Relay. bit4 bit5 bit6 bit7

Size: px
Start display at page:

Download "Relay. bit4 bit5 bit6 bit7"

Transcription

1 /************************************************* LC METER INTERNAL OSC 1602 display by 4 bit with PIC16 16F By nobcha all right reserved Ver /29 29/ for pic16 16f88 V2.0 02/10 10/2012 for PIC16 16F Hitech C & MPLAB PIC16 16F LCD PIN Assign #1 RA2:comparator input c1+ c #2 RA3:comparator c1outc #3 RA4:comparator c2out c t0ckit #4 RA5/MCLR MCLR:CLEAR CLEAR SW #6 RB0:EN #7 RB1:RS RS #8 RB2:none #9 RB3:Relay Relay #10 RB4:bit bit4 #11 RB5:bit bit5 #12 RB6:bit bit6 #13 RB7:bit bit7 #15 RA6:MON LED #16 RA7:L/C select #17 RA0:comparator c1-c #18 RA1:comparator c2-c TMR0 is counter with 1/2 prescaler TMR1 is gate time controller as set 10ms ms( ) OSC INTERNAL 8MHz Development Circumstance MPLAB IDE V8.73 V 73a HiTECH C V9.83V Counter data is put on TMR0 input. TMR1 is worked for 10mS gate. TMR0 is 8 bits counter It is counted TMR0 overflow on count_1. **************************************************/ #define pic_clk clk #define MHz #define _XTAL XTAL_FREQ 8MHz ページ (1)

2 #define CAL_LOW LOW LATB3 // Calibration ON RELAY PORT #define CAL_SW RA7 // Calibration status switch #define CHK_LED LATA6 // Operation check LED #define c_cal c cal // 1000pF is calibration capacitor <htc htc.h> "delay delay.h" <pic pic.h> <stdio stdio.h> "lcd lcd.h" CONFIG CONFIG( FOSC_INTOSC & WDTE_OFF & PWRTE_ON & MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF OFF & CLKOUTEN_OFF OFF & IESO_OFF OFF & FCMEN_OFF ); CONFIG CONFIG( WRT_OFF & PLLEN_OFF & STVREN_ON & LVP_OFF ); unsigned short freq3, freq2, freq1; unsigned short ci=0,li li=0,test value,freqcal freqcal; float l_inv l inv,l_int int,c_int int,f_sq sq; unsigned char timeup, count_l,mmm mmm=0,chk chk_led led,err err=0; void cnt_setup setup(void void){ TRISA = 0b ; // RA4 disable RA0,1,2,5,7 input TMR0 = 0 ; // TMR0 clear TMR1L = 0; // Clear Low Byte of TMR1 TMR1H = 177; // Set 177* =45312 TMR1L = 224; // Set ( ) = = // This is 10mS gate time settinng T0IF IF=0; // TMR0 flag off TMR1IF IF=0; // TMR1 flag off TMR1IE IE=1; // TMR1 INT ENABLE T0IE IE=1; // TMR0 INT ENABLE timeup=0; // Reset timeup flag count_l=0; // Reset overtime flag INTCON=0b ; // GIE 1,PEIE 1,TMR TMR0IE 1,INT INT0IE IE 0,RBIE TMR0IF 0,INT INT0IF IF 0,RBIF 0 ページ (2)

3 T1CON = 0b ; // T1RUN 1,T1CKPS 00,T1OSCDIS OSCDIS,T1SYNC SYNC 1,TMR TMR1CS TMR1ON 1 TRISA = 0b ; // RA4 enable void interrupt cnt_int int(void void){ GIE=0; if(t0if IF){ count_l++ ++; // Counter0 overflow occured T0IF IF=0; GIE=1; if(tmr TMR1IF IF){ TRISA = 0b ; // Stop count RA4 disable timeup=1; // Gate time over TMR1IF =0; short freq_count count(void void){ // Frequency counting cnt_setup setup() (); // Counter start set up // Waiting gate off 10ms GIE=1; // Interrupt enable while(timeup timeup== ==0){ // Gate time up waiting timeup=0; // Reset flag GIE=0; // Interrupt disable // Return frequency return(( ((short short)(( )((TMR TMR0+count count_l* ))* ))*2); // (tmr ( tmr0+( +(overflow count_1* ))* ))*prescaler // Stand for nnnn.n n khz void freq_display display(unsigned short freq){ // Display freq on LCD char k=0, k data; // nnnn.n n khz short decimal = 10000; // Get modulo by deviding char zero_sup sup=1; // Zero suppres flag if(freq freq> ){ freq= ; while(k<5){ // 5 digits data = ((char char)(( )((freq freq/decimal decimal)%10 %10)) 0x30 30; // Get digit data if(( ((disp data== ==0x30 30)&zero zero_sup & k!=!=3 ){ data=0x20 20; // zero suppres ページ (3)

