EECS 583 Class 20 Research Topic 2: Stream Compilation, GPU Compilation

Size: px
Start display at page:

Download "EECS 583 Class 20 Research Topic 2: Stream Compilation, GPU Compilation"

Transcription

1 EECS 583 Class 20 Research Topic 2: Stream Compilation, GPU Compilation University of Michigan December 3, 2012 Guest Speakers Today: Daya Khudia and Mehrzad Samadi

2 nnouncements & Reading Material Exams graded and will be returned in Wednesday s class This class» Orchestrating the Execution of Stream Programs on Multicore Platforms, M. Kudlur and S. Mahlke, Proc. CM SIGPLN 2008 Conference on Programming Language Design and Implementation, Jun Next class Research Topic 3: Security» Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity software, James Newsome and Dawn Song, Proceedings of the Network and Distributed System Security Symposium, Feb

3 Stream Graph Modulo Scheduling

4 Stream Graph Modulo Scheduling (SGMS) Coarse grain software pipelining» Equal work distribution» Communication/computation overlap» Synchronization costs Target : Cell processor» Cores with disjoint address spaces» Explicit copy to access remote data DM engine independent of PEs Filters = operations, cores = function units SPE0 SPE1 SPE7 SPU 256 KB LS MFC(DM) PPE (Power PC) SPU 256 KB LS MFC(DM) EIB DRM SPU 256 KB LS MFC(DM) - 3 -

5 Preliminaries Synchronous Data Flow (SDF) [Lee 87] StreamIt [Thies 02] int->int filter FIR(int N, int wgts[n]) { int wgts[n]; work pop 1 push 1 { int i, sum = 0; wgts = adapt(wgts); for(i=0; i<n; i++) sum += peek(i)*wgts[i]; push(sum); pop(); } } Push and pop items from input/output FIFOs - 4 -

6 SGMS Overview PE0 Prologue PE0 PE1 PE2 PE3 T 1 T 4 DM DM DM DM DM DM DM DM Epilogue T 1 4 T 4-5 -

7 SGMS Phases Fission + Processor assignment Load balance Stage assignment Causality DM overlap Code generation - 6 -

8 Processor ssignment: Maximizing Throughputs ssigns each filter to a processor W: workload W: 20 B C W: 20 W: 20 Four Processing Elements PE0 PE1 PE2 PE3 D B C F E T2 = 50 PE0 B C D T1 = 170 W: 30 D W: 50 W: 30 E F PE0 PE1 PE2 PE3 j i a ij w( i) a 1 for all filter i = 1,, N ij Minimize II Minimum II: 50 Balanced workload! Maximum throughput II for all PE j = 1,,P E F T1/T2 = 3. 4

9 Need More Than Just Processor ssignment ssign filters to processors» Goal : Equal work distribution Graph partitioning? Bin packing? Modified Original stream program 5 B B2 C 40 B C 10 B1 S J 5 D PE0 B2 B C J PE1 B1 C D Speedup = 60/40 = 1.5 S D Speedup = 60/32 ~ 2 D - 8 -

10 Filter Fission Choices PE0 PE1 PE2 PE3 Speedup ~ 4? - 9 -

11 Integrated Fission + PE ssign Exact solution based on Integer Linear Programming (ILP) Split/Join overhead factored in Objective function- Maximal load on any PE» Minimize Result» Number of times to split each filter» Filter processor mapping

12 Time Step 2: Forming the Software Pipeline To achieve speedup» ll chunks should execute concurrently» Communication should be overlapped Processor assignment alone is insufficient information B C PE0 C PE1 B PE B B 1 B 1 PE1 B B X Overlap i+2 with B i

13 Stage ssignment PE 1 PE 1 i i S i S j S i DM S DM > S i j PE 2 j S j = S DM +1 Preserve causality (producer-consumer dependence) Communication-computation overlap Data flow traversal of the stream graph» ssign stages using above two rules

14 Stage ssignment Example S S C B1 Stage 0 B1 B2 J DM DM DM Stage 1 D B2 C Stage 2 PE 0 PE 1 J DM DM Stage 3 D Stage

15 Step 3: Code Generation for Cell Target the Synergistic Processing Elements (SPEs)» PS3 up to 6 SPEs» QS20 up to 16 SPEs One thread / SPE Challenge» Making a collection of independent threads implement a software pipeline» dapt kernel-only code schema of a modulo schedule

