CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

Size: px
Start display at page:

Download "CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng."

Transcription

1 CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng.

2 Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit and arithmetic logic unit understand the basics of machine language instructions know how control unit works with machine instructions

3 Part 3: von Neumann Architecture Overview: why von Neumann architecture a rough idea about how von Neumann architecture works? main memory in von Neumann architecture arithmetic logic unit in von Neumann architecture control unit in von Neumann architecture in class practice: instruction code analysis based on von Neumann (aka IAS ) instruction set

4 Control Unit What is Control Unit? Machine Language Instructions in Control Unit How Control Unit Works

5 Typical machine instructions: an example Assuming variable: A stored in memory cell 001, B stored in memory cell 010, C stored in memory cell 011, and address 4 is assigned to register R register R A 010 B 011 C What the following instruction code does? LOAD 001 STORE 010

6 Typical machine instructions: an example LOAD A 001 A 010 B 010 B register R 011 C LOAD C 100 A 101

7 Typical machine instructions: an example Store A 001 A 010 B 010 A register R 011 C 100 A STORE C 100 A STORE X Load content of R to memory location X

8 Structure of a control unit PC (Program Counter): stores the address of next instruction to fetch IR (Instruction Register): stores the instruction fetched from memory Instruction Decoder: Decodes instruction and activates necessary circuitry PC IR +1 Instruction Decoder

9 Structure of a control unit: an example An Example about PC Register and IR register Suppose address 4 is assigned to PC register and address 5 is assigned to IR register PC Register IR Register Binary code of instruction e.g. LOAD X means instruction LOAD X

10 How control unit works with instructions Instruction Processing Fetch instruction from memory Decode instruction Evaluate address Fetch operands from memory Execute operation Store result

11 How control unit works: an example Example: Instruction Processing of ADD X,Y ADD X,Y means add content of memory locations X and Y, and store back in memory location Y. Instruction ADD X,Y stored in memory as: ADD X Y

12 How control unit works: an example suppose address 4 is assigned to MAR (memory address register), address 5 is assigned to MDR (memory data register), address 6 is assigned to IR (instruction register) and address 63 is assigned to PC (program counter) register MAR MDR Location of instruction program ADD X,Y IR PC

13 Instruction Processing: FETCH Load next instruction ADD (at address stored MAR MDR IR PC How control unit works: an example in PC) from memory into Instruction Register (IR) Load contents of PC into MAR. 2. Copy the content of memory cell with specified address into MDR 3. Read the content of MDR to IR 4. increment PC to PC+1 to point the next instruction in sequence.

14 How control unit works: an example Instruction Processing: DECODE First identify the opcode in IR, e.g. the first 8 bits means ADD under the defined instruction set ADD X Y Depending on opcode, identify other operands from the remaining bits, e.g. the address X is 0011 the address Y is 0100 F D EA OP EX S

15 How control unit works: an example Instruction Processing: Evaluate Address For instructions that require memory access, compute address used for access F D Y EA OP EX S

16 How control unit works: an example Instruction Processing: FETCH OPERANDS Obtain source operands needed to perform ADD operation e.g. read the content of X and Y to MDR F D EA X Y MDR OP EX S

17 How control unit works: an example Instruction Processing: EXECUTE Perform the operation using the source operands e.g. Obtain the content of MDR and then send them to ALU for calculation F D EA OP EX S

18 How control unit works: an example Instruction Processing: STORE Write results to destination (register or memory) e.g. result of ADD X,Y will be placed in destination Y F D EA X Y OP EX S

19 von Neumann Architecture

20 Thank you for your attendance Any questions?

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atanasoff in 1939?) Hard-wired program --

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atanasoff in 1939?) Hard-wired program --

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers Chapter 4 The Von Neumann Model Original slides from Gregory Byrd, North Carolina State University Modified slides by C. Wilcox, S. Rajopadhye, Colorado State University Computing Layers Problems Algorithms

More information

Introduction to Computer Engineering. CS/ECE 252 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin Madison Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper

More information

Outcomes. Lecture 13 - Introduction to the Central Processing Unit (CPU) Central Processing UNIT (CPU) or Processor

Outcomes. Lecture 13 - Introduction to the Central Processing Unit (CPU) Central Processing UNIT (CPU) or Processor Lecture 13 - Introduction to the Central Processing Unit (CPU) Outcomes What is a CPU? How are instructions prepared by the CPU before execution? What registers and operations are involved in this preparation