4 release 1827l_lcm_main else{ zero_sup sup=0; // zero suppres putch(disp data ); // Display digit ms(5); if(k== ==3){lcd putch(0x2e); // Display DP ms(2); // decimal = decimal / 10; // 10->1 k++ ++; void test_display display(unsigned short value, char dp){ // Test data display char j=0, j data; // nnnnn uh or pf short decimal = 10000; // Get modulo by deviding char zero_sup sup=1; // Zero suppres flag while(j<5){ // 5 digits data = ((char char)(( )((value value/decimal decimal)%10 %10)) 0x30 30; // Get digit data release if(( ((disp data== ==0x30 30)&zero zero_sup & j!=(!=(dp dp)) )){ // except dp digit data=0x20 20; // zero suppres else{ zero_sup sup=0; // zero suppres // putch(disp data ); // Display digit if (j== ==dp & dp!=!=4 ){ putch(0x2e); // Display DP decimal = decimal / 10; // 10->1 j++ ++; float freq_cal cal(short f1, f short f2){ f // Coefficient calculating return(( ((float )(f1)/( )/(float )(f2)*( )*(float )(f1)/( )/(float )(f2)- )-1); ページ (4)

5 void main() (){ unsigned char i,l_power i power, l_digi digi, l_unit unit, c_power power, c_digi digi, c_unit unit; TRISA = 0b ; // RA3,6 output the others input RA4 control CM1CON CON0 = 0b ; // Comparator 0 CM2CON CON0 = 0b ; // Comparator 1 is not used CM1CON CON1 = 0b ; // cxpch:11 C12 12IN IN+: +:RA RA2 C12 12IN IN0- CM2CON CON1 = 0b ; // C1PCH PCH:10 FVR,C12 12IN IN1-: -:01 FVRCON = 0b ; // FVR ENABLE 2.048V ANSELA = 0b ; TRISB = 0b ; // All output ANSELB = 0b ; PORTA = 0b ; // PORTA clear PORTB = 0b ; // PORTB CLEAR OPTION_REG REG=0b ; // PORTB pullup,intedg 0,TOCS T0CKI T 1,ToSE ToSE1,PSA TIMER0,1/4 OSCCON = 0x70 70; // Internel 8MHz GIE=0; // INT off T1CON = 0; // Timer1 off INTCON=0b ; // GIE 0,PEIE 1,TMR TMR0IE 1,INT INT0IE IE 0,RBIE TMR0IF 0,INT INT0IF IF 0,RBIF 0 PIE1 = 0b ; // ADIE 0,RCIE 0,TXIE 0,SSPIE 0,CCP CCP1IE TMR2IE TMR1IE 1 PIR1 = 0b ; // ADIF 0,RCIF 0,TXIF 0,SSPIF 0,CCP CCP1IF TMR2IF TMR1IF 1 T2CON = 0x0; // No use while(1){ lcd_init init() (); goto(0); // select first line ("LCM F1:") F :"); // LCD display ("SET CALSW") "); // Ask cal SW on for(i=0;i<50 50;i++) ++){ // START SWITCH CHECK // If caliblration ページ (5)

6 while(cal CAL_SW SW== ==0){ // CAL switch check while(cal CAL_SW SW== ==0){ // Check again /* Get frequency 1 and display */ goto(7); // Set position ms(2); freq1=freq freq_count count() (); // F1 get freq1=freq freq_count count() (); // F1 get again freq_display display(freq freq1); // display F1F ("khz khz") "); // // Sample measuring forever if not error while(err err== ==0){ /* Turn on CAL relay and get frequency 2 */ CAL_LOW LOW=1; // Calibration capasitor on ms( ); // Wait 100ms freq2=freq freq_count count() (); // Get F2F CAL_LOW LOW=0; // Capacitor off /* F2 displaying */ goto(40 40); // Move cursur to the top of 2nd line ms(1); // Wait 1ms freq_display display(freq freq2); // display F2F error while(freq freq2< ){ // too low (20 20kHz khz) freq2 goto(48 48); ms(10 10); if(freq freq2> ){ // If freq2< aborted /* Calculating C and L */ c_int int=( =(float )(c_cal cal)/ )/freq freq_cal cal(freq freq1,freq freq2); // Calcurate c_int c from F and F2F (F1*F1) f_sq sq=( =(float )(freq freq1)*( )*(float )(freq freq1)/+ )/ E+2; // l_inv inv=(+ =( E+1)* )*f_sq sq*c_int int; l_int int=(+ =( E+14 14)/ )/l_inv inv; // /* for debugging */ ページ (6)

7 value value test_display display(( ((short short)( )(c_int int),5); // Display c_int c // Wait 20ms test_display display(( ((short short)( )(l_int int),2); // Display l_int l for(i=0;i<50 50;i++) ++){ // Wait 1 second again while(cal CAL_SW SW== ==1){ // Check sw status for(i=0;i<10 10;i++) ++){ // Wait 0.2 second // calibration end /* Measuring starting message */ while(1){ CHK_LED LED=( =(chk chk_led led++) ++)&0x1; // LED on/off off for(i=0;i<50 50;i++) ++){ // Wait 1 second C goto(8); ("SET TEST") "); // Ask setting L or for(i=0;i<50 50;i++) ++){ // Wait 1 second goto(7); freq_display display(freq freq1); ("khz khz") "); // display F1F freq3=freq freq_count count() (); // Get F3F chk_led led!=!=chk chk_led led; // LED on/off off /* displaying value */ goto(40 40); // Move cursur to top of line ms(1); /* Metric unit changing */ ページ (7)