16 Time Complete Example B1 S DM DM DM C B2 J DM DM D void spe1_work() { char stage[5] = {0}; stage[0] = 1; for(i=0; i<mx; i++) { if (stage[0]) { (); S(); B1(); } if (stage[1]) { } if (stage[2]) { JtoD(); CtoD(); } if (stage[3]) { } if (stage[4]) { D(); } barrier(); } } S B1 S B1 S B1 S B1 S B1 D JtoD CtoD JtoD CtoD SPE1 DM1 B2 J C B2 J C B2 J C B1toJ StoB2 toc B1toJ StoB2 toc B1toJ StoB2 toc B1toJ StoB2 toc SPE2 DM2-15 -

17 Relative Speedup SGMS(ILP) vs. Greedy (MIT method, SPLOS 06) ILP Partitioning Greedy Partitioning Exposed DM bitonic channel dct des fft filterbank fmradio tde mpeg2 vocoder radar Benchmarks Solver time < 30 seconds for 16 processors

18 SGMS Conclusions Streamroller» Efficient mapping of stream programs to multicore» Coarse grain software pipelining Performance summary» 14.7x speedup on 16 cores» Up to 35% better than greedy solution (11% on average) Scheduling framework» Tradeoff memory space vs. load balance Memory constrained (embedded) systems Cache based system

19 Discussion Points Is it possible to convert stateful filters into stateless? What if the application does not behave as you expect?» Filters change execution time?» Memory faster/slower than expected? Could this be adapted for a more conventional multiprocessor with caches? Can C code be automatically streamized? Now you have seen 3 forms of software pipelining:» 1) Instruction level modulo scheduling, 2) Decoupled software pipelining, 3) Stream graph modulo scheduling» Where else can it be used?

20 Compilation for GPUs

21 Theoretical GFLOPS/s Why GPUs? NVIDI GPU INTEL CPU GeForce GTX 280 GeForce GTX GeForce 8800 GTX GeForce 7800 GTX GeForce 6800 Ultra GeForce FX

22 Efficiency of GPUs High Flop Per Watt GTX 285 : 5.2 GFLOP/W i7 : 0.78 GFLOP/W GTX 285 : 159 GB/Sec i7 : 32 GB/Sec High Memory Bandwidth High Flop Per Dollar GTX 285 : 3.54 GFLOP/$ i7 : 0.36 GFLOP/$ i7 : 51 GFLOPS GTX 285 :1062 GFLOPS i7 :102 GFLOPS High Flop Rate High DP Flop Rate GTX 285 : 88.5 GFLOPS GTX 480 : 168 GFLOPS

23 GPU rchitecture SM 0 SM 1 SM 2 SM 29 Shared Regs Shared Regs Shared Regs Shared Regs Interconnection Network CPU Host Memory Global Memory (Device Memory) PCIe Bridge

24 CUD Compute Unified Device rchitecture General purpose programming model» User kicks off batches of threads on the GPU dvantages of CUD» Interface designed for compute - graphics free PI» Orchestration of on chip cores» Explicit GPU memory management» Full support for Integer and bitwise operations

25 Time Programming Model Host Device Grid 1 Kernel 1 Grid 2 Kernel

26 GPU Scheduling SM 0 SM 1 SM 2 SM 3 SM 30 Shared Shared Shared Shared Shared Regs Regs Regs Regs Regs Grid

27 Warp Generation SM0 Block 0 Shared Registers ThreadId 0 Warp 310 Warp Block 1 Block 2 Block

28 Device Memory Hierarchy Grid 0 Thread 0 int RegisterVar Per-thread Register Per-thread Local Memory global int GlobalVar Per app Global Memory int LocalVarrray[10] Texture<float,1,ReadMode> TextureVar Per app Texture Memory Host Block 0 Per Block Shared Memory shared int SharedVar constant int ConstVar Per app Constant Memory

6.189 IAP Lecture 12. StreamIt Parallelizing Compiler. Prof. Saman Amarasinghe, MIT IAP 2007 MIT

6.189 IAP Lecture 12. StreamIt Parallelizing Compiler. Prof. Saman Amarasinghe, MIT IAP 2007 MIT 6.89 IAP 2007 Lecture 2 StreamIt Parallelizing Compiler 6.89 IAP 2007 MIT Common Machine Language Represent common properties of architectures Necessary for performance Abstract away differences in architectures

More information

Parallel Computing: Parallel Architectures Jin, Hai

Parallel Computing: Parallel Architectures Jin, Hai Parallel Computing: Parallel Architectures Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology Peripherals Computer Central Processing Unit Main Memory Computer

