Designing an Instruction Set

Size: px
Start display at page:

Download "Designing an Instruction Set"

Transcription

1 Designing an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... WARD & HALSTEAD NERD KIT Handouts: Lecture Slides, β docs L12 Instruction Set 1

2 Let s build a simple computer Data path for computing N*(N-1) 1 N A SEL 0 1 B SEL 0 1 A LE L.E. A B LE L.E. B * -1 ANSWER L.E. = load enable. Register only loads new value when LE=1 L12 Instruction Set 2

3 A programmable control system Computing N*(N-1) with this data path is a multi-step process. We can control the processing at each step with a FSM. If we allow different control sequences to be loaded into the control FSM, then we allow the machine to be programmed. A 1 B N A A * B Control FSM A SEL B SEL A LE B LE B B - 1 A A * B L12 Instruction Set 3

4 A first program A 1 A A * B B B - 1 A A * B B N S0 S1 S2 S3 S4 Once more,writing a control program is nothing more than filling in a table S N S N+1 A sel B sel A le B le L12 Instruction Set 4

5 An optimized program A 1 B N S0 Some parts of the program can be computed simultaneously. A A * B B B - 1 A A * B S1 S2 S3 S N S N+1 A sel B sel A le B le L12 Instruction Set 5

6 Computing Factorial The advantage of a programmable control system is that we can reconfigure it to compute new functions. In order to compute N! we will need to add some new logic and an input to our control FSM. A SEL A L.E. LE 0 1 A * 1 N B SEL B L.E. LE 0 1 B -1 ANSWER =0? Control FSM A sel B sel A le B le L12 Instruction Set 6

7 Program for Factorial B N A 1 A A * B B B - 1 DONE Z=1 S0 Z=0 S1 S2 Programmability allows us to reuse data paths to solve new problems. What we need is a general purpose data path, which can be used to efficiently solve most problems as well as a easier way to control it. Z S N S N+1 A sel B sel A le B le L12 Instruction Set 7

8 Factorial Engine A LE A SEL L.E. 0 1 A 1 N B SEL B LE 0 1 L.E. B The same data paths could compute N*(N-1), Factorial,... only difference: information in control ROM. ANSWER * Control FSM A SEL B SEL A LE B LE Z S S Asel Bsel Ale Ble A=1, B=N A=A*B, B=B done -1 =0? Today s big idea: general purpose computer architecture One set of UNIVERSAL Data paths ENCODED sequence of operational steps dictate specific function to be performed... New Issue: the PROGRAM! HOW to encode the Program? L12 Instruction Set 8

9 Anatomy of an Interpreter Internal storage Data Paths control status Control Unit address data MEMORY address instructions dest +1 PC R1 R2+R3 INSTRUCTIONS coded as binary data asel bsel PROGRAM COUNTER or PC: Address of next instruction to be executed fn ALU Cc s logic to translate instructions into control signals for data path L12 Instruction Set 9

10 Questions to be answered: Data path questions: how much internal storage? what are the ALU functions? provision for constant operands? how does data get to/from memory? width (in bits) of the registers/alu? Control unit questions: how should instructions be encoded? low-level (eg, ctl signals for data path) high-level (eg, fill polygon ) next Huffman encoded (so commonly-used insts are short) etc., etc., etc. fn dest asel bsel L12 Instruction Set 10

11 β Model of Computation Processor State Main Memory PC 00 r0 r1 r2 r31 32 bits always 0 MSB bits (4 bytes) next instr MSB = most significant bit LSB = least significant bit 0 LSB Fetch/Execute loop: loop: fetch Mem[PC] PC PC = PC PC + 4 execute fetched instruction (may change PC!) PC!) repeat! Even though each memory word is 32-bits wide, for historical reasons the β uses byte memory addresses. Since each word contains four 8-bit bytes, addresses of consecutive words differ by 4. L12 Instruction Set 11

12 β Main Memory Instructions and data are initially stored in main memory (so called in order to distinguish it from other, smaller, special-purpose memories we ll learn about later). memories consist of many locations (aka words), each of which has some number of bits. In the β each memory location has 32 bits. memories have one or more access ports (multiport memories can access more than one location at a time) each port includes an address that specifies a location a data bus that supplies write data or receives read data (or both!) control signals indicating when the memory should perform an access PC VDD MADDR MOE MWE CLK A A Dual-port 32-bit Main memory ADDR OE ADDR OE WE CLK DOUT DATA INST ADDR = selects one of 2 A locations OE = output enable for READ data WE = write enable for WRITE data CLK = data written on rising edge MDATA L12 Instruction Set 12