8 l_power power= ; l_digi digi=1; l_unit unit='m'; '; if(freq freq3== ==0){ ("no coil") "); else{ Under 2kHz error than 100kHz if(freq freq3<20 20){lcd ("err err") ");err err=1; // else if(freq freq3< ){ // If F3 F is lower // mh assigned else{ l_power power=1; l_digi digi=0; l_unit unit='u'; '; c_power power=1; c_digi digi=0; c_unit unit='p'; '; /* Calculating value */ if(cal CAL_SW SW== ==0){ // If RA0== ==1 L measuring value=( =(unsigned short)(( )((freq freq_cal cal(freq freq1,freq freq3))* ))*l_int int/10 10/l_power power); test_display display(test value,3-l_digi digi); // 5digits displaying ms(10 10); putch(l_unit unit); ("H") "); else{ value=( =(unsigned short)(( )((freq freq_cal cal(freq freq1,freq freq3))* ))*c_int int/c_power power); test_display display(test value,4-c_digi digi); // 5digits displaying ms(10 10); putch(c_unit unit); ("F") "); // If calibration_switch switch== ==0 C measuring F3 freq_display display(freq freq3); // display ページ (8)

9 1827l_lcm_main ("khz "); ページ (9)

Chapter 11: Interrupt On Change

Chapter 11: Interrupt On Change Chapter 11: Interrupt On Change The last two chapters included examples that used the external interrupt on Port C, pin 1 to determine when a button had been pressed. This approach works very well on most

More information

Timer0..Timer3. Interrupt Description Input Conditions Enable Flag

Timer0..Timer3. Interrupt Description Input Conditions Enable Flag Timer0..Timer3 Timers are pretty useful: likewise, Microchip provides four different timers for you to use. Like all interrupts, you have to Enable the interrupt, Set the conditions of the interrupt, and

More information

EE6008-Microcontroller Based System Design Department Of EEE/ DCE

EE6008-Microcontroller Based System Design Department Of EEE/ DCE UNIT- II INTERRUPTS AND TIMERS PART A 1. What are the interrupts available in PIC? (Jan 14) Interrupt Source Enabled by Completion Status External interrupt from INT INTE = 1 INTF = 1 TMR0 interrupt T0IE

More information

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics:

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics: Section 13. Timer0 HIGHLIGHTS This section of the manual contains the following major topics: 13.1 Introduction... 13-2 13.2 Control Register... 13-3 13.3 Operation... 13-4 13.4 Timer0 Interrupt... 13-5

More information

Timer1 Capture Mode:

Timer1 Capture Mode: Timer1 Capture Mode: Interrupt Description Input Conditions Enable Flag Timer 1 Trigger after N events N = 1.. 2 19 100ns to 0.52 sec RC0 TMR1CS = 1 TMR1IF Timer 1 Capture Mode 1 Timer 1 Capture Mode 2

More information

ECE Homework #10

ECE Homework #10 Timer 0/1/2/3 ECE 376 - Homework #10 Timer 0/1/2/3, INT Interrupts. Due Wednesday, November 14th, 2018 1) Write a program which uses INT and Timer 0/1/2/3 interrupts to play the cord C#major for 1.000

More information

EECE.3170: Microprocessor Systems Design I Summer 2017

EECE.3170: Microprocessor Systems Design I Summer 2017 EECE.3170: Microprocessor Systems Design I Summer 2017 1. What is an interrupt? What is an exception? Lecture 13: Key Questions June 19, 2017 2. For what purposes are interrupts useful? 3. Describe the

More information

Section 14. Timer1 HIGHLIGHTS. Timer1. This section of the manual contains the following major topics:

Section 14. Timer1 HIGHLIGHTS. Timer1. This section of the manual contains the following major topics: Section 14. Timer1 HIGHLIGHTS This section of the manual contains the following major topics: 14.1 Introduction... 14-2 14.2 Control Register... 14-4 14.3 Timer1 Operation in Timer Mode... 14-5 14.4 Timer1

More information

Speed Control of a DC Motor using Digital Control

Speed Control of a DC Motor using Digital Control Speed Control of a DC Motor using Digital Control The scope of this project is threefold. The first part of the project is to control an LCD display and use it as part of a digital tachometer. Secondly,

More information

EECE.3170: Microprocessor Systems Design I Spring 2016

EECE.3170: Microprocessor Systems Design I Spring 2016 EECE.3170: Microprocessor Systems Design I Spring 2016 Lecture 31: Key Questions April 20, 2016 1. (Review) Explain how interrupts can be set up and managed in the PIC microcontrollers. 1 EECE.3170: Microprocessor

More information

PIC16C7X 11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE SSP Module Overview. Applicable Devices

PIC16C7X 11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE SSP Module Overview. Applicable Devices Applicable Devices PIC16C7X 11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE 11.1 SSP Module Overview The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral

More information

Contents. PIC Mini Data Sheets

Contents. PIC Mini Data Sheets Contents PIC16C5x... 5 PIC16C5x Pin-Outs... 5 PIC16C5x Microcontrollers... 6 Peripheral Features... 6 Internal Architecture... 9 PIC16C5x Registers... 9 PIC16C64... 18 PIC16C64 Pin-Out...18 New and Modified

More information

Embedded Systems Programming and Architectures

Embedded Systems Programming and Architectures Embedded Systems Programming and Architectures Lecture No 10 : Data acquisition and data transfer Dr John Kalomiros Assis. Professor Department of Post Graduate studies in Communications and Informatics

More information

More Fun with Timer Interrupts

More Fun with Timer Interrupts More Fun with Timer Interrupts Chords Objective: Play a musical chord each time you press a button: Button RC0 RC1 RC2 Timer Timer0 Timer1 Timer3 RB0 A3 C4 E4 RB1 B3 D4 F4 RB2 C4 E4 G4 Calculations: Assume

More information

Figure 1: Pushbutton without Pull-up.

Figure 1: Pushbutton without Pull-up. Chapter 7: Using the I/O pins as Inputs. In addition to working as outputs and being able to turn the I/O pins on and off, these same pins can be used as inputs. In this mode the PIC is able to determine

More information

movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt

movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt movlw 0x20 #endif call scan movlw 0xfd tris PORTB ; select colb (RB1) #ifdef MODE_CH8 movlw 0x04 #endif #ifdef MODE_CH4 movlw 0x30 #endif call scan movf cod, W bz loop2 ; if no buton is pressed, skip subwf

More information

Mid-Range Family Peripheral Configuration with C Programming

Mid-Range Family Peripheral Configuration with C Programming Mid-Range Family Peripheral Configuration with C Programming MCU 2 26 Microchip Technology Incorporated. All Rights Reserved. 2ASP Rev. January Slide 28 Objectives At the end of this class you will: Understand

More information

PIC16F87/88 Data Sheet

PIC16F87/88 Data Sheet Data Sheet 18/20/28-Pin Enhanced Flash Microcontrollers with nanowatt Technology 2005 Microchip Technology Inc. DS30487C Note the following details of the code protection feature on Microchip devices:

More information

These 3 registers contain enable, priority,

These 3 registers contain enable, priority, 8.3.2) Registers Related to Interrupts These registers enable/disable the interrupts, set the priority of the interrupts, and record the status of each interrupt source. RCON INTCON, INTCON2, and INTCON3

More information

The University of Texas at Arlington Lecture 21_Review

The University of Texas at Arlington Lecture 21_Review The University of Texas at Arlington Lecture 21_Review CSE 5442/3442 Agenda Tuesday December 1st Hand back Homework 7,8 and 9. Go over questions and answers Exam 3 Review Note: There will be a take home

More information

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ /* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON & _HS_OSC & _WRT_OFF & _LVP_OFF & _CPD_OFF ;***** VARIABLE DEFINITIONS COUNT_L EQU 0x01 ;**********************************************************************

More information

Super Awesome Multitasking Microcontroller Interface for Electromechanical Systems (S.A.M.M.I.E.S.) Pinball Table

Super Awesome Multitasking Microcontroller Interface for Electromechanical Systems (S.A.M.M.I.E.S.) Pinball Table Super Awesome Multitasking Microcontroller Interface for Electromechanical Systems (S.A.M.M.I.E.S.) Pinball Table Group 13 April 29 th, 2008 Faculty Advisor: Professor Haibo He Group Members: William McGuire

More information

PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features:

PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features: 28/40-pin 8-Bit CMOS FLASH Microcontrollers Devices Included in this Data Sheet: PIC16F873 PIC16F874 PIC16F876 PIC16F877 Microcontroller Core Features: High-performance RISC CPU Only 35 single word instructions

More information

PIC16F870/ /40-Pin, 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram. Microcontroller Core Features:

PIC16F870/ /40-Pin, 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram. Microcontroller Core Features: 28/40-Pin, 8-Bit CMOS FLASH Microcontrollers Devices Included in this Data Sheet: Pin Diagram PIC16F870 PIC16F871 PDIP Microcontroller Core Features: High performance RISC CPU Only 35 single word instructions

More information

PIC16F818/819 Data Sheet

PIC16F818/819 Data Sheet Data Sheet 18/20-Pin Enhanced FLASH Microcontrollers with nanowatt Technology 2002 Microchip Technology Inc. Preliminary DS39598C Note the following details of the code protection feature on Microchip

More information

PIC16F /40-Pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features:

PIC16F /40-Pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features: 28/40-Pin 8-Bit CMOS FLASH Microcontrollers Devices Included in this Data Sheet: PIC16F870 PIC16F871 Microcontroller Core Features: High-performance RISC CPU Only 35 single word instructions to learn All

More information

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background:

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background: Background: Timer2 Interrupts The execution time for routines sometimes needs to be set. This chapter loops at several ways to set the sampling rate. Example: Write a routine which increments an 8-bit

More information

EE 361L Digital Systems and Computer Design Laboratory

EE 361L Digital Systems and Computer Design Laboratory EE 361L Digital Systems and Computer Design Laboratory University of Hawaii Department of Electrical Engineering by Galen Sasaki and Ashok Balusubramaniam Quick Overview of PIC16F8X Version 1.0 Date: 9/4/01