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atananasoff in 1939?) Hard-wired program

More information

AS/A Level Computing Syllabus 2011

AS/A Level Computing Syllabus 2011 AS/A Level Computing Syllabus 2011 Section 3 - System Software Mechanisms - - Machine Architecture - - Database Theory - - Programming Paradigms - Chapter 3.3 Computer Architectures & Fetch-Execute Cycle

More information

The Stored Program Computer

The Stored Program Computer The Stored Program Computer 1 1945: John von Neumann Wrote a report on the stored program concept, known as the First Draft of a Report on EDVAC also Alan Turing Konrad Zuse Eckert & Mauchly The basic

More information

Memory General R0 Registers R1 R2. Input Register 1. Input Register 2. Program Counter. Instruction Register

Memory General R0 Registers R1 R2. Input Register 1. Input Register 2. Program Counter. Instruction Register CPU Organisation Central Processing Unit (CPU) Memory General R0 Registers R1 R2 ALU R3 Output Register Input Register 1 Input Register 2 Internal Bus Address Bus Data Bus Addr. $ 000 001 002 Program Counter

More information

Computer Architecture

Computer Architecture Computer Architecture Topics: Machine Organization Machine Cycle Program Execution Machine Language Types of Memory & Access Von Neumann Design 1) Two key ideas 1) The stored program concept 1) instructions

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 5: Processors Our goal: understand basics of processors and CPU understand the architecture of MARIE, a model computer a close look at the instruction

More information

Chapter 02: Computer Organization. Lesson 02: Functional units and components in a computer organization- Part 1: Processor

Chapter 02: Computer Organization. Lesson 02: Functional units and components in a computer organization- Part 1: Processor Chapter 02: Computer Organization Lesson 02: Functional units and components in a computer organization- Part 1: Processor Objective Understand functional units in Processor Understand execution unit,

More information

LC-3 Architecture. (Ch4 ish material)

LC-3 Architecture. (Ch4 ish material) LC-3 Architecture (Ch4 ish material) 1 CISC vs. RISC CISC : Complex Instruction Set Computer Lots of instructions of variable size, very memory optimal, typically less registers. RISC : Reduced Instruction

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. CS 265 Midterm #1 Monday, Oct 18, 12:00pm-1:45pm, SCI 163 Questions on essential terms and concepts of Computer Architecture Mathematical questions on

More information

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U C A N A D I A N I N T E R N A T I O N A L S C H O O L O F H O N G K O N G 5.1 Introduction 5.2 Components of a Computer System Algorithm The Von Neumann architecture is based on the following three characteristics:

More information

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system.

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. CPU ARCHITECTURE QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. ANSWER 1 Data Bus Width the width of the data bus determines the number

More information

Computer Architecture (part 2)

Computer Architecture (part 2) Computer Architecture (part 2) Topics: Machine Organization Machine Cycle Program Execution Machine Language Types of Memory & Access 2 Chapter 5 The Von Neumann Architecture 1 Arithmetic Logic Unit (ALU)

More information

Chapter 5: Computer Systems Organization

Chapter 5: Computer Systems Organization Objectives Chapter 5: Computer Systems Organization Invitation to Computer Science, C++ Version, Third Edition In this chapter, you will learn about: The components of a computer system Putting all the

More information

Chapter 5: Computer Systems Organization. Invitation to Computer Science, C++ Version, Third Edition

Chapter 5: Computer Systems Organization. Invitation to Computer Science, C++ Version, Third Edition Chapter 5: Computer Systems Organization Invitation to Computer Science, C++ Version, Third Edition Objectives In this chapter, you will learn about: The components of a computer system Putting all the

More information

CMPUT101 Introduction to Computing - Summer 2002

CMPUT101 Introduction to Computing - Summer 2002 7KH9RQ1HXPDQQ$UFKLWHFWXUH 2GGVDQG(QGV Chapter 5.1-5.2 Von Neumann Architecture CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 1 'HVLJQLQJ&RPSXWHUV All computers more or less based

More information

A Review of Chapter 5 and. CSc 2010 Spring 2012 Instructor: Qian Hu

A Review of Chapter 5 and. CSc 2010 Spring 2012 Instructor: Qian Hu A Review of Chapter 5 and Chapter 6 Chapter 5 Computer Systems Organization Von Neumann Architecture 4 Components Memory Input/output ALU Control Unit Two major features Stored program concept Sequential

More information

Department of Computer and Mathematical Sciences. Lab 4: Introduction to MARIE

Department of Computer and Mathematical Sciences. Lab 4: Introduction to MARIE Department of Computer and Mathematical Sciences CS 3401 Assembly Language 4 Lab 4: Introduction to MARIE Objectives: The main objective of this lab is to get you familiarized with MARIE a simple computer

More information

The Von Neumann Architecture Odds and Ends. Designing Computers. The Von Neumann Architecture. CMPUT101 Introduction to Computing - Spring 2001

The Von Neumann Architecture Odds and Ends. Designing Computers. The Von Neumann Architecture. CMPUT101 Introduction to Computing - Spring 2001 The Von Neumann Architecture Odds and Ends Chapter 5.1-5.2 Von Neumann Architecture CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 1 Designing Computers All computers more or less

More information

General purpose registers These are memory units within the CPU designed to hold temporary data.

General purpose registers These are memory units within the CPU designed to hold temporary data. Von Neumann Architecture Single processor is used Each instruction in a program follows a linear sequence of fetch decode execute cycle Program and data are held in same main memory Stored program Concept

More information

The von Neumann Architecture. IT 3123 Hardware and Software Concepts. The Instruction Cycle. Registers. LMC Executes a Store.

The von Neumann Architecture. IT 3123 Hardware and Software Concepts. The Instruction Cycle. Registers. LMC Executes a Store. IT 3123 Hardware and Software Concepts February 11 and Memory II Copyright 2005 by Bob Brown The von Neumann Architecture 00 01 02 03 PC IR Control Unit Command Memory ALU 96 97 98 99 Notice: This session

More information

Chapter 4. Computer Organization

Chapter 4. Computer Organization Chapter 4 Computer Organization Von Neumann Concept Stored program concept General purpose computational device driven by internally stored program Data and instructions look same i.e. binary Operation

More information

Computer Architecture Review CS 595

Computer Architecture Review CS 595 Computer Architecture Review CS 595 1 The von Neumann Model Von Neumann (1946) proposed that a fundamental model of a computer should include 5 primary components: Memory Processing Unit Input Device(s)

More information

Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A

Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A 1.Define Computer Architecture Computer Architecture Is Defined As The Functional Operation

More information

THE MICROPROCESSOR Von Neumann s Architecture Model

THE MICROPROCESSOR Von Neumann s Architecture Model THE ICROPROCESSOR Von Neumann s Architecture odel Input/Output unit Provides instructions and data emory unit Stores both instructions and data Arithmetic and logic unit Processes everything Control unit

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

A B C ((NOT A) AND B) OR C

A B C ((NOT A) AND B) OR C chapter5 pg 184 1,2,6 1 Assuming that x=1 and y=2, determine the value of each of the following Boolean expressing: (x=1) AND(y=3) (x1) Not[(x=1) AND (y=2)] Answer: False True False 2 Assume

More information

Von Neumann Architecture

Von Neumann Architecture Von Neumann Architecture Assist lecturer Donya A. Khalid Lecture 2 2/29/27 Computer Organization Introduction In 945, just after the World War, Jon Von Neumann proposed to build a more flexible computer.

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - Von Neumann Architecture 2 Two lessons Summary of the traditional computer architecture Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

2. Computer Evolution and Performance

2. Computer Evolution and Performance 2. Computer Evolution and Performance Spring 2016 Spring 2016 CS430 - Computer Architecture 1 Chapter 2: Computer Evolution and Performance Reading: pp. 16-49 Good Problems to Work: 2.1, 2.3, 2.4, 2.8,

More information

Faculty of Engineering Systems & Biomedical Dept. First Year Cairo University Sheet 6 Computer I

Faculty of Engineering Systems & Biomedical Dept. First Year Cairo University Sheet 6 Computer I aculty of Engineering Systems & Biomedical Dept. irst Year Cairo University Sheet 6 Computer I 1. Choose rue or alse for each of the following statements a) In a direct addressing mode instruction, the

More information

Lecture 11: Control Unit and Instruction Encoding

Lecture 11: Control Unit and Instruction Encoding CSCI25 Computer Organization Lecture : Control Unit and Instruction Encoding Ming-Chang YANG mcyang@cse.cuhk.edu.hk Reading: Chap. 7.4~7.5 (5 th Ed.) Recall: Components of a Processor Register file: a

More information

Chapter 2 Instruction Set Architecture

Chapter 2 Instruction Set Architecture Chapter 2 Instruction Set Architecture Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering

More information

Why learn Computer Programming? Computer-based problem solving in Science and Engineering. Why learn Fortran? Elementary Computer Organization

Why learn Computer Programming? Computer-based problem solving in Science and Engineering. Why learn Fortran? Elementary Computer Organization CSE 1540.03 Week #1.1 January 6, 2014 Computer-based problem solving in Science and Engineering Pure math: about beautiful relationships, e.g. partial differential equations Applied math: pure math applied

More information

The Von Neumann Architecture. Designing Computers. The Von Neumann Architecture. CMPUT101 Introduction to Computing - Spring 2001

The Von Neumann Architecture. Designing Computers. The Von Neumann Architecture. CMPUT101 Introduction to Computing - Spring 2001 The Von Neumann Architecture Chapter 5.1-5.2 Von Neumann Architecture Designing Computers All computers more or less based on the same basic design, the Von Neumann Architecture! CMPUT101 Introduction

More information

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2 Class Notes CS400 Part VI Dr.C.N.Zhang Department of Computer Science University of Regina Regina, SK, Canada, S4S 0A2 C. N. Zhang, CS400 83 VI. CENTRAL PROCESSING UNIT 1 Set 1.1 Addressing Modes and Formats

More information

CMPUT101 Introduction to Computing - Summer 2002

CMPUT101 Introduction to Computing - Summer 2002 7KH9RQ1HXPDQQ$UFKLWHFWXUH Chapter 5.1-5.2 Von Neumann Architecture 'HVLJQLQJ&RPSXWHUV All computers more or less based on the same basic design, the Von Neumann Architecture! CMPUT101 Introduction to Computing

More information

Binghamton University. CS-120 Summer LC3 Memory. Text: Introduction to Computer Systems : Sections 5.1.1, 5.3

Binghamton University. CS-120 Summer LC3 Memory. Text: Introduction to Computer Systems : Sections 5.1.1, 5.3 LC3 Memory Text: Introduction to Computer Systems : Sections 5.1.1, 5.3 John Von Neumann (1903-1957) Princeton / Institute for Advanced Studies Need to compute particle interactions during a nuclear reaction

More information

Designing Computers. The Von Neumann Architecture. The Von Neumann Architecture. The Von Neumann Architecture

Designing Computers. The Von Neumann Architecture. The Von Neumann Architecture. The Von Neumann Architecture Chapter 5.1-5.2 Designing Computers All computers more or less based on the same basic design, the Von Neumann Architecture! Von Neumann Architecture CMPUT101 Introduction to Computing (c) Yngvi Bjornsson

More information

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit Lecture1: introduction Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit 1 1. History overview Computer systems have conventionally

More information

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions Chapter 05: Basic Processing Units Control Unit Design Lesson 15: Microinstructions 1 Objective Understand that an instruction implement by sequences of control signals generated by microinstructions in

More information

SCRAM Introduction. Philipp Koehn. 19 February 2018

SCRAM Introduction. Philipp Koehn. 19 February 2018 SCRAM Introduction Philipp Koehn 19 February 2018 This eek 1 Fully work through a computer circuit assembly code Simple but Complete Random Access Machine (SCRAM) every instruction is 8 bit 4 bit for op-code:

More information

Information Science 1

Information Science 1 Information Science 1 -Basic Concepts of Computers: Opera4on, Architecture, Memory- Week 02 College of Information Science and Engineering Ritsumeikan University Today s lecture outline l Recall the previous

More information

COSC121: Computer Systems: Review

COSC121: Computer Systems: Review COSC121: Computer Systems: Review Jeremy Bolton, PhD Assistant Teaching Professor Constructed using materials: - Patt and Patel Introduction to Computing Systems (2nd) - Patterson and Hennessy Computer

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST I Date: 30/08/2017 Max Marks: 40 Subject & Code: Computer Organization 15CS34 Semester: III (A & B) Name of the faculty: Mrs.Sharmila Banu.A Time: 8.30 am 10.00 am Answer any FIVE

More information

CISC Processor Design

CISC Processor Design CISC Processor Design Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 3 SE-273: Processor Design Processor Architecture Processor Architecture CISC RISC Jan 21, 2008

More information

LC-3 Instruction Processing. (Textbook s Chapter 4)

LC-3 Instruction Processing. (Textbook s Chapter 4) LC-3 Instruction Processing (Textbook s Chapter 4) Instruction Processing Fetch instruction from memory Decode instruction Evaluate address Fetch operands from memory Usually combine Execute operation

More information

Computer Architecture

Computer Architecture University of Craiova Faculty of Automation, Computers & Electronics Department of Computers & Information Technology Computer Architecture Elementary Educational Computer (EEC) Cătălina Mancaș catalina.mancas@yahoo.it

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 16 Control Unit Operations Rev. 3.2 (2009-10) by Enrico Nardelli 16-1 Execution of the Instruction Cycle It has many elementary phases,

More information

Hardware Level Organization

Hardware Level Organization Hardware Level Organization Intro MIPS 1 Major components: - memory - central processing unit - registers - the fetch/execute cycle CPU PC IR Ex Unit MAR MBR I/O AR I/O BR System Bus Main Memory 0 (the

More information

C Functions and Pointers. C Pointers. CS270 - Fall Colorado State University. CS270 - Fall Colorado State University

C Functions and Pointers. C Pointers. CS270 - Fall Colorado State University. CS270 - Fall Colorado State University 1 C Pointers C unctions and Pointers 3 2 4 5 6 7 8 our-bit Adder Logical Completeness (Example)! Can implement ANY truth table with combo of AN, OR, NOT gates. Implementing a inite tate Machine (equential

More information

Computer Organization

Computer Organization Chapter 4 Computer Organization Von Neuman Concept Stored program concept General purpose computational device driven by internally stored program Data and instructions look same i.e. binary Operation

More information

Expectations. Why learn Assembly Language? Administrative Issues. Assignments. CSC 3210 Computer Organization and Programming

Expectations. Why learn Assembly Language? Administrative Issues. Assignments. CSC 3210 Computer Organization and Programming CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Michael Weeks) Expectations Writing code with loops Base conversions Especially involving decimal

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST III Date : 21/11/2017 Max Marks : 40 Subject & Code : Computer Organization (15CS34) Semester : III (A & B) Name of the faculty: Mrs. Sharmila Banu Time : 11.30 am 1.00 pm Answer

More information

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

More information

Chapter 2 Data Manipulation

Chapter 2 Data Manipulation Chapter 2 Data Manipulation Dr. Farzana Rahman Assistant Professor Department of Computer Science James Madison University 1 What the chapter is about? 2.1 Computer Architecture 2.2 Machine Language 2.3

More information

LC-3 Instruction Processing

LC-3 Instruction Processing LC-3 Instruction Processing (Textbookʼs Chapter 4)# Next set of Slides:# Textbook Chapter 10-10.2# Instruction Processing# It is impossible to do all of an instruction in one clock cycle.# Processors break

More information

Data Manipulation. Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan

Data Manipulation. Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan Data Manipulation Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan Outline Computer Architecture Machine Language Program Execution Arithmetic/Logic

More information

session 7. Datapath Design

session 7. Datapath Design General Objective: Determine the hardware requirement of a digital computer based on its instruction set. Specific Objectives: Describe the general concepts in designing the data path of a digital computer

More information

20/08/14. Computer Systems 1. Instruction Processing: FETCH. Instruction Processing: DECODE

20/08/14. Computer Systems 1. Instruction Processing: FETCH. Instruction Processing: DECODE Computer Science 210 Computer Systems 1 Lecture 11 The Instruction Cycle Ch. 5: The LC-3 ISA Credits: McGraw-Hill slides prepared by Gregory T. Byrd, North Carolina State University Instruction Processing:

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control ELEC 52/62 Computer Architecture and Design Spring 217 Lecture 4: Datapath and Control Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

More information

Where Does The Cpu Store The Address Of The

Where Does The Cpu Store The Address Of The Where Does The Cpu Store The Address Of The Next Instruction To Be Fetched The three most important buses are the address, the data, and the control buses. The CPU always knows where to find the next instruction

More information

The Institution of Engineers - Sri Lanka

The Institution of Engineers - Sri Lanka / The Institution of Engineers - Sri Lanka PART III- EXAMINATION 2012 311- COMPUTER SYSTEMS ENGINEERING Time Allowed: 3 hours INSTRUCTIONS TO CANDIDATES 1. This paper contains 8 questions in 5 pages 2.

More information

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control,

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control, UNIT - 7 Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Microprogrammed Control Page 178 UNIT - 7 BASIC PROCESSING

More information

Introduction to CPU architecture using the M6800 microprocessor

Introduction to CPU architecture using the M6800 microprocessor Introduction to CPU architecture using the M6800 microprocessor Basics Programs are written in binary object codes which could be understood (after the decoding process) by the designated target CPU. The

More information

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR.

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR. CS 320 Ch. 20 The Control Unit Instructions are broken down into fetch, indirect, execute, and interrupt cycles. Each of these cycles, in turn, can be broken down into microoperations where a microoperation

More information

CS1004: Intro to CS in Java, Spring 2005

CS1004: Intro to CS in Java, Spring 2005 CS1004: Intro to CS in Java, Spring 2005 Lecture #10: Computer architecture Janak J Parekh janak@cs.columbia.edu HW#2 due Tuesday Administrivia Mass Storage RAM is volatile Not useful for permanent storage,

More information

Wednesday, February 4, Chapter 4

Wednesday, February 4, Chapter 4 Wednesday, February 4, 2015 Topics for today Introduction to Computer Systems Static overview Operation Cycle Introduction to Pep/8 Features of the system Operational cycle Program trace Categories of

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus Fourth Semester B.E. IA Test-1, 2015 USN 1 P E I S PESIT Bangalore South Campus (Hosur Road, 1KM before Electronic City, Bangalore-560 100) Department of Information Science & Engineering Section: 4 th

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 3, 2015 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 2, 2016 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information

Computer Architecture and Organization (CS-507)

Computer Architecture and Organization (CS-507) Computer Architecture and Organization (CS-507) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 4 Basic Computer Function, Instruction

More information

Running Applications

Running Applications Running Applications Computer Hardware Central Processing Unit (CPU) CPU PC IR MAR MBR I/O AR I/O BR To exchange data with memory Brain of Computer, controls everything Few registers PC (Program Counter):

More information

1. Fundamental Concepts

1. Fundamental Concepts 1. Fundamental Concepts 1.1 What is a computer? A computer is a data processing machine which is operated automatically under the control of a list of instructions (called a program) stored in its main

More information

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON. Instructor: Rahul Nayar TAs: Annie Lin, Mohit Verma

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON. Instructor: Rahul Nayar TAs: Annie Lin, Mohit Verma CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Instructor: Rahul Nayar TAs: Annie Lin, Mohit Verma Examination 2 In Class (50 minutes) Wednesday, March 8, 207 Weight:

More information

Wednesday, September 13, Chapter 4

Wednesday, September 13, Chapter 4 Wednesday, September 13, 2017 Topics for today Introduction to Computer Systems Static overview Operation Cycle Introduction to Pep/9 Features of the system Operational cycle Program trace Categories of

More information

C.P.U Organization. Memory Unit. Central Processing Unit (C.P.U) Input-Output Processor (IOP) Figure (1) Digital Computer Block Diagram

C.P.U Organization. Memory Unit. Central Processing Unit (C.P.U) Input-Output Processor (IOP) Figure (1) Digital Computer Block Diagram C.P.U Organization 1.1 Introduction A computer system is sometimes subdivided into two functional entities "Hardware" and "Software". The H/W of the computer consists of all the electronic components and

More information

Single cycle MIPS data path without Forwarding, Control, or Hazard Unit

Single cycle MIPS data path without Forwarding, Control, or Hazard Unit Single cycle MIPS data path without Forwarding, Control, or Hazard Unit Figure 1: an Overview of a MIPS datapath without Control and Forwarding (Patterson & Hennessy, 2014, p. 287) A MIPS 1 single cycle

More information

LC3DataPath ECE2893. Lecture 9a. ECE2893 LC3DataPath Spring / 14

LC3DataPath ECE2893. Lecture 9a. ECE2893 LC3DataPath Spring / 14 LC3DataPath ECE2893 Lecture 9a ECE2893 LC3DataPath Spring 2011 1 / 14 LC3 Data Path [4:0] FINITE MACHINE STATE MEMORY IR ADDR2MUX ADDR1MUX + GateMARMUX LDPC MARMUX ZEXT SEXT SEXT SEXT RESET GateALU +1

More information

Module 5 - CPU Design

Module 5 - CPU Design Module 5 - CPU Design Lecture 1 - Introduction to CPU The operation or task that must perform by CPU is: Fetch Instruction: The CPU reads an instruction from memory. Interpret Instruction: The instruction

More information

The register set differs from one computer architecture to another. It is usually a combination of general-purpose and special purpose registers

The register set differs from one computer architecture to another. It is usually a combination of general-purpose and special purpose registers Part (6) CPU BASICS A typical CPU has three major components: 1- register set, 2- arithmetic logic unit (ALU), 3- control unit (CU). The figure below shows the internal structure of the CPU. The CPU fetches

More information

Architectures & instruction sets R_B_T_C_. von Neumann architecture. Computer architecture taxonomy. Assembly language.

Architectures & instruction sets R_B_T_C_. von Neumann architecture. Computer architecture taxonomy. Assembly language. Architectures & instruction sets Computer architecture taxonomy. Assembly language. R_B_T_C_ 1. E E C E 2. I E U W 3. I S O O 4. E P O I von Neumann architecture Memory holds data and instructions. Central

More information

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 COSC 243 Computer Architecture 1 COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 Overview Last Lecture Flip flops This Lecture Computers Next Lecture Instruction sets and addressing

More information

Computer Systems Organization

Computer Systems Organization The IAS (von Neumann) Machine Computer Systems Organization Input Output Equipment Stored Program concept Main memory storing programs and data ALU operating on binary data Control unit interpreting instructions

More information

Fundamentals of Computer Architecture. 8. Bringing It All Together The Hardware Engineer s Perspective

Fundamentals of Computer Architecture. 8. Bringing It All Together The Hardware Engineer s Perspective Fundamentals of Computer Architecture 8. Bringing It All Together The Hardware Engineer s Perspective 1 CHAPTER OVERVIEW This chapter includes: Assigning tasks to individual processor components; Micro-instructions;

More information

CPU Structure and Function

CPU Structure and Function Computer Architecture Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com http://www.yildiz.edu.tr/~naydin CPU Structure and Function 1 2 CPU Structure Registers

More information

Question 1: What criteria define Von Neumann architecture? Identify clearly and coherently. Solution

Question 1: What criteria define Von Neumann architecture? Identify clearly and coherently. Solution This webpage has designed and created to represent the solutions of course assignment-2 of ITEC 1000: Introduction to Information Technologies. Little Man Computer model is originally developed by Dr.

More information

Computer Organization II CMSC 3833 Lecture 33

Computer Organization II CMSC 3833 Lecture 33 Term MARIE Definition Machine Architecture that is Really Intuitive and Easy 4.8.1 The Architecture Figure s Architecture Characteristics: Binary, two s complement Stored program, fixed word length Word

More information

Chapter. Computer Architecture

Chapter. Computer Architecture Chapter 4 Computer Architecture Figure 4.1 Input device Central processing unit Main memory Output device Bus Data flow Control Figure 4.2 Central processing unit () Status bits ( ) Accumulator ( ) Index

More information

Computer Architecture and Data Manipulation. Von Neumann Architecture

Computer Architecture and Data Manipulation. Von Neumann Architecture Computer Architecture and Data Manipulation Chapter 3 Von Neumann Architecture Today s stored-program computers have the following characteristics: Three hardware systems: A central processing unit (CPU)

More information

Micro-Operations. execution of a sequence of steps, i.e., cycles

Micro-Operations. execution of a sequence of steps, i.e., cycles Micro-Operations Instruction execution execution of a sequence of steps, i.e., cycles Fetch, Indirect, Execute & Interrupt cycles Cycle - a sequence of micro-operations Micro-operations data transfer between

More information

Chapter 5 12/2/2013. Objectives. Computer Systems Organization. Objectives. Objectives (continued) Introduction. INVITATION TO Computer Science 1

Chapter 5 12/2/2013. Objectives. Computer Systems Organization. Objectives. Objectives (continued) Introduction. INVITATION TO Computer Science 1 Chapter 5 Computer Systems Organization Objectives In this chapter, you will learn about: The components of a computer system Putting all the pieces together the Von Neumann architecture The future: non-von

More information

Teaching London Computing

Teaching London Computing Teaching London Computing CAS London CPD Day 2016 Little Man Computer William Marsh School of Electronic Engineering and Computer Science Queen Mary University of London Overview and Aims LMC is a computer

More information