing an Instruction Set

Designing an Instruction Set Designing an Instruction Set Lab 4 due today NEXT TUESDAY, /22! 6.4 Fall 22 /7/ L2 Instruction Set Let s Build a Simple Computer Data path for computing N*(N-) N A SEL B SEL A LE L.E. A B LE L.E. B * -

More information

COS 126 Midterm 1 Written Exam, Fall 2009

COS 126 Midterm 1 Written Exam, Fall 2009 NAME: login ID: precept: COS 126 Midterm 1 Written Exam, Fall 2009 This test has 8 questions, weighted as indicated. The exam is closed book, except that you are allowed to use a one page cheatsheet. No

More information

The MIPS Instruction Set Architecture

The MIPS Instruction Set Architecture The MIPS Set Architecture CPS 14 Lecture 5 Today s Lecture Admin HW #1 is due HW #2 assigned Outline Review A specific ISA, we ll use it throughout semester, very similar to the NiosII ISA (we will use

More information

JAVA OPERATORS GENERAL

JAVA OPERATORS GENERAL JAVA OPERATORS GENERAL Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the following groups: Arithmetic Operators Relational Operators Bitwise Operators

More information

Lecture V Toy Hardware and Operating System

Lecture V Toy Hardware and Operating System 2. THE Machine Lecture V Page 1 Lecture V Toy Hardware and Operating System 1. Introduction For use in our OS projects, we introduce THE Machine where THE is an acronym 1 for Toy HardwarE. We also introduce

More information

CSE 12 Spring 2016 Week One, Lecture Two

CSE 12 Spring 2016 Week One, Lecture Two CSE 12 Spring 2016 Week One, Lecture Two Homework One and Two: hw2: Discuss in section today - Introduction to C - Review of basic programming principles - Building from fgetc and fputc - Input and output

More information

Designing an Instruction Set

Designing an Instruction Set Designing an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... WARD & HALSTEAD 6.004 NERD KIT Handouts: Lecture Slides, β docs L12 Instruction

More information

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College Assembly Language Programming CPSC 252 Computer Organization Ellen Walker, Hiram College Instruction Set Design Complex and powerful enough to enable any computation Simplicity of equipment MIPS Microprocessor

More information

SOEN228, Winter Revision 1.2 Date: October 25,

SOEN228, Winter Revision 1.2 Date: October 25, SOEN228, Winter 2003 Revision 1.2 Date: October 25, 2003 1 Contents Flags Mnemonics Basic I/O Exercises Overview of sample programs 2 Flag Register The flag register stores the condition flags that retain

More information

CIS-331 Exam 2 Fall 2015 Total of 105 Points Version 1

CIS-331 Exam 2 Fall 2015 Total of 105 Points Version 1 Version 1 1. (20 Points) Given the class A network address 117.0.0.0 will be divided into multiple subnets. a. (5 Points) How many bits will be necessary to address 4,000 subnets? b. (5 Points) What is

More information

COS 126 MIDTERM 1, FALL

COS 126 MIDTERM 1, FALL COS 126 MIDTERM 1, FALL 2000 1 This test has 12 questions worth a total of 50 points. You have 120 minutes. The exam is closed book, except that you are allowed to use a one page cheatsheet. No calculators

More information

Lecture 2: The Instruction Set Architecture

Lecture 2: The Instruction Set Architecture Lecture 2: The Instruction Set Architecture COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 2 Quiz 0 3 Quiz 0 CD 3 Miles of Music 4 Pits and Lands

More information

2 Sadeghi, Davi TU Darmstadt 2012 Secure, Trusted, and Trustworthy Computing Chapter 6: Runtime Attacks

2 Sadeghi, Davi TU Darmstadt 2012 Secure, Trusted, and Trustworthy Computing Chapter 6: Runtime Attacks Runtime attacks are major threats to today's applications Control-flow of an application is compromised at runtime Typically, runtime attacks include injection of malicious code Reasons for runtime attacks

More information

COS 126 Written Exam 2 Spring 18

COS 126 Written Exam 2 Spring 18 COS 126 Written Exam 2 Spring 18 Instructions. This exam has 7 questions, worth 10 points each. You have 50 minutes. Resources. You may reference your optional two-sided 8.5-by-11 handwritten "cheat sheet"

More information

Computer System. Hiroaki Kobayashi 7/25/2011. Agenda. Von Neumann Model Stored-program instructions and data are stored on memory

Computer System. Hiroaki Kobayashi 7/25/2011. Agenda. Von Neumann Model Stored-program instructions and data are stored on memory Computer System Hiroaki Kobayashi 7/25/2011 7/25/2011 Computer Engineering 1 Agenda Basic model of modern computer systems Von Neumann Model Stored-program instructions and data are stored on memory Fundamental

More information

Buffer overflow background

Buffer overflow background and heap buffer background Comp Sci 3600 Security Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Address Space and heap buffer

More information

Full file at

Full file at Chapter Two DATA MANIPULATION Formatted Chapter Summary This chapter introduces the role of a computer's CPU. It describes the machine cycle and the various operations (or, and, exclusive or, add, shift,

More information

Introduction to MiniSim A Simple von Neumann Machine

Introduction to MiniSim A Simple von Neumann Machine Math 121: Introduction to Computing Handout #19 Introduction to MiniSim A Simple von Neumann Machine Programming languages like C, C++, Java, or even Karel are called high-level languages because they

More information

Course Administration

Course Administration Fall 2018 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture Introduction 4/4 Avinash Karanth Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701

More information

Microcontroller Systems

Microcontroller Systems µcontroller systems 1 / 43 Microcontroller Systems Engineering Science 2nd year A2 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/2co Michaelmas 2014 µcontroller

More information

RISC Pipeline. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter 4.6

RISC Pipeline. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter 4.6 RISC Pipeline Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 4.6 A Processor memory inst register file alu PC +4 +4 new pc offset target imm control extend =? cmp

More information

CPSC 213. Introduction to Computer Systems. Scalars and Arrays. Unit 1b

CPSC 213. Introduction to Computer Systems. Scalars and Arrays. Unit 1b CPSC 213 Introduction to Computer Systems Unit 1b Scalars and Arrays 1 Reading Companion 2.2.3, 2.3, 2.4.1-2.4.3, 2.6 Textbook Array Allocation and Access 1ed: 3.8 2ed: 3.8 2 Design Plan 3 Examine Java

More information

Bits, Bytes, and Integers Part 2

Bits, Bytes, and Integers Part 2 Bits, Bytes, and Integers Part 2 15-213: Introduction to Computer Systems 3 rd Lecture, Jan. 23, 2018 Instructors: Franz Franchetti, Seth Copen Goldstein, Brian Railing 1 First Assignment: Data Lab Due:

More information

CS 645: Lecture 3 Software Vulnerabilities. Rachel Greenstadt July 3, 2013

CS 645: Lecture 3 Software Vulnerabilities. Rachel Greenstadt July 3, 2013 CS 645: Lecture 3 Software Vulnerabilities Rachel Greenstadt July 3, 2013 Project 1: Software exploits Individual project - done in virtual machine environment This assignment is hard. Don t leave it until

More information

Wednesday, February 4, Chapter 4

Wednesday, February 4, Chapter 4 Wednesday, February 4, 2015 Topics for today Introduction to Computer Systems Static overview Operation Cycle Introduction to Pep/8 Features of the system Operational cycle Program trace Categories of

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 2 Instructions: Language of the Computer Fall 2005 Department of Computer Science Kent State University Assembly Language Encodes machine instructions using symbols and numbers

More information

Computer Architecture

Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.2: MIPS ISA -- Instruction Representation Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design,

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10032011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Chapter 3 Number Systems Fixed Point

More information

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath 361 datapath.1 Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath Outline of Today s Lecture Introduction Where are we with respect to the BIG picture? Questions and Administrative

More information

Introduction to Digital Logic

Introduction to Digital Logic Introduction to Digital Logic Lecture 26 Simple CPU HW Design Our 8-bit Computer 8-bit data and addresses but 16-bit instructions I/O 8-bit input data from keyboard 8 LED s for output display Memory Store

More information

Instruction Set Architecture. "Speaking with the computer"

Instruction Set Architecture. Speaking with the computer Instruction Set Architecture "Speaking with the computer" The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture Digital Design

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : LS2_EE_S_Microprocessors_2688 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: -452462 CLASS TEST 28-9 ELECTRICAL ENGINEERING

More information

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic CS 61C: Great Ideas in Computer Architecture Datapath Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/fa15 1 Components of a Computer Processor Control Enable? Read/Write

More information

Computer Organization

Computer Organization Computer Organization! Computer design as an application of digital logic design procedures! Computer = processing unit + memory system! Processing unit = control + datapath! Control = finite state machine

More information

CSC 252: Computer Organization Spring 2018: Lecture 9

CSC 252: Computer Organization Spring 2018: Lecture 9 CSC 252: Computer Organization Spring 2018: Lecture 9 Instructor: Yuhao Zhu Department of Computer Science University of Rochester Action Items: Assignment 2 is due tomorrow, midnight Assignment 3 is out

More information

EKT 303 WEEK Pearson Education, Inc., Hoboken, NJ. All rights reserved.

EKT 303 WEEK Pearson Education, Inc., Hoboken, NJ. All rights reserved. + EKT 303 WEEK 13 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. + Chapter 15 Reduced Instruction Set Computers (RISC) Table 15.1 Characteristics of Some CISCs, RISCs, and Superscalar

More information

Computer Organization. Structure of a Computer. Registers. Register Transfer. Register Files. Memories

Computer Organization. Structure of a Computer. Registers. Register Transfer. Register Files. Memories Computer Organization Structure of a Computer Computer design as an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + Control = finite

More information

COSC 243. Assembly Language Techniques. Lecture 9. COSC 243 (Computer Architecture)

COSC 243. Assembly Language Techniques. Lecture 9. COSC 243 (Computer Architecture) COSC 243 Assembly Language Techniques 1 Overview This Lecture Source Handouts Next Lectures Memory and Storage Systems 2 Parameter Passing In a high level language we don t worry about the number of parameters

More information

A Bit of History. Program Mem Data Memory. CPU (Central Processing Unit) I/O (Input/Output) Von Neumann Architecture. CPU (Central Processing Unit)

A Bit of History. Program Mem Data Memory. CPU (Central Processing Unit) I/O (Input/Output) Von Neumann Architecture. CPU (Central Processing Unit) Memory COncepts Address Contents Memory is divided into addressable units, each with an address (like an array with indices) Addressable units are usually larger than a bit, typically 8, 16, 32, or 64

More information

CPSC 213. Introduction to Computer Systems. Static Scalars and Arrays. Unit 1b

CPSC 213. Introduction to Computer Systems. Static Scalars and Arrays. Unit 1b CPSC 213 Introduction to Computer Systems Unit 1b Static Scalars and Arrays 1 Reading for Next 3 Lectures Companion 2.4.1-2.4.3 Textbook Array Allocation and Access 3.8 2 The Big Picture Build machine

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood

More information

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

More information

Operators in java Operator operands.

Operators in java Operator operands. Operators in java Operator in java is a symbol that is used to perform operations and the objects of operation are referred as operands. There are many types of operators in java such as unary operator,

More information

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath Outline EEL-473 Computer Architecture Designing a Single Cycle path Introduction The steps of designing a processor path and timing for register-register operations path for logical operations with immediates

More information

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Overview Last Lecture s Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a

More information

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING CHAPTER 2 8051 ASSEMBLY LANGUAGE PROGRAMMING Registers Register are used to store information temporarily: A byte of data to be processed An address pointing to the data to be fetched The vast majority

More information

Jin-Soo Kim Systems Software & Architecture Lab. Seoul National University. Integers. Spring 2019

Jin-Soo Kim Systems Software & Architecture Lab. Seoul National University. Integers. Spring 2019 Jin-Soo Kim (jinsoo.kim@snu.ac.kr) Systems Software & Architecture Lab. Seoul National University Integers Spring 2019 4190.308: Computer Architecture Spring 2019 Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2 A

More information

COSC345 Software Engineering. Basic Computer Architecture and The Stack

COSC345 Software Engineering. Basic Computer Architecture and The Stack COSC345 Software Engineering Basic Computer Architecture and The Stack Outline Architectural models A little about the 68HC11 Memory map Registers A little bit of assembly (never did us any harm) The program

More information

ECE468 Computer Organization and Architecture. Designing a Single Cycle Datapath

ECE468 Computer Organization and Architecture. Designing a Single Cycle Datapath ECE468 Computer Organization and Architecture Designing a Single Cycle Datapath ECE468 datapath1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor Control Input Datapath

More information

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the following groups:

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the following groups: Basic Operators Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the following groups: Arithmetic Operators Relational Operators Bitwise Operators

More information

Problem Set 1 Solutions

Problem Set 1 Solutions CSE 260 Digital Computers: Organization and Logical Design Jon Turner Problem Set 1 Solutions 1. Give a brief definition of each of the following parts of a computer system: CPU, main memory, floating

More information

MIPS Functions and Instruction Formats

MIPS Functions and Instruction Formats MIPS Functions and Instruction Formats 1 The Contract: The MIPS Calling Convention You write functions, your compiler writes functions, other compilers write functions And all your functions call other

More information

Chapter 5: The Processor: Datapath and Control

Chapter 5: The Processor: Datapath and Control Chapter 5: The Processor: Datapath and Control Overview Logic Design Conventions Building a Datapath and Control Unit Different Implementations of MIPS instruction set A simple implementation of a processor

More information

Some Sample AP Computer Science A Questions - Solutions

Some Sample AP Computer Science A Questions - Solutions Some Sample AP Computer Science A Questions - s Note: These aren't from actual AP tests. I've created these questions based on looking at actual AP tests. Also, in cases where it's not necessary to have

More information

6.004 Computation Structures Spring 2009

6.004 Computation Structures Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 6.4 Computation Structures Spring 29 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Designing an Instruction Set

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

More information

Memory General R0 Registers R1 R2. Input Register 1. Input Register 2. Program Counter. Instruction Register

Memory General R0 Registers R1 R2. Input Register 1. Input Register 2. Program Counter. Instruction Register CPU Organisation Central Processing Unit (CPU) Memory General R0 Registers R1 R2 ALU R3 Output Register Input Register 1 Input Register 2 Internal Bus Address Bus Data Bus Addr. $ 000 001 002 Program Counter

More information

Programming Level A.R. Hurson Department of Computer Science Missouri University of Science & Technology Rolla, Missouri

Programming Level A.R. Hurson Department of Computer Science Missouri University of Science & Technology Rolla, Missouri Programming Level A.R. Hurson Department of Computer Science Missouri University of Science & Technology Rolla, Missouri 65409 hurson@mst.edu A.R. Hurson 1 Programming Level Computer: A computer with a

More information

MODULE 4 INSTRUCTIONS: LANGUAGE OF THE MACHINE

MODULE 4 INSTRUCTIONS: LANGUAGE OF THE MACHINE MODULE 4 INSTRUCTIONS: LANGUAGE OF THE MACHINE 1 ARCHITECTURE MODEL The basic instruction set of a computer is comprised of sequences of REGISTER TRANSFERS. Example: Add A, B, C Register B # A

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control ELEC 52/62 Computer Architecture and Design Spring 217 Lecture 4: Datapath and Control Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

More information

Announcements. ECE4750/CS4420 Computer Architecture L11: Speculative Execution I. Edward Suh Computer Systems Laboratory

Announcements. ECE4750/CS4420 Computer Architecture L11: Speculative Execution I. Edward Suh Computer Systems Laboratory ECE4750/CS4420 Computer Architecture L11: Speculative Execution I Edward Suh Computer Systems Laboratory suh@csl.cornell.edu Announcements Lab3 due today 2 1 Overview Branch penalties limit performance

More information

Lecture 4: MIPS Instruction Set

Lecture 4: MIPS Instruction Set Lecture 4: MIPS Instruction Set No class on Tuesday Today s topic: MIPS instructions Code examples 1 Instruction Set Understanding the language of the hardware is key to understanding the hardware/software

More information

Prof. Navrati Saxena TA: Rochak Sachan

Prof. Navrati Saxena TA: Rochak Sachan JAVA Prof. Navrati Saxena TA: Rochak Sachan Operators Operator Arithmetic Relational Logical Bitwise 1. Arithmetic Operators are used in mathematical expressions. S.N. 0 Operator Result 1. + Addition 6.

More information

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability!

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability! inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I CS61C L18 CPU Design: The Single-Cycle I (1)! 2010-07-21!!!Instructor Paul Pearce! Nasty new windows vulnerability!

More information

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CPE 442 single-cycle datapath.1 Outline of Today s Lecture Recap and Introduction Where are we with respect to the BIG picture?

More information

CMPSC 497 Buffer Overflow Vulnerabilities

CMPSC 497 Buffer Overflow Vulnerabilities Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA CMPSC 497 Buffer Overflow

More information

Chapter 3. Z80 Instructions & Assembly Language. Von Neumann Architecture. Memory. instructions. program. data

Chapter 3. Z80 Instructions & Assembly Language. Von Neumann Architecture. Memory. instructions. program. data Von Neumann Architecture The von Neumann architecture is a computer design model that uses a processing unit and a separate storage to hold both instructions and data To run a machine, program and data

More information

von Neumann Architecture Basic Computer System Early Computers Microprocessor Reading Assignment An Introduction to Computer Architecture

von Neumann Architecture Basic Computer System Early Computers Microprocessor Reading Assignment An Introduction to Computer Architecture Reading Assignment EEL 4744C: Microprocessor Applications Lecture 1 Part 1 An Introduction to Computer Architecture Microcontrollers and Microcomputers: Chapter 1, Appendix A, Chapter 2 Software and Hardware

More information

Basic Computer System. von Neumann Architecture. Reading Assignment. An Introduction to Computer Architecture. EEL 4744C: Microprocessor Applications

Basic Computer System. von Neumann Architecture. Reading Assignment. An Introduction to Computer Architecture. EEL 4744C: Microprocessor Applications Reading Assignment EEL 4744C: Microprocessor Applications Lecture 1 Part 1 An Introduction to Computer Architecture Microcontrollers and Microcomputers: Chapter 1, Appendix A, Chapter 2 Software and Hardware

More information

CIS-331 Exam 2 Fall 2014 Total of 105 Points. Version 1

CIS-331 Exam 2 Fall 2014 Total of 105 Points. Version 1 Version 1 1. (20 Points) Given the class A network address 119.0.0.0 will be divided into a maximum of 15,900 subnets. a. (5 Points) How many bits will be necessary to address the 15,900 subnets? b. (5

More information

THE MICROPROCESSOR Von Neumann s Architecture Model

THE MICROPROCESSOR Von Neumann s Architecture Model THE ICROPROCESSOR Von Neumann s Architecture odel Input/Output unit Provides instructions and data emory unit Stores both instructions and data Arithmetic and logic unit Processes everything Control unit

More information

More Programming Constructs -- Introduction

More Programming Constructs -- Introduction More Programming Constructs -- Introduction We can now examine some additional programming concepts and constructs Chapter 5 focuses on: internal data representation conversions between one data type and

More information

Wednesday, September 13, Chapter 4

Wednesday, September 13, Chapter 4 Wednesday, September 13, 2017 Topics for today Introduction to Computer Systems Static overview Operation Cycle Introduction to Pep/9 Features of the system Operational cycle Program trace Categories of

More information