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems ELCT 912: Advanced Embedded Systems Lecture 10: Applications for Programming PIC18 in C Dr. Mohamed Abd El Ghany, Department of Electronics and Electrical Engineering Programming the PIC18 to transfer

More information

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 6 Experiment 6:Timers Objectives To become familiar with hardware timing

More information

PIC18FXX2 Registers. Hyperlinked Index

PIC18FXX2 Registers. Hyperlinked Index PIC18FXX2 Registers This document provides a concise summary of the names and bit definitions for the PIC18FXX2 Special Function Registers, Configuration Registers and Device ID Registers. Hyperlinked

More information

PIC16F7X Data Sheet. 28/40-pin, 8-bit CMOS FLASH Microcontrollers Microchip Technology Inc. DS30325B

PIC16F7X Data Sheet. 28/40-pin, 8-bit CMOS FLASH Microcontrollers Microchip Technology Inc. DS30325B M PIC16F7X Data Sheet 28/40-pin, 8-bit CMOS FLASH Microcontrollers 2002 Microchip Technology Inc. DS30325B Note the following details of the code protection feature on PICmicro MCUs. The PICmicro family

More information

PIC Microcontroller Embedded Systems Hadassah College Spring 2012 PIC Microcontroller Dr. Martin Land

PIC Microcontroller Embedded Systems Hadassah College Spring 2012 PIC Microcontroller Dr. Martin Land PIC Microcontroller 1 (MCU) Widely used device from Microchip Technology Sold > 10 billion PIC controllers Several device families Many devices per family Common development environment Widely available

More information

Laboratory 9. Programming a PIC Microcontroller - Part I

Laboratory 9. Programming a PIC Microcontroller - Part I Laboratory 9 Programming a PIC Microcontroller - Part I Required Components: 1 PIC16F84 (4MHz) or PIC16F84A (20MHz) or compatible (e.g., PIC16F88) microcontroller 1 4MHz microprocessor crystal (20 pf),

More information

PIC16F87XA Data Sheet

PIC16F87XA Data Sheet M Data Sheet 28/40-pin Enhanced FLASH Microcontrollers 2001 Microchip Technology Inc. Advance Information DS39582A 2001 Microchip Technology Inc. Advance Information DS39582A-page 3 Pin Diagram RB7/PGD

More information

BME 4900 Page 1 of 2. Meeting 2: Personal Progress Report 12/2/09 Team 12 with Drew Seils. Semester One Week Two

BME 4900 Page 1 of 2. Meeting 2: Personal Progress Report 12/2/09 Team 12 with Drew Seils. Semester One Week Two BME 4900 Page 1 of 2 Semester One Week Two These past two saw a lot of progress with the Revo stationary bike project. During Thanksgiving break Shane spent most of his time doing research for the power

More information

EET203 MICROCONTROLLER SYSTEMS DESIGN Serial Port Interfacing

EET203 MICROCONTROLLER SYSTEMS DESIGN Serial Port Interfacing EET203 MICROCONTROLLER SYSTEMS DESIGN Serial Port Interfacing Objectives Explain serial communication protocol Describe data transfer rate and bps rate Describe the main registers used by serial communication

More information

Basic Embedded Software C Review Using MPLAB SIM. Loops. Embedded Systems Interfacing. 25 August 2011

Basic Embedded Software C Review Using MPLAB SIM. Loops. Embedded Systems Interfacing. 25 August 2011 25 August 2011 Basic Embedded Software Structure No Operating System to Return to Could Let Program Execute and Reset, But That s Not Efficient Main Function Initialization Code Endless Loop The while

More information

/*Algorithm: This code display a centrifuge with five variable speed RPM by increaseing */

/*Algorithm: This code display a centrifuge with five variable speed RPM by increaseing */ /*Algorithm: This code display a centrifuge with five variable speed RPM by increaseing */ /*the speed the cell which are less dense can float and the cell that are denser can sink*/ /*the user has five

More information

SRF08 Ultra sonic range finder

SRF08 Ultra sonic range finder SRF08 Ultra sonic range finder Technical Specification Communication with the SRF08 ultrasonic rangefinder is via the I2C bus. This is available on popular controllers such as the OOPic and Stamp BS2p,

More information

Using Timers of Microchip PIC18F Microcontrollers

Using Timers of Microchip PIC18F Microcontrollers Using Timers of Microchip PIC18F Microcontrollers ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it L.A.P.