More information

A Stream Compiler for Communication-Exposed Architectures

A Stream Compiler for Communication-Exposed Architectures A Stream Compiler for Communication-Exposed Architectures Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali Meli, Andrew Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, Saman

More information

COMP 605: Introduction to Parallel Computing Lecture : GPU Architecture

COMP 605: Introduction to Parallel Computing Lecture : GPU Architecture COMP 605: Introduction to Parallel Computing Lecture : GPU Architecture Mary Thomas Department of Computer Science Computational Science Research Center (CSRC) San Diego State University (SDSU) Posted:

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

StreamIt: A Language for Streaming Applications

StreamIt: A Language for Streaming Applications StreamIt: A Language for Streaming Applications William Thies, Michal Karczmarek, Michael Gordon, David Maze, Jasper Lin, Ali Meli, Andrew Lamb, Chris Leger and Saman Amarasinghe MIT Laboratory for Computer

More information

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it Lab 1 Starts Today Already posted on Canvas (under Assignment) Let s look at it CS 590: High Performance Computing Parallel Computer Architectures Fengguang Song Department of Computer Science IUPUI 1

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

Cell Broadband Engine. Spencer Dennis Nicholas Barlow

Cell Broadband Engine. Spencer Dennis Nicholas Barlow Cell Broadband Engine Spencer Dennis Nicholas Barlow The Cell Processor Objective: [to bring] supercomputer power to everyday life Bridge the gap between conventional CPU s and high performance GPU s History

More information

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs October 13, 2009 Overview Presenting: Alex Papakonstantinou, Karthik Gururaj, John Stratton, Jason Cong, Deming Chen, Wen-mei Hwu. FCUDA:

More information

Introduction to CELL B.E. and GPU Programming. Agenda

Introduction to CELL B.E. and GPU Programming. Agenda Introduction to CELL B.E. and GPU Programming Department of Electrical & Computer Engineering Rutgers University Agenda Background CELL B.E. Architecture Overview CELL B.E. Programming Environment GPU

More information

IBM Cell Processor. Gilbert Hendry Mark Kretschmann

IBM Cell Processor. Gilbert Hendry Mark Kretschmann IBM Cell Processor Gilbert Hendry Mark Kretschmann Architectural components Architectural security Programming Models Compiler Applications Performance Power and Cost Conclusion Outline Cell Architecture:

More information

Parallel Processing SIMD, Vector and GPU s cont.

Parallel Processing SIMD, Vector and GPU s cont. Parallel Processing SIMD, Vector and GPU s cont. EECS4201 Fall 2016 York University 1 Multithreading First, we start with multithreading Multithreading is used in GPU s 2 1 Thread Level Parallelism ILP

More information

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs October 13, 2009 Overview Presenting: Alex Papakonstantinou, Karthik Gururaj, John Stratton, Jason Cong, Deming Chen, Wen-mei Hwu. FCUDA:

More information

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1 Introduction to parallel computers and parallel programming Introduction to parallel computersand parallel programming p. 1 Content A quick overview of morden parallel hardware Parallelism within a chip

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

CUDA Programming Model

CUDA Programming Model CUDA Xing Zeng, Dongyue Mou Introduction Example Pro & Contra Trend Introduction Example Pro & Contra Trend Introduction What is CUDA? - Compute Unified Device Architecture. - A powerful parallel programming

More information

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes.

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes. HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes Ian Glendinning Outline NVIDIA GPU cards CUDA & OpenCL Parallel Implementation

More information

GPUs and GPGPUs. Greg Blanton John T. Lubia

GPUs and GPGPUs. Greg Blanton John T. Lubia GPUs and GPGPUs Greg Blanton John T. Lubia PROCESSOR ARCHITECTURAL ROADMAP Design CPU Optimized for sequential performance ILP increasingly difficult to extract from instruction stream Control hardware

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

Computer Systems Architecture I. CSE 560M Lecture 19 Prof. Patrick Crowley

Computer Systems Architecture I. CSE 560M Lecture 19 Prof. Patrick Crowley Computer Systems Architecture I CSE 560M Lecture 19 Prof. Patrick Crowley Plan for Today Announcement No lecture next Wednesday (Thanksgiving holiday) Take Home Final Exam Available Dec 7 Due via email

More information

Online Course Evaluation. What we will do in the last week?

Online Course Evaluation. What we will do in the last week? Online Course Evaluation Please fill in the online form The link will expire on April 30 (next Monday) So far 10 students have filled in the online form Thank you if you completed it. 1 What we will do

More information

CSCI-GA Multicore Processors: Architecture & Programming Lecture 10: Heterogeneous Multicore

CSCI-GA Multicore Processors: Architecture & Programming Lecture 10: Heterogeneous Multicore CSCI-GA.3033-012 Multicore Processors: Architecture & Programming Lecture 10: Heterogeneous Multicore Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Status Quo Previously, CPU vendors

More information

Massively Parallel Architectures

Massively Parallel Architectures Massively Parallel Architectures A Take on Cell Processor and GPU programming Joel Falcou - LRI joel.falcou@lri.fr Bat. 490 - Bureau 104 20 janvier 2009 Motivation The CELL processor Harder,Better,Faster,Stronger

More information

Numerical Simulation on the GPU

Numerical Simulation on the GPU Numerical Simulation on the GPU Roadmap Part 1: GPU architecture and programming concepts Part 2: An introduction to GPU programming using CUDA Part 3: Numerical simulation techniques (grid and particle

More information

CSE 160 Lecture 24. Graphical Processing Units

CSE 160 Lecture 24. Graphical Processing Units CSE 160 Lecture 24 Graphical Processing Units Announcements Next week we meet in 1202 on Monday 3/11 only On Weds 3/13 we have a 2 hour session Usual class time at the Rady school final exam review SDSC

More information

ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors

ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors Weifeng Liu and Brian Vinter Niels Bohr Institute University of Copenhagen Denmark {weifeng, vinter}@nbi.dk March 1, 2014 Weifeng

More information

Exploiting Coarse-Grained Task, Data, and Pipeline Parallelism in Stream Programs

Exploiting Coarse-Grained Task, Data, and Pipeline Parallelism in Stream Programs Exploiting Coarse-Grained Task, Data, and Pipeline Parallelism in Stream Programs Michael I. Gordon, William Thies, and Saman Amarasinghe Massachusetts Institute of Technology Computer Science and Artificial

More information

GPU Programming. Lecture 1: Introduction. Miaoqing Huang University of Arkansas 1 / 27

GPU Programming. Lecture 1: Introduction. Miaoqing Huang University of Arkansas 1 / 27 1 / 27 GPU Programming Lecture 1: Introduction Miaoqing Huang University of Arkansas 2 / 27 Outline Course Introduction GPUs as Parallel Computers Trend and Design Philosophies Programming and Execution

More information

Workloads Programmierung Paralleler und Verteilter Systeme (PPV)

Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Sommer 2015 Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze Workloads 2 Hardware / software execution environment

More information

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni CUDA Optimizations WS 2014-15 Intelligent Robotics Seminar 1 Table of content 1 Background information 2 Optimizations 3 Summary 2 Table of content 1 Background information 2 Optimizations 3 Summary 3

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Accelerating image registration on GPUs

Accelerating image registration on GPUs Accelerating image registration on GPUs Harald Köstler, Sunil Ramgopal Tatavarty SIAM Conference on Imaging Science (IS10) 13.4.2010 Contents Motivation: Image registration with FAIR GPU Programming Combining

More information

Parallel Computing. Hwansoo Han (SKKU)

Parallel Computing. Hwansoo Han (SKKU) Parallel Computing Hwansoo Han (SKKU) Unicore Limitations Performance scaling stopped due to Power consumption Wire delay DRAM latency Limitation in ILP 10000 SPEC CINT2000 2 cores/chip Xeon 3.0GHz Core2duo

More information

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1 Lecture 15: Introduction to GPU programming Lecture 15: Introduction to GPU programming p. 1 Overview Hardware features of GPGPU Principles of GPU programming A good reference: David B. Kirk and Wen-mei

More information

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 13: Memory Consistency + a Course-So-Far Review Parallel Computer Architecture and Programming Today: what you should know Understand the motivation for relaxed consistency models Understand the

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Memory Issues in CUDA Execution Scheduling in CUDA February 23, 2012 Dan Negrut, 2012 ME964 UW-Madison Computers are useless. They can only

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 10 Thread and Task Level Parallelism Computer Architecture Part 10 page 1 of 36 Prof. Dr. Uwe Brinkschulte,

More information

How to Write Fast Code , spring th Lecture, Mar. 31 st

How to Write Fast Code , spring th Lecture, Mar. 31 st How to Write Fast Code 18-645, spring 2008 20 th Lecture, Mar. 31 st Instructor: Markus Püschel TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred) Introduction Parallelism: definition Carrying

More information

Dynamic Scheduling of Stream Programs on. Embedded Multi-core Processors. Haeseung Lee

Dynamic Scheduling of Stream Programs on. Embedded Multi-core Processors. Haeseung Lee Dynamic Scheduling of Stream Programs on Embedded Multi-core Processors by Haeseung Lee A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved August 2013

More information

Roadrunner. By Diana Lleva Julissa Campos Justina Tandar

Roadrunner. By Diana Lleva Julissa Campos Justina Tandar Roadrunner By Diana Lleva Julissa Campos Justina Tandar Overview Roadrunner background On-Chip Interconnect Number of Cores Memory Hierarchy Pipeline Organization Multithreading Organization Roadrunner

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática Architectures for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 12

More information

Analysis Report. Number of Multiprocessors 3 Multiprocessor Clock Rate Concurrent Kernel Max IPC 6 Threads per Warp 32 Global Memory Bandwidth

Analysis Report. Number of Multiprocessors 3 Multiprocessor Clock Rate Concurrent Kernel Max IPC 6 Threads per Warp 32 Global Memory Bandwidth Analysis Report v3 Duration 932.612 µs Grid Size [ 1024,1,1 ] Block Size [ 1024,1,1 ] Registers/Thread 32 Shared Memory/Block 28 KiB Shared Memory Requested 64 KiB Shared Memory Executed 64 KiB Shared

More information

GRAPHICS PROCESSING UNITS

GRAPHICS PROCESSING UNITS GRAPHICS PROCESSING UNITS Slides by: Pedro Tomás Additional reading: Computer Architecture: A Quantitative Approach, 5th edition, Chapter 4, John L. Hennessy and David A. Patterson, Morgan Kaufmann, 2011

More information

An Ultra High Performance Scalable DSP Family for Multimedia. Hot Chips 17 August 2005 Stanford, CA Erik Machnicki

An Ultra High Performance Scalable DSP Family for Multimedia. Hot Chips 17 August 2005 Stanford, CA Erik Machnicki An Ultra High Performance Scalable DSP Family for Multimedia Hot Chips 17 August 2005 Stanford, CA Erik Machnicki Media Processing Challenges Increasing performance requirements Need for flexibility &

More information

Cache Aware Optimization of Stream Programs

Cache Aware Optimization of Stream Programs Cache Aware Optimization of Stream Programs Janis Sermulins, William Thies, Rodric Rabbah and Saman Amarasinghe LCTES Chicago, June 2005 Streaming Computing Is Everywhere! Prevalent computing domain with

More information

Why GPUs? Robert Strzodka (MPII), Dominik Göddeke G. TUDo), Dominik Behr (AMD)

Why GPUs? Robert Strzodka (MPII), Dominik Göddeke G. TUDo), Dominik Behr (AMD) Why GPUs? Robert Strzodka (MPII), Dominik Göddeke G (TUDo( TUDo), Dominik Behr (AMD) Conference on Parallel Processing and Applied Mathematics Wroclaw, Poland, September 13-16, 16, 2009 www.gpgpu.org/ppam2009

More information

Automated Space/Time Scaling of Streaming Task Graphs. Hossein Omidian Supervisor: Guy Lemieux

Automated Space/Time Scaling of Streaming Task Graphs. Hossein Omidian Supervisor: Guy Lemieux Automated Space/Time Scaling of Streaming Task Graphs Hossein Omidian Supervisor: Guy Lemieux 1 Contents Introduction KPN-based HLS Tool for MPPA overlay Experimental Results Future Work Conclusion 2 Introduction

More information

Inter-Block GPU Communication via Fast Barrier Synchronization

Inter-Block GPU Communication via Fast Barrier Synchronization CS 3580 - Advanced Topics in Parallel Computing Inter-Block GPU Communication via Fast Barrier Synchronization Mohammad Hasanzadeh-Mofrad University of Pittsburgh September 12, 2017 1 General Purpose Graphics

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 6 Parallel Processors from Client to Cloud Introduction Goal: connecting multiple computers to get higher performance

More information

CUDA Architecture & Programming Model

CUDA Architecture & Programming Model CUDA Architecture & Programming Model Course on Multi-core Architectures & Programming Oliver Taubmann May 9, 2012 Outline Introduction Architecture Generation Fermi A Brief Look Back At Tesla What s New

More information

6.189 IAP Lecture 5. Parallel Programming Concepts. Dr. Rodric Rabbah, IBM IAP 2007 MIT

6.189 IAP Lecture 5. Parallel Programming Concepts. Dr. Rodric Rabbah, IBM IAP 2007 MIT 6.189 IAP 2007 Lecture 5 Parallel Programming Concepts 1 6.189 IAP 2007 MIT Recap Two primary patterns of multicore architecture design Shared memory Ex: Intel Core 2 Duo/Quad One copy of data shared among

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability 1 History of GPU

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability History of GPU

More information

Introduction to CUDA

Introduction to CUDA Introduction to CUDA Overview HW computational power Graphics API vs. CUDA CUDA glossary Memory model, HW implementation, execution Performance guidelines CUDA compiler C/C++ Language extensions Limitations

More information

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 09 GPUs (II) Mattan Erez. The University of Texas at Austin

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 09 GPUs (II) Mattan Erez. The University of Texas at Austin EE382 (20): Computer Architecture - ism and Locality Spring 2015 Lecture 09 GPUs (II) Mattan Erez The University of Texas at Austin 1 Recap 2 Streaming model 1. Use many slimmed down cores to run in parallel

More information

Master Program (Laurea Magistrale) in Computer Science and Networking. High Performance Computing Systems and Enabling Platforms.

Master Program (Laurea Magistrale) in Computer Science and Networking. High Performance Computing Systems and Enabling Platforms. Master Program (Laurea Magistrale) in Computer Science and Networking High Performance Computing Systems and Enabling Platforms Marco Vanneschi Multithreading Contents Main features of explicit multithreading

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

Introduction to GPU computing

Introduction to GPU computing Introduction to GPU computing Nagasaki Advanced Computing Center Nagasaki, Japan The GPU evolution The Graphic Processing Unit (GPU) is a processor that was specialized for processing graphics. The GPU

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Lect. 2: Types of Parallelism

Lect. 2: Types of Parallelism Lect. 2: Types of Parallelism Parallelism in Hardware (Uniprocessor) Parallelism in a Uniprocessor Pipelining Superscalar, VLIW etc. SIMD instructions, Vector processors, GPUs Multiprocessor Symmetric

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v6.5 August 2014 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

Code Optimizations for High Performance GPU Computing

Code Optimizations for High Performance GPU Computing Code Optimizations for High Performance GPU Computing Yi Yang and Huiyang Zhou Department of Electrical and Computer Engineering North Carolina State University 1 Question to answer Given a task to accelerate

More information

A GPGPU Compiler for Memory Optimization and Parallelism Management

A GPGPU Compiler for Memory Optimization and Parallelism Management GPGPU Compiler for Memory Optimization and Parallelism Management Yi Yang, Ping Xiang, Jingfei Kong, Huiyang Zhou Department of Electrical and Computer Engineering North Carolina State University School

More information

Introduction to Parallel Computing with CUDA. Oswald Haan

Introduction to Parallel Computing with CUDA. Oswald Haan Introduction to Parallel Computing with CUDA Oswald Haan ohaan@gwdg.de Schedule Introduction to Parallel Computing with CUDA Using CUDA CUDA Application Examples Using Multiple GPUs CUDA Application Libraries

More information

Multiprocessors. Flynn Taxonomy. Classifying Multiprocessors. why would you want a multiprocessor? more is better? Cache Cache Cache.

Multiprocessors. Flynn Taxonomy. Classifying Multiprocessors. why would you want a multiprocessor? more is better? Cache Cache Cache. Multiprocessors why would you want a multiprocessor? Multiprocessors and Multithreading more is better? Cache Cache Cache Classifying Multiprocessors Flynn Taxonomy Flynn Taxonomy Interconnection Network

More information

Computer Architecture

Computer Architecture Jens Teubner Computer Architecture Summer 2017 1 Computer Architecture Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Summer 2017 Jens Teubner Computer Architecture Summer 2017 34 Part II Graphics

More information

Flextream: Adaptive Compilation of Streaming Applications for Heterogeneous Architectures

Flextream: Adaptive Compilation of Streaming Applications for Heterogeneous Architectures Flextream: Adaptive Compilation of Streaming Applications for Heterogeneous Architectures Amir H. Hormati 1, Yoonseo Choi 1, Manjunath Kudlur 2, Rodric Rabbah 3, Trevor Mudge 1, and Scott Mahlke 1 1 Advanced

More information

Threading Hardware in G80

Threading Hardware in G80 ing Hardware in G80 1 Sources Slides by ECE 498 AL : Programming Massively Parallel Processors : Wen-Mei Hwu John Nickolls, NVIDIA 2 3D 3D API: API: OpenGL OpenGL or or Direct3D Direct3D GPU Command &

More information

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms CS 590: High Performance Computing GPU Architectures and CUDA Concepts/Terms Fengguang Song Department of Computer & Information Science IUPUI What is GPU? Conventional GPUs are used to generate 2D, 3D

More information

Parallel Programming Multicore systems

Parallel Programming Multicore systems FYS3240 PC-based instrumentation and microcontrollers Parallel Programming Multicore systems Spring 2011 Lecture #9 Bekkeng, 4.4.2011 Introduction Until recently, innovations in processor technology have

More information

Lecture 2: CUDA Programming

Lecture 2: CUDA Programming CS 515 Programming Language and Compilers I Lecture 2: CUDA Programming Zheng (Eddy) Zhang Rutgers University Fall 2017, 9/12/2017 Review: Programming in CUDA Let s look at a sequential program in C first:

More information

Review: Creating a Parallel Program. Programming for Performance

Review: Creating a Parallel Program. Programming for Performance Review: Creating a Parallel Program Can be done by programmer, compiler, run-time system or OS Steps for creating parallel program Decomposition Assignment of tasks to processes Orchestration Mapping (C)

More information

Outline. L9: Project Discussion and Floating Point Issues. Project Parts (Total = 50%) Project Proposal (due 3/8) 2/13/12.

Outline. L9: Project Discussion and Floating Point Issues. Project Parts (Total = 50%) Project Proposal (due 3/8) 2/13/12. Outline L9: Project Discussion and Floating Point Issues Discussion of semester projects Floating point Mostly single precision until recent architectures Accuracy What s fast and what s not Reading: Ch

More information

The Pennsylvania State University. The Graduate School. College of Engineering PFFTC: AN IMPROVED FAST FOURIER TRANSFORM

The Pennsylvania State University. The Graduate School. College of Engineering PFFTC: AN IMPROVED FAST FOURIER TRANSFORM The Pennsylvania State University The Graduate School College of Engineering PFFTC: AN IMPROVED FAST FOURIER TRANSFORM FOR THE IBM CELL BROADBAND ENGINE A Thesis in Computer Science and Engineering by

More information

Automatic FFT Kernel Generation for CUDA GPUs. Akira Nukada Tokyo Institute of Technology

Automatic FFT Kernel Generation for CUDA GPUs. Akira Nukada Tokyo Institute of Technology Automatic FFT Kernel Generation for CUDA GPUs. Akira Nukada Tokyo Institute of Technology FFT (Fast Fourier Transform) FFT is a fast algorithm to compute DFT (Discrete Fourier Transform). twiddle factors

More information

A Recursive Data-Driven Approach to Programming Multicore Systems

A Recursive Data-Driven Approach to Programming Multicore Systems 1 A Recursive Data-Driven Approach to Programming Multicore Systems Rebecca Collins and Luca P. Carloni Technical Report CUCS-046-07 Department of Computer Science Columbia University 1214 Amsterdam Ave,

More information

Chapter 6. Parallel Processors from Client to Cloud. Copyright 2014 Elsevier Inc. All rights reserved.

Chapter 6. Parallel Processors from Client to Cloud. Copyright 2014 Elsevier Inc. All rights reserved. Chapter 6 Parallel Processors from Client to Cloud FIGURE 6.1 Hardware/software categorization and examples of application perspective on concurrency versus hardware perspective on parallelism. 2 FIGURE

More information

Performance Optimization Part II: Locality, Communication, and Contention

Performance Optimization Part II: Locality, Communication, and Contention Lecture 7: Performance Optimization Part II: Locality, Communication, and Contention Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Tunes Beth Rowley Nobody s Fault but Mine

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v7.0 March 2015 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

Graphics Processor Acceleration and YOU

Graphics Processor Acceleration and YOU Graphics Processor Acceleration and YOU James Phillips Research/gpu/ Goals of Lecture After this talk the audience will: Understand how GPUs differ from CPUs Understand the limits of GPU acceleration Have

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs GPU architecture Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University GPU Graphical Processing

More information

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve Administrative Issues L11: Sparse Linear Algebra on GPUs Next assignment, triangular solve Due 5PM, Tuesday, March 15 handin cs6963 lab 3 Project proposals Due 5PM, Wednesday, March 7 (hard

More information

MIT OpenCourseWare Multicore Programming Primer, January (IAP) Please use the following citation format:

MIT OpenCourseWare Multicore Programming Primer, January (IAP) Please use the following citation format: MIT OpenCourseWare http://ocw.mit.edu 6.189 Multicore Programming Primer, January (IAP) 2007 Please use the following citation format: Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP) 2007.

More information

CUDA Performance Optimization. Patrick Legresley

CUDA Performance Optimization. Patrick Legresley CUDA Performance Optimization Patrick Legresley Optimizations Kernel optimizations Maximizing global memory throughput Efficient use of shared memory Minimizing divergent warps Intrinsic instructions Optimizations

More information

Using GPUs to compute the multilevel summation of electrostatic forces

Using GPUs to compute the multilevel summation of electrostatic forces Using GPUs to compute the multilevel summation of electrostatic forces David J. Hardy Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of

More information

Technology Trends Presentation For Power Symposium

Technology Trends Presentation For Power Symposium Technology Trends Presentation For Power Symposium 2006 8-23-06 Darryl Solie, Distinguished Engineer, Chief System Architect IBM Systems & Technology Group From Ingenuity to Impact Copyright IBM Corporation

More information

Teleport Messaging for. Distributed Stream Programs

Teleport Messaging for. Distributed Stream Programs Teleport Messaging for 1 Distributed Stream Programs William Thies, Michal Karczmarek, Janis Sermulins, Rodric Rabbah and Saman Amarasinghe Massachusetts Institute of Technology PPoPP 2005 http://cag.lcs.mit.edu/streamit

More information

Predictive Runtime Code Scheduling for Heterogeneous Architectures

Predictive Runtime Code Scheduling for Heterogeneous Architectures Predictive Runtime Code Scheduling for Heterogeneous Architectures Víctor Jiménez, Lluís Vilanova, Isaac Gelado Marisa Gil, Grigori Fursin, Nacho Navarro HiPEAC 2009 January, 26th, 2009 1 Outline Motivation

More information

CS4230 Parallel Programming. Lecture 3: Introduction to Parallel Architectures 8/28/12. Homework 1: Parallel Programming Basics

CS4230 Parallel Programming. Lecture 3: Introduction to Parallel Architectures 8/28/12. Homework 1: Parallel Programming Basics CS4230 Parallel Programming Lecture 3: Introduction to Parallel Architectures Mary Hall August 28, 2012 Homework 1: Parallel Programming Basics Due before class, Thursday, August 30 Turn in electronically

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

Optimizing DMA Data Transfers for Embedded Multi-Cores

Optimizing DMA Data Transfers for Embedded Multi-Cores Optimizing DMA Data Transfers for Embedded Multi-Cores Selma Saïdi Jury members: Oded Maler: Dir. de these Ahmed Bouajjani: President du Jury Luca Benini: Rapporteur Albert Cohen: Rapporteur Eric Flamand:

More information

ECE 574 Cluster Computing Lecture 15

ECE 574 Cluster Computing Lecture 15 ECE 574 Cluster Computing Lecture 15 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 30 March 2017 HW#7 (MPI) posted. Project topics due. Update on the PAPI paper Announcements

More information

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle Dynamic Fine Grain Scheduling of Pipeline Parallelism Presented by: Ram Manohar Oruganti and Michael TeWinkle Overview Introduction Motivation Scheduling Approaches GRAMPS scheduling method Evaluation

More information

GPU for HPC. October 2010

GPU for HPC. October 2010 GPU for HPC Simone Melchionna Jonas Latt Francis Lapique October 2010 EPFL/ EDMX EPFL/EDMX EPFL/DIT simone.melchionna@epfl.ch jonas.latt@epfl.ch francis.lapique@epfl.ch 1 Moore s law: in the old days,

More information

Compilation for Heterogeneous Platforms

Compilation for Heterogeneous Platforms Compilation for Heterogeneous Platforms Grid in a Box and on a Chip Ken Kennedy Rice University http://www.cs.rice.edu/~ken/presentations/heterogeneous.pdf Senior Researchers Ken Kennedy John Mellor-Crummey

More information

CellSs Making it easier to program the Cell Broadband Engine processor

CellSs Making it easier to program the Cell Broadband Engine processor Perez, Bellens, Badia, and Labarta CellSs Making it easier to program the Cell Broadband Engine processor Presented by: Mujahed Eleyat Outline Motivation Architecture of the cell processor Challenges of

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline Fermi/Kepler Architecture Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information