13 β ALU Operations What the machine sees: 32-bit instruction word OP 6 r c 5 r a 5 r b 5 unused 6-bit operation field can specify one of 64 operations: arithmetic: ADD, SUB, MUL, DIV compare: CMPEQ, CMPLT, CMPLE boolean: AND, OR, XOR shift: SHL, SHR, SAR 5-bit register fields can name one of 32 registers: Ra and Rb are the operands, Rc is the destination. R31 reads as 0, unchanged by writes What we prefer to see: symbolic ASSEMBLY LANGUAGE ADD(ra, rb, rc) If rc is 31, the result is discarded and the instruction does nothing ( NOP ) Reg[rc] = Reg[ra] + Reg[rb] Add the contents of ra to the contents of rb; store the result in rc L12 Instruction Set 13

14 β ALU Operations w/ constant Alternative instruction format w/ built-in constant: OP 6 r c 5 r a 5 16 signed constant arithmetic: ADDC, SUBC, MULC, DIVC compare: CMPEQC, CMPLTC, CMPLEC boolean: ANDC, ORC, XORC shift: SHLC, SHRC, SARC ADDC(ra, const, rc) Wait! Do we really need this extra complication? Two s complement 16-bit constant for numbers from to 32767; signextended to 32 bits before use. Reg[rc] = Reg[ra] + sxt(const) Add the contents of ra to const; store the result in rc L12 Instruction Set 14

15 Do we need built-in constants? From Hennessy & Patterson Percentage of the operations that use a constant operand One One way way to to answer architectural questions is is to to evaluate the the consequences of of different choices using carefully chosen representative benchmarks (programs and/or code code sequences). Make choices that that are are best according to to some metric (cost, performance, ). ). L12 Instruction Set 15

16 β Loads & Stores OP 6 r c 5 r a 5 signed constant 16 LD(ra, const, rc) ST(rc, const, ra) Reg[rc] = Mem[Reg[ra] + sxt(const)] Fetch into rc the contents of the memory location whose address is C plus the contents of ra Abbreviation: LD(C, rc) for LD(R31, C, rc) Mem[Reg[ra] + sxt(const)] = Reg[rc] Store the contents of rc into the memory location whose address is C plus the contents of ra Abbreviation: ST(rc,C) for ST(rc, C, R31) BYTE ADDRESSES, but but only only 32-bit word word accesses to to word-aligned addresses are are supported. Low Low two two address bits bits are are ignored! L12 Instruction Set 16

17 Variables live in memory Operations done on registers Registers hold Temporary values 1000: 1004: 1008: 100C: 1010: Storage Conventions Addr assigned at compile time int x, y; y = x * 37; n r x y translates to or, more humanely, to Compilation approach: LOAD, COMPUTE, STORE LD(r31, 0x1008, r0) MULC(r0, 37, r0) ST(r0, 0x100C, r31) x=0x1008 y=0x100c LD(x, r0) MULC(r0, 37, r0) ST(r0, y) Ra defaults to R31 (0) L12 Instruction Set 17

18 Alternative Addressing Modes Absolute: (constant) Value = Mem[constant] Use: accessing static data Indirect (aka Register deferred): (Rx) Value = Mem[Reg[x]] Use: pointer accesses Displacement: constant(rx) Value = Mem[Reg[x] + constant] Use: access to local variables Indexed: (Rx + Ry) β can do these with appropriate choices for Ra and const Value = Mem[Reg[x] + Reg[y]] Use: array accesses (base+index) Memory Value = Mem[Mem[Reg[x]]] Use: access thru pointer in mem Autoincrement: (Rx)+ Value = Mem[Reg[x]]; Reg[x]++ Use: sequential pointer accesses Autodecrement: -(Rx) Value = Reg[X]--; Mem[Reg[x]] Use: stack operations Scaled: constant(rx)[ry] Argh! Need a cost/benefit analysis! Value = Mem[Reg[x] + c + d*reg[y]] Use: array accesses (base+index) L12 Instruction Set 18

19 Memory Operands: usage From Hennessy & Patterson Usage of different memory operand modes L12 Instruction Set 19

20 Translation of an Expression int x, y; y = (x-3)*(y ) x: long(0) y: long(0) c: long(123456)... LD(x, r1) SUBC(r1,3,r1) LD(y, r2) LD(C, r3) ADD(r2,r3,r2) MUL(r2,r1,r1) ST(r1,y) VARIABLES are are allocated storage in in main main memory VARIABLE references translate to to LD LD or or ST ST OPERATORS translate to to ALU ALU instructions SMALL CONSTANTS translate to to ALU ALU instructions w/ w/ built-in constant LARGE CONSTANTS translate to to initialized variables L12 Instruction Set 20

21 Summary Instructions and data are stored in 32-bit wide main memory PC contains address of next instruction to be executed normally incremented (by 4) after each instruction fetch BR/JMP instructions save PC and then modify it BR s use PC-relative addressing with a word displacement Instructions are decoded by control unit 6-bit opcode, 5-bit register fields 3-reg format: Reg[rc] = Reg[ra] op Reg[rb] 2-reg + constant format: Reg[rc] = Reg[ra] op sxt(const) LD/ST: address is Reg[ra] + sxt(const) BR: const is used as pc-relative word displacement Compilation strategy load operands from memory into regs compute using reg operands (+ small consts), reg destination store result into memory ISA design requires tradeoffs, usually based on benchmark results L12 Instruction Set 21

Designing an Instruction Set

Designing an Instruction Set Designing an Instruction Set Lab 4 due today NEXT TUESDAY, /22! 6.4 Fall 22 /7/ L2 Instruction Set Let s Build a Simple Computer Data path for computing N*(N-) N A SEL B SEL A LE L.E. A B LE L.E. B * -

More information

6.004 Computation Structures Spring 2009

6.004 Computation Structures Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 6.4 Computation Structures Spring 29 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Designing an Instruction Set

More information

9. Programmable Machines

9. Programmable Machines 9. Programmable Machines 6.004x Computation Structures Part 2 Computer Architecture Copyright 2015 MIT EECS 6.004 Computation Structures L09: Programmable Machines, Slide #1 Example: Factorial factorial(n)

More information

A Bit of History. Program Mem Data Memory. CPU (Central Processing Unit) I/O (Input/Output) Von Neumann Architecture. CPU (Central Processing Unit)

A Bit of History. Program Mem Data Memory. CPU (Central Processing Unit) I/O (Input/Output) Von Neumann Architecture. CPU (Central Processing Unit) Memory COncepts Address Contents Memory is divided into addressable units, each with an address (like an array with indices) Addressable units are usually larger than a bit, typically 8, 16, 32, or 64

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.1-2.7 L03 Instruction Set 1 A General-Purpose Computer The von

More information

Computation structures

Computation structures Computation structures Pierre Wolper Email: Pierre.Wolper@ulg.ac.be URL: http: //www.montefiore.ulg.ac.be/~pw/ http: //www.montefiore.ulg.ac.be/ ~pw/cours/struct.html References Stephen A. Ward and Robert

More information

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction page 1 Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... A General-Purpose Computer The von Neumann Model Many architectural approaches

More information

How Computers Work Lecture 2. Assembly Tools Calling Conventions. Review: β Model of Computation Processor State

How Computers Work Lecture 2. Assembly Tools Calling Conventions. Review: β Model of Computation Processor State How Computers Work Lecture 2 Assembly Tools Calling Conventions How Computers Work Lecture 2 Page 1 PC r0 r1 r2 Review: β Model of Computation Processor State Instruction Memory 32 bits (4 bytes) Fetch/Execute

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.1-2.7 L04 Instruction Set 1 A General-Purpose Computer The von

More information

Operands and Addressing Modes

Operands and Addressing Modes Operands and Addressing Modes Where is the data? Addresses as data Names and Values Indirection L5 Addressing Modes 1 Last Time - Machine Language 32-bit (4-byte) ADD instruction: 000000001000001000011

More information

6.004 Computation Structures Spring 2009

6.004 Computation Structures Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 6.004 Computation Structures Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Machine Language, Assemblers,

More information

Operands and Addressing Modes

Operands and Addressing Modes Operands and Addressing Modes Where is the data? Addresses as data Names and Values Indirection L5 Addressing Modes 1 Last Time - Machine Language 32-bit (4-byte) ADD instruction: 00000 0 00 100 00 0 1

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.1-2.6 L04 Instruction Set 1 A General-Purpose Computer The von

More information

Programmable Machines. One More Functional Unit

Programmable Machines. One More Functional Unit Comp, Spring 5 / Lecture page Programmable Machines + In order to compute we need only storage, data paths, and control Help! A General Purpose computer requires one additional thing PROGRAMMABILITY Comp

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Lab is posted. Do your prelab! Stay tuned for the first problem set. L04 Instruction

More information

ANEXA la Cursul CN2_2 Procesorul RISC (Beta, fara banda de asamblare) (

ANEXA la Cursul CN2_2 Procesorul RISC (Beta, fara banda de asamblare) ( ANEXA la Cursul CN2_2 Procesorul RISC (Beta, fara banda de asamblare) (http://6004.csail.mit.edu/) 1 2 3 // Beta PC logic module pc(clk,reset,pcsel,offset,jump_addr,branch_addr,pc,pc_plus_4); input clk;

More information

RTN (Register Transfer Notation)

RTN (Register Transfer Notation) RTN (Register Transfer Notation) A formal means of describing machine structure & function. Is at the just right level for machine descriptions. Does not replace hardware description languages. RTN is

More information

Building the Beta. Handouts: Lecture Slides, PS 7, Lab 6. I wonder where this goes? Spring /5/01. L15- Building the Beta 1 A B

Building the Beta. Handouts: Lecture Slides, PS 7, Lab 6. I wonder where this goes? Spring /5/01. L15- Building the Beta 1 A B Building the Beta I wonder where this goes? B LU Beta Kit 0 1 Instruction Handouts: Lecture Slides, PS 7, Lab 6 L15- Building the Beta 1 CPU esign Tradeoffs Maximum Performance: measured by the numbers

More information

Operands and Addressing Modes

Operands and Addressing Modes Operands and Addressing Modes Where is the data? Addresses as data Names and Values Indirection L5 Addressing Modes 1 Assembly Exercise Let s write some assembly language programs Program #1: Write a function

More information

indicates problems that have been selected for discussion in section, time permitting.

indicates problems that have been selected for discussion in section, time permitting. Page 1 of 11 Building the Beta indicates problems that have been selected for discussion in section, time permitting. Problem 1. Beta quickies: A. In an unpipelined Beta implementation, when is the signal

More information

Instruction Sets Ch 9-10

Instruction Sets Ch 9-10 Instruction Sets Ch 9-10 Characteristics Operands Operations Addressing Instruction Formats 1 Instruction Set (käskykanta) Collection of instructions that CPU understands Only interface to CPU from outside

More information

Instruction Sets Ch 9-10

Instruction Sets Ch 9-10 Instruction Sets Ch 9-10 Characteristics Operands Operations Addressing Instruction Formats 1 Instruction Set (käskykanta) Collection of instructions that CPU understands Only interface to CPU from outside

More information

Advanced Computer Architecture-CS501. Vincent P. Heuring&Harry F. Jordan Chapter 2 Computer Systems Design and Architecture

Advanced Computer Architecture-CS501. Vincent P. Heuring&Harry F. Jordan Chapter 2 Computer Systems Design and Architecture Lecture Handout Computer Architecture Lecture No. 4 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2 Computer Systems Design and Architecture 2.3, 2.4,slides Summary 1) Introduction to ISA

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

More information

COMPUTER ORGANIZATION & ARCHITECTURE

COMPUTER ORGANIZATION & ARCHITECTURE COMPUTER ORGANIZATION & ARCHITECTURE Instructions Sets Architecture Lesson 5a 1 What are Instruction Sets The complete collection of instructions that are understood by a CPU Can be considered as a functional

More information

ISA and RISCV. CASS 2018 Lavanya Ramapantulu

ISA and RISCV. CASS 2018 Lavanya Ramapantulu ISA and RISCV CASS 2018 Lavanya Ramapantulu Program Program =?? Algorithm + Data Structures Niklaus Wirth Program (Abstraction) of processor/hardware that executes 3-Jul-18 CASS18 - ISA and RISCV 2 Program

More information

COSC 6385 Computer Architecture. Instruction Set Architectures

COSC 6385 Computer Architecture. Instruction Set Architectures COSC 6385 Computer Architecture Instruction Set Architectures Spring 2012 Instruction Set Architecture (ISA) Definition on Wikipedia: Part of the Computer Architecture related to programming Defines set

More information

Instruction Set Principles and Examples. Appendix B

Instruction Set Principles and Examples. Appendix B Instruction Set Principles and Examples Appendix B Outline What is Instruction Set Architecture? Classifying ISA Elements of ISA Programming Registers Type and Size of Operands Addressing Modes Types of

More information

Instruction Set. Instruction Sets Ch Instruction Representation. Machine Instruction. Instruction Set Design (5) Operation types

Instruction Set. Instruction Sets Ch Instruction Representation. Machine Instruction. Instruction Set Design (5) Operation types Instruction Sets Ch 10-11 Characteristics Operands Operations Addressing Instruction Formats Instruction Set Collection of instructions that CPU understands Only interface to CPU from outside CPU executes

More information

Lecture 4: Instruction Set Architecture

Lecture 4: Instruction Set Architecture Lecture 4: Instruction Set Architecture ISA types, register usage, memory addressing, endian and alignment, quantitative evaluation Reading: Textbook (5 th edition) Appendix A Appendix B (4 th edition)

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Grundlagen Microcontroller Processor Core. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Processor Core. Günther Gridling Bettina Weiss Grundlagen Microcontroller Processor Core Günther Gridling Bettina Weiss 1 Processor Core Architecture Instruction Set Lecture Overview 2 Processor Core Architecture Computes things > ALU (Arithmetic Logic

More information

indicates problems that have been selected for discussion in section, time permitting.

indicates problems that have been selected for discussion in section, time permitting. Page 1 of 12 Machine language indicates problems that have been selected for discussion in section, time permitting. Problem 1. Hand-compile the following C fragments into Beta assembly language. You can

More information

Computer Organization CS 206 T Lec# 2: Instruction Sets

Computer Organization CS 206 T Lec# 2: Instruction Sets Computer Organization CS 206 T Lec# 2: Instruction Sets Topics What is an instruction set Elements of instruction Instruction Format Instruction types Types of operations Types of operand Addressing mode

More information

The MIPS Instruction Set Architecture

The MIPS Instruction Set Architecture The MIPS Set Architecture CPS 14 Lecture 5 Today s Lecture Admin HW #1 is due HW #2 assigned Outline Review A specific ISA, we ll use it throughout semester, very similar to the NiosII ISA (we will use

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

S3.0 : A multicore 32-bit Processor

S3.0 : A multicore 32-bit Processor S3.0 : A multicore 32-bit Processor S3.0 is a multicore version of S2.1 simple processor. This is a typical simple 32-bit processor. It has three-address instructions and 32 registers. Most operations

More information

Computer Architecture 2/26/01 Lecture #

Computer Architecture 2/26/01 Lecture # Computer Architecture 2/26/01 Lecture #9 16.070 On a previous lecture, we discussed the software development process and in particular, the development of a software architecture Recall the output of the

More information

Instruction Sets: Characteristics and Functions Addressing Modes

Instruction Sets: Characteristics and Functions Addressing Modes Instruction Sets: Characteristics and Functions Addressing Modes Chapters 10 and 11, William Stallings Computer Organization and Architecture 7 th Edition What is an Instruction Set? The complete collection

More information

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1 CSIS1120A 10. Instruction Set & Addressing Mode CSIS1120A 10. Instruction Set & Addressing Mode 1 Elements of a Machine Instruction Operation Code specifies the operation to be performed, e.g. ADD, SUB

More information

Introduction to Digital Logic

Introduction to Digital Logic Introduction to Digital Logic Lecture 5 Simple CPU Overview Instruction Set Software Process Software Program High Level Language Description if (x > ) x = x + y - z; a = b*x; Compiler JLEZ X,SKIP MOVE.W

More information

CSCE 5610: Computer Architecture

CSCE 5610: Computer Architecture HW #1 1.3, 1.5, 1.9, 1.12 Due: Sept 12, 2018 Review: Execution time of a program Arithmetic Average, Weighted Arithmetic Average Geometric Mean Benchmarks, kernels and synthetic benchmarks Computing CPI

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

D. Suppose the following code were running on a Beta implementation with a 5 -stage pipeline, full bypassing and 1 branch delay slot with annulment.

D. Suppose the following code were running on a Beta implementation with a 5 -stage pipeline, full bypassing and 1 branch delay slot with annulment. Page 1 of 18 Pipelined Beta indicates problems that have been selected for discussion in section, time permitting. Problem 1. Beta quickies. A. In a 5 -stage pipelined Beta, when does the hardware use

More information

Lecture 4: Instruction Set Architectures. Review: latency vs. throughput

Lecture 4: Instruction Set Architectures. Review: latency vs. throughput Lecture 4: Instruction Set Architectures Last Time Performance analysis Amdahl s Law Performance equation Computer benchmarks Today Review of Amdahl s Law and Performance Equations Introduction to ISAs

More information

Programmable Machines

Programmable Machines Programmable Machines Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Quiz 1: next week Covers L1-L8 Oct 11, 7:30-9:30PM Walker memorial 50-340 L09-1 6.004 So Far Using Combinational

More information

Programmable Machines

Programmable Machines Programmable Machines Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Quiz 1: next week Covers L1-L8 Oct 11, 7:30-9:30PM Walker memorial 50-340 L09-1 6.004 So Far Using Combinational

More information

Lecture 5: Instruction Set Architectures II. Take QUIZ 2 before 11:59pm today over Chapter 1 Quiz 1: 100% - 29; 80% - 25; 60% - 17; 40% - 3

Lecture 5: Instruction Set Architectures II. Take QUIZ 2 before 11:59pm today over Chapter 1 Quiz 1: 100% - 29; 80% - 25; 60% - 17; 40% - 3 Lecture 5: Instruction Set Architectures II Announcements Turn in Homework #1 XSPIM tutorials in PAI 5.38 during TA office hours Tue Feb 2: 2-3:30pm Wed Feb 3: 1:30-3pm Thu Feb 4: 3-4:30pm Take QUIZ 2

More information

Computer Organization. Structure of a Computer. Registers. Register Transfer. Register Files. Memories

Computer Organization. Structure of a Computer. Registers. Register Transfer. Register Files. Memories Computer Organization Structure of a Computer Computer design as an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + Control = finite

More information

Computer Organization

Computer Organization Computer Organization! Computer design as an application of digital logic design procedures! Computer = processing unit + memory system! Processing unit = control + datapath! Control = finite state machine

More information

are Softw Instruction Set Architecture Microarchitecture are rdw

are Softw Instruction Set Architecture Microarchitecture are rdw Program, Application Software Programming Language Compiler/Interpreter Operating System Instruction Set Architecture Hardware Microarchitecture Digital Logic Devices (transistors, etc.) Solid-State Physics

More information

Page 1. Structure of von Nuemann machine. Instruction Set - the type of Instructions

Page 1. Structure of von Nuemann machine. Instruction Set - the type of Instructions Structure of von Nuemann machine Arithmetic and Logic Unit Input Output Equipment Main Memory Program Control Unit 1 1 Instruction Set - the type of Instructions Arithmetic + Logical (ADD, SUB, MULT, DIV,

More information

How Computers Work Problem Set 2

How Computers Work Problem Set 2 Issued: December 7, 2000 How Computers Work Problem Set 2 Problem 1: Warm up Exercises to be done without collaboration. A. Fill in the values of the given control signals for the for the following Beta

More information

Pipelining the Beta. I don t think they mean the fish...

Pipelining the Beta. I don t think they mean the fish... Pipelining the Beta bet ta ('be-t&) n. ny of various species of small, brightly colored, long-finned freshwater fishes of the genus Betta, found in southeast sia. be ta ( b-t&, be-) n. 1. The second letter

More information

CPU Design John D. Carpinelli, All Rights Reserved 1

CPU Design John D. Carpinelli, All Rights Reserved 1 CPU Design 1997 John D. Carpinelli, All Rights Reserved 1 Outline Register organization ALU design Stacks Instruction formats and types Addressing modes 1997 John D. Carpinelli, All Rights Reserved 2 We

More information

3.0 Instruction Set. 3.1 Overview

3.0 Instruction Set. 3.1 Overview 3.0 Instruction Set 3.1 Overview There are 16 different P8 instructions. Research on instruction set usage was the basis for instruction selection. Each instruction has at least two addressing modes, with

More information

Instruction Set Design

Instruction Set Design Instruction Set Design software instruction set hardware CPE442 Lec 3 ISA.1 Instruction Set Architecture Programmer's View ADD SUBTRACT AND OR COMPARE... 01010 01110 10011 10001 11010... CPU Memory I/O

More information

CENG 450: Instruction Set (16-bit)

CENG 450: Instruction Set (16-bit) CENG 450: Instruction Set (16-bit) In this lab, you will design and implement a pipelined 16-bit processor on FPGA. The instructions set of the processor is as follows: Instructions Set We use a RISC-like

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 2: Hardware/Software Interface Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Basic computer components How does a microprocessor

More information

Computer Science 104:! Y86 & Single Cycle Processor Design!

Computer Science 104:! Y86 & Single Cycle Processor Design! Computer Science 104: Y86 & Single Cycle Processor Design Alvin R. Lebeck Slides based on those from Randy Bryant 1 CS:APP Administrative Homework #4 My office hours today 11:30-12:30 Reading: text 4.3

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization CISC 662 Graduate Computer Architecture Lecture 4 - ISA MIPS ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

6.004 Computation Structures Spring 2009

6.004 Computation Structures Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 6.004 Computation Structures Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. M A S S A C H U S E T T

More information

13. Building the Beta

13. Building the Beta 3. uilding the eta 6.4x Computation Structures Part 2 Computer rchitecture Copyright 25 MIT EECS 6.4 Computation Structures L3: uilding the eta, Slide # CPU esign Tradeoffs Maximum Performance: measured

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA CISC 662 Graduate Computer Architecture Lecture 4 - ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA)

CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA) CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA) Aleksandar Milenković Email: milenka@uah.edu Web: http://www.ece.uah.edu/~milenka Objective Introduce MSP430 Instruction Set Architecture (Class of ISA,

More information

COS 140: Foundations of Computer Science

COS 140: Foundations of Computer Science COS 140: Foundations of Computer Science CPU Organization and Assembly Language Fall 2018 CPU 3 Components of the CPU..................................................... 4 Registers................................................................

More information

Instruction Set Architecture. "Speaking with the computer"

Instruction Set Architecture. Speaking with the computer Instruction Set Architecture "Speaking with the computer" The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture Digital Design

More information

CSE140 L. Instructor: Thomas Y. P. Lee. March 1, Agenda. Computer System Design. Computer Architecture. Instruction Memory design.

CSE140 L. Instructor: Thomas Y. P. Lee. March 1, Agenda. Computer System Design. Computer Architecture. Instruction Memory design. CSE4 L Instructor: Thomas Y. P. Lee March, 26 Agenda Computer System Design Computer Architecture Instruction Memory design Datapath Registers Program Counter Instruction Decoder Lab4 Simple Computer System

More information

EC-801 Advanced Computer Architecture

EC-801 Advanced Computer Architecture EC-801 Advanced Computer Architecture Lecture 5 Instruction Set Architecture I Dr Hashim Ali Fall 2018 Department of Computer Science and Engineering HITEC University Taxila!1 Instruction Set Architecture

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 03 Title: Processor

More information

378: Machine Organization and Assembly Language

378: Machine Organization and Assembly Language 378: Machine Organization and Assembly Language Spring 2010 Luis Ceze Slides adapted from: UIUC, Luis Ceze, Larry Snyder, Hal Perkins 1 What is computer architecture about? Computer architecture is the

More information

CS:APP Chapter 4 Computer Architecture Sequential Implementation

CS:APP Chapter 4 Computer Architecture Sequential Implementation CS:APP Chapter 4 Computer Architecture Sequential Implementation Randal E. Bryant Carnegie Mellon University CS:APP Y86 Instruction Set Byte ra rb ra rb V rb rb V ra D rb ra rb D D rb ra ra rb D ra rb

More information

CPU Design Tradeoffs. Building the Beta. Performance Measure. The Beta ISA MIPS = C.P.I. Clock Frequency (MHz) PUSHING PERFORMANCE...

CPU Design Tradeoffs. Building the Beta. Performance Measure. The Beta ISA MIPS = C.P.I. Clock Frequency (MHz) PUSHING PERFORMANCE... uilding the eta CPU esign Tradeoffs I wonder where this goes? Maximum Performance: measured by the numbers of instructions executed per second Minimum Cost : measured by the size of the circuit. Lab #5

More information

Architecture. Digital Computer Design

Architecture. Digital Computer Design Architecture Digital Computer Design Architecture The architecture is the programmer s view of a computer. It is defined by the instruction set (language) and operand locations (registers and memory).

More information

LC-3. 3 bits for condition codes (more later) Fixed-length instructions, with 4-bit opcodes. IIT CS 350 S 18- Hale

LC-3. 3 bits for condition codes (more later) Fixed-length instructions, with 4-bit opcodes. IIT CS 350 S 18- Hale LC-3 (Little computer version 3) 16-bit address width, 16-bit addressability. (Word size is 16 bits) 65K possible memory addresses Signed integers are 2 s complement 8 General purpose registers (GPRs),

More information

Lecture 3 Machine Language. Instructions: Instruction Execution cycle. Speaking computer before voice recognition interfaces

Lecture 3 Machine Language. Instructions: Instruction Execution cycle. Speaking computer before voice recognition interfaces Lecture 3 Machine Language Speaking computer before voice recognition interfaces 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very

More information

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago CMSC 22200 Computer Architecture Lecture 2: ISA Prof. Yanjing Li Department of Computer Science University of Chicago Administrative Stuff! Lab1 is out! " Due next Thursday (10/6)! Lab2 " Out next Thursday

More information

Computer Architecture

Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.2: MIPS ISA -- Instruction Representation Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design,

More information

55:132/22C:160, HPCA Spring 2011

55:132/22C:160, HPCA Spring 2011 55:132/22C:160, HPCA Spring 2011 Second Lecture Slide Set Instruction Set Architecture Instruction Set Architecture ISA, the boundary between software and hardware Specifies the logical machine that is

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 4: MIPS Instructions Adapted from Computer Organization and Design, Patterson & Hennessy, UCB From Last Time Two values enter from the left (A and B) Need

More information

CPSC 213. Introduction to Computer Systems. Static Scalars and Arrays. Unit 1b

CPSC 213. Introduction to Computer Systems. Static Scalars and Arrays. Unit 1b CPSC 213 Introduction to Computer Systems Unit 1b Static Scalars and Arrays 1 Reading for Next 3 Lectures Companion 2.4.1-2.4.3 Textbook Array Allocation and Access 3.8 2 The Big Picture Build machine

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering MIPS Instruction Set James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy MIPS Registers MIPS

More information

Logistics. IIT CS 350 S '17 - Hale

Logistics. IIT CS 350 S '17 - Hale Logistics Remember: Lab 5 due next week not this week. Finish it early though so you can move on to Lab 6! Lab 2 grades in BB Required reading posted (Patt & Patel Ch. 5) First exam during class next Wednesday

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 RISC: The SPARC 09282011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Finish Motorola MC68000 The SPARC Architecture

More information

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath 361 datapath.1 Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath Outline of Today s Lecture Introduction Where are we with respect to the BIG picture? Questions and Administrative

More information

CS 24: INTRODUCTION TO. Spring 2015 Lecture 2 COMPUTING SYSTEMS

CS 24: INTRODUCTION TO. Spring 2015 Lecture 2 COMPUTING SYSTEMS CS 24: INTRODUCTION TO Spring 2015 Lecture 2 COMPUTING SYSTEMS LAST TIME! Began exploring the concepts behind a simple programmable computer! Construct the computer using Boolean values (a.k.a. bits )

More information

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Overview Last Lecture s Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a

More information

CS 24: INTRODUCTION TO. Spring 2018 Lecture 3 COMPUTING SYSTEMS

CS 24: INTRODUCTION TO. Spring 2018 Lecture 3 COMPUTING SYSTEMS CS 24: INTRODUCTION TO Spring 2018 Lecture 3 COMPUTING SYSTEMS LAST TIME Basic components of processors: Buses, multiplexers, demultiplexers Arithmetic/Logic Unit (ALU) Addressable memory Assembled components

More information

16.1. Unit 16. Computer Organization Design of a Simple Processor

16.1. Unit 16. Computer Organization Design of a Simple Processor 6. Unit 6 Computer Organization Design of a Simple Processor HW SW 6.2 You Can Do That Cloud & Distributed Computing (CyberPhysical, Databases, Data Mining,etc.) Applications (AI, Robotics, Graphics, Mobile)

More information

CSC 252: Computer Organization Spring 2018: Lecture 11

CSC 252: Computer Organization Spring 2018: Lecture 11 CSC 252: Computer Organization Spring 2018: Lecture 11 Instructor: Yuhao Zhu Department of Computer Science University of Rochester Action Items: Assignment 3 is due March 2, midnight Announcement Programming

More information

The LC-3 Instruction Set Architecture. ISA Overview Operate instructions Data Movement instructions Control Instructions LC-3 data path

The LC-3 Instruction Set Architecture. ISA Overview Operate instructions Data Movement instructions Control Instructions LC-3 data path Chapter 5 The LC-3 Instruction Set Architecture ISA Overview Operate instructions Data Movement instructions Control Instructions LC-3 data path A specific ISA: The LC-3 We have: Reviewed data encoding

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Pipelining 11142011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Review I/O Chapter 5 Overview Pipelining Pipelining

More information

COSC121: Computer Systems: Review

COSC121: Computer Systems: Review COSC121: Computer Systems: Review Jeremy Bolton, PhD Assistant Teaching Professor Constructed using materials: - Patt and Patel Introduction to Computing Systems (2nd) - Patterson and Hennessy Computer

More information

CENG3420 Lecture 03 Review

CENG3420 Lecture 03 Review CENG3420 Lecture 03 Review Bei Yu byu@cse.cuhk.edu.hk 2017 Spring 1 / 38 CISC vs. RISC Complex Instruction Set Computer (CISC) Lots of instructions of variable size, very memory optimal, typically less

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering MIPS Instruction Set James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy MIPS Registers MIPS

More information

Lecture 4: ISA Tradeoffs (Continued) and Single-Cycle Microarchitectures

Lecture 4: ISA Tradeoffs (Continued) and Single-Cycle Microarchitectures Lecture 4: ISA Tradeoffs (Continued) and Single-Cycle Microarchitectures ISA-level Tradeoffs: Instruction Length Fixed length: Length of all instructions the same + Easier to decode single instruction

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications EE 3170 Microcontroller Applications Lecture 4 : Processors, Computers, and Controllers - 1.2 (reading assignment), 1.3-1.5 Based on slides for ECE3170 by Profs. Kieckhafer, Davis, Tan, and Cischke Outline

More information

INSTRUCTION SET ARCHITECTURE

INSTRUCTION SET ARCHITECTURE INSTRUCTION SET ARCHITECTURE Slides by: Pedro Tomás Additional reading: Computer Architecture: A Quantitative Approach, 5th edition, Appendix A, John L. Hennessy and David A. Patterson, Morgan Kaufmann,

More information

Approaches to Digital System Design

Approaches to Digital System Design Approaches to Digital System Design In Digital Devices, you learned how to create a logic network (Flip-flops + combinational gates) to solve a problem The logic network was SPECIFIC to the problem. To

More information