More information

PIC16C745/ Bit CMOS Microcontrollers with USB. Pin Diagrams. Devices included in this data sheet: Microcontroller Core Features:

PIC16C745/ Bit CMOS Microcontrollers with USB. Pin Diagrams. Devices included in this data sheet: Microcontroller Core Features: 8-Bit CMOS Microcontrollers with USB Devices included in this data sheet: PIC16C745 PIC16C765 Microcontroller Core Features: High-performance RISC CPU Only 35 single word instructions Device Memory Program

More information

Hong Kong Institute of Vocational Education Digital Electronics & Microcontroller. 8. Microcontroller

Hong Kong Institute of Vocational Education Digital Electronics & Microcontroller. 8. Microcontroller 8. Microcontroller Textbook Programming Robot Controllers, Myke Predko, McGraw Hill. Reference PIC Robotics: A Beginner's Guide to Robotics Projects Using the PIC Micro, John Iovine, McGraw Hill. Embedded

More information

Capture Mode of Pic18F252

Capture Mode of Pic18F252 Capture Mode of Pic18F252 PIC18F253 has two Capture/Compare/Pulse Width Modulation modules. Some devices such as ADCs, Sensors (position, velocity, accelearstion, temperature [MAX6577 converts the ambient

More information

Example of Asyncronous Serial Comms on a PIC16F877

Example of Asyncronous Serial Comms on a PIC16F877 /***************************************************************************************/ /* Example of Asyncronous Serial Comms on a PIC16F877 */ /* Target: PIC16F877 */ /* Baud: 9600 */ /* Bits: 8 */

More information

Section 21. Addressable USART

Section 21. Addressable USART 21 Section 21. Addressable USART Addressable USART HIGHLIGHTS This section of the manual contains the following major topics: 21.1 Introduction... 21-2 21.2 Control Registers... 21-3 21.3 USART Baud Rate

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Interrupts and Resets Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu Interrupts An event that will cause the CPU to stop the normal program execution

More information

LCD. Configuration and Programming

LCD. Configuration and Programming LCD Configuration and Programming Interfacing and Programming with Input/Output Device: LCD LCD (liquid crystal display) is specifically manufactured to be used with microcontrollers, which means that

More information

PIC16F872 Data Sheet. 28-Pin, 8-Bit CMOS Flash Microcontroller with 10-Bit A/D Microchip Technology Inc. DS30221C

PIC16F872 Data Sheet. 28-Pin, 8-Bit CMOS Flash Microcontroller with 10-Bit A/D Microchip Technology Inc. DS30221C Data Sheet 28-Pin, 8-Bit CMOS Flash Microcontroller with 10-Bit A/D 2006 Microchip Technology Inc. DS30221C Note the following details of the code protection feature on Microchip devices: Microchip products

More information

Interrupts on PIC18F252 Part 2

Interrupts on PIC18F252 Part 2 Interrupts on PIC18F252 Part 2 Following pages list Special Function Registers (SFRs) involved in interrupt configuration and operation on PIC18F252 microcontroller. (Copied from Microchip s PIC18Fxx2

More information

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 18th February 2002 CLR Part V Hardware Interfacing There are several features of computers/microcontrollers which have not

More information

Using the 8-Bit Parallel Slave Port

Using the 8-Bit Parallel Slave Port M AN579 Using the 8-Bit Parallel Slave Port Author: INTRODUCTION PIC16C64/74 microcontrollers from Microchip Technology Inc. can be interfaced with ease into a multi-microprocessor environment using its

More information

PIC Microcontroller. PIC Microcontroller (MCU) Typical Applications. PIC Families

PIC Microcontroller. PIC Microcontroller (MCU) Typical Applications. PIC Families (MCU) PIC Microcontroller Widely used device from Microchip Technology Sold > billion PIC controllers Several device families Many devices per family Common development environment Widely available Large

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. M PIC16F87XA Data Sheet 28/40-pin Enhanced FLASH Microcontrollers 2001 Microchip

More information

PIC16F630/676 Data Sheet

PIC16F630/676 Data Sheet Data Sheet 14-Pin, Flash-Based 8-Bit CMOS Microcontrollers 2007 Microchip Technology Inc. DS40039E Note the following details of the code protection feature on Microchip devices: Microchip products meet

More information

The MCU s Pulse. Internal clock or oscillator to synchronize operation. One clock cycle = 1 TOSC = 1/fOSC. t TOSC

The MCU s Pulse. Internal clock or oscillator to synchronize operation. One clock cycle = 1 TOSC = 1/fOSC. t TOSC The MCU s Pulse Internal clock or oscillator to synchronize operation V 0 t TOSC One clock cycle = 1 TOSC = 1/fOSC Clock Cycle The minimum time to perform any operation is one instruction cycle TCY 1 TCY

More information

Kit Contents. Getting Started Kits. Board. Board

Kit Contents. Getting Started Kits. Board. Board Kit Contents Getting Started Kits Each kit has the following items: Board with microcontroller (18(L)F4620) Power brick for the board. Programmer, and power brick for programmer. USB logic analyzer Digital

More information

EEE394 Microprocessor and Microcontroller Laboratory Lab #6

EEE394 Microprocessor and Microcontroller Laboratory Lab #6 Exp. No #6 Date: INTERRUPTS AND ADC IN PIC MICROCONTROLLER OBJECTIVE The purpose of the experiment is to configure external interrupt and the ADC in PIC microcontrollers. (i) To flip the LED connected

More information

MDT10P General Description. 2. Features. 3. Applications

MDT10P General Description. 2. Features. 3. Applications 1. General Description This EPROM-Based 8-bit micro-controller uses a fully static CMOS technology process to achieve higher speed and smaller size with the low power consumption and high noise immunity.

More information

PIC16F630/676 Data Sheet

PIC16F630/676 Data Sheet M PIC16F630/676 Data Sheet 14-Pin FLASH-Based 8-Bit CMOS Microcontrollers 2002 Microchip Technology Inc. Preliminary DS4003A Note the following details of the code protection feature on PICmicro MCUs.

More information

Acronyms and Abbreviations

Acronyms and Abbreviations Appendix A Acronyms and Abbreviations ADC (A/D) Analog-to-Digital Converter/Conversion ADCON0 A/D CONtrol 0 ADCON1 ADC CONtrol 1 ADCSn ADC Clock Select, bits; ADCON0[7:6] ADDEN ADDress ENable; RCSTA[3]

More information

Embedded systems. Exercise session 3. Microcontroller Programming Lab Preparation

Embedded systems. Exercise session 3. Microcontroller Programming Lab Preparation Embedded systems Exercise session 3 Microcontroller Programming Lab Preparation Communications Contact Mail : michael.fonder@ulg.ac.be Office : 1.82a, Montefiore Website for the exercise sessions and the

More information

ME 6405 Introduction to Mechatronics

ME 6405 Introduction to Mechatronics ME 6405 Introduction to Mechatronics Fall 2006 Instructor: Professor Charles Ume Microchip PIC Manufacturer Information: Company: Website: http://www.microchip.com Reasons for success: Became the hobbyist's

More information

Chapter 13. PIC Family Microcontroller

Chapter 13. PIC Family Microcontroller Chapter 13 PIC Family Microcontroller Lesson 06 Special Function Registers for Control and status registers for the peripherals, input/output and Interrupt SFRs SFRs at the addresses of internal RAM/register

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 Semester 2 Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J2 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

Digital pulse sensors

Digital pulse sensors Digital pulse sensors Incremental encoders, angle Mechanical sensing Optical sensing Luxury variant Lågpriskomponenten Lowest Price 2 Optical fork coupler 2 spring contacts Contact pattern Hole/slit disc

More information

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet Example Application...

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet Example Application... Overview of the PIC 16F648A Processor: Part 1 EE 361L Lab 2.1 Last update: August 19, 2011 Abstract: This report is the first of a three part series that discusses the features of the PIC 16F684A processor,

More information

Interrupts on PIC18F252 Part 2. Interrupts Programming in C Language

Interrupts on PIC18F252 Part 2. Interrupts Programming in C Language Interrupts on PIC18F252 Part 2 Interrupts Programming in C Language Programming interrupts in C language using XC8 compiler is significantly simplified compared to C18 compiler. This note explains the

More information

Laboratory: Introduction to Mechatronics

Laboratory: Introduction to Mechatronics Laboratory: Introduction to Mechatronics Instructor TA: Edgar Martinez Soberanes (eem370@mail.usask.ca) 2017-02-9 Lab 3. LED Control and Interruptions. Lab Sessions Lab 1. Introduction to the equipment

More information

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept.

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Embedded Systems Design (630470) Lecture 4 Memory Organization Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Memory Organization: PIC16F84 has two separate memory blocks, for data and for program. EEPROM

More information

expandio-usb TM Summary USB Features I/O Expander Command Set Applications Peripheral Features Firmware Factory USB Product Family

expandio-usb TM Summary USB Features I/O Expander Command Set Applications Peripheral Features Firmware Factory USB Product Family Summary expandio-usb is an ultra-low cost USB I/O expander It allows a PIC microcontroller to be remotely controlled via USB, significantly reducing time-to-market for simple USB-based products expandio-usb

More information

Accurate Time and Interrupts

Accurate Time and Interrupts Accurate Time and Interrupts Matthew Beckler beck0778@umn.edu EE2361 Lab Section 007 March 7, 2006 Abstract In this lab, we create a very accurate digital clock using one of the microcontroller s timers.

More information

evsjv `k cigvyy kw³ Kwgkb BANGLADESH ATOMIC ENERGY COMMISSION

evsjv `k cigvyy kw³ Kwgkb BANGLADESH ATOMIC ENERGY COMMISSION Design and Development of Microcontroller Based Programmable Timer for Supply Control Md. Shahzamal, Mohammad Abu Sayid Haque, Md. Nasrul Haque Mia, Md. Anzan-Uz-Zaman, Sardar Masud Rana, Mahbubul Hoq,

More information

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet... 4

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet... 4 Overview of the PIC 16F648A Processor: Part 1 EE 361L Lab 2.1 Last update: August 1, 2016 Abstract: This report is the first of a three part series that discusses the features of the PIC 16F648A processor,

More information

RS232.C An Interrupt driven Asyncronous Serial Port

RS232.C An Interrupt driven Asyncronous Serial Port /***************************************************************************/ /* RS232.C An Interrupt driven Asyncronous Serial Port */ /* Date : 06/03/2002 */ /* Purpose : Asyncronous Transmitter & Receiver

More information

Section 16. Basic Sychronous Serial Port (BSSP)

Section 16. Basic Sychronous Serial Port (BSSP) M 16 Section 16. Basic Sychronous Serial Port (BSSP) BSSP HIGHLIGHTS This section of the manual contains the following major topics: 16.1 Introduction...16-2 16.2 Control Registers...16-3 16.3 SPI Mode...16-6

More information

Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar

Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar Starting with Serial Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar Outline Introduction Synchronous Serial Communication Asynchronous Serial Communication Physical Limitations Overview of PIC 16 Series The

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan PIC18 Serial Port Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu Serial vs. parallel data transfer 2 Simplex, half-, and full-duplex transfers 3

More information

Section 24. Comparator

Section 24. Comparator Section 24. HIGHLIGHTS This section of the manual contains the following major topics: 24.1 Introduction... 24-2 24.2 Control Register... 24-3 24.3 Configuration... 24-4 24.4 Operation... 24-6 24.5 Reference...

More information

PIC12F629/675 Data Sheet

PIC12F629/675 Data Sheet M PIC12F62/675 Data Sheet 8-Pin FLASH-Based 8-Bit CMOS Microcontrollers 2002 Microchip Technology Inc. Preliminary DS4110A Note the following details of the code protection feature on PICmicro MCUs. The

More information

EEE111A/B Microprocessors

EEE111A/B Microprocessors EEE111A/B Microprocessors Revision Notes Lecture 1: What s it all About? Covers the basic principles of digital signals. The intelligence of virtually all communications, control and electronic devices

More information

Micro-Controller: PIC16C74 < Part 5: Interrupt >

Micro-Controller: PIC16C74 < Part 5: Interrupt > Micro-Controller: PIC16C74 < Part 5: Interrupt > I. Overview Introduction PIC16c74 can have many sources of interrupt. These sources generally include one interrupt source for each peripheral module, though

More information

Microcontroller Overview

Microcontroller Overview Microcontroller Overview Microprocessors/Microcontrollers/DSP Microcontroller components Bus Memory CPU Peripherals Programming Microcontrollers vs. µproc. and DSP Microprocessors High-speed information

More information

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch.

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch. Introduction to microprocessors Feisal Mohammed 3rd January 2001 Additional features 1 Input/Output Ports One of the features that differentiates a microcontroller from a microprocessor is the presence

More information

Interrupts. Embedded Systems Interfacing. 08 September 2011

Interrupts. Embedded Systems Interfacing. 08 September 2011 08 September 2011 An iterrupt is an internal or external event that forces a hardware call to a specified function called an interrupt service routine Interrupt enable must be set (initialization) The

More information

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics:

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics: M 11 Section 11. HIGHLIGHTS This section of the manual contains the following major topics: 11.1 Introduction...11-2 11.2 Control Register...11-3 11.3 Operation...11-4 11.4 TMR0 Interrupt...11-5 11.5 Using

More information

Human Response Timer

Human Response Timer Human Response Timer Matthew Beckler beck0778@umn.edu EE2361 Lab Section 007 March 29, 2006 Abstract In this lab, we create a very useful application, a human response timer. The user s reaction time is

More information

Interfacing PIC Microcontrollers to Peripherial Devices

Interfacing PIC Microcontrollers to Peripherial Devices Interfacing PIC Microcontrollers to Peripherial Devices International Series on INTELLIGENT SYSTEMS, CONTROL, AND AUTOMATION: SCIENCE AND ENGINEERING VOLUME 49 Editor Professor S. G. Tzafestas, National

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name : Embedded System Class/Sem : BE (ECE) / VII Subject Code

More information

The MICROPROCESSOR PRINCIPLES AND APPLICATIONS Lab 7

The MICROPROCESSOR PRINCIPLES AND APPLICATIONS Lab 7 The MICROPROCESSOR PRINCIPLES AND APPLICATIONS Lab 7 Timer, USART Cheng-Chien Su 蘇正建 Home Automation, Networking, and Entertainment Lab Dept. of Computer Science and Information Engineering National Cheng

More information

Interactive Modules for the Intelligent Teddy Bear

Interactive Modules for the Intelligent Teddy Bear Interactive Modules for the Intelligent Teddy Bear Submitted by: Siddharth Goyal Department of Electrical Engineering Under the Guidance of Dr. Shuzhi Sam Ge Prof. of the Electrical and Computer Engineering

More information

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver OTP 8-Bit CMOS MCU with LIN bus Transceiver Devices included in this Data Sheet: High Performance RISC CPU: Only 35 instructions to learn All single cycle instructions (200 ns), except for program branches

More information

CENG-336 Introduction to Embedded Systems Development. Timers

CENG-336 Introduction to Embedded Systems Development. Timers CENG-336 Introduction to Embedded Systems Development Timers Definitions A counter counts (possibly asynchronous) input pulses from an external signal A timer counts pulses of a fixed, known frequency

More information

DRPIC166X IP Core. High Performance 8-bit RISC Microcontroller v. 2.17

DRPIC166X IP Core. High Performance 8-bit RISC Microcontroller v. 2.17 2017 DRPIC166X IP Core High Performance 8-bit RISC Microcontroller v. 2.17 C O M P A N Y O V E R V I E W Digital Core Design is a leading IP Core provider and a System-on-Chip design house. The company

More information

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work LAB WORK 1 We are studying with PIC16F84A Microcontroller. We are responsible for writing assembly codes for the microcontroller. For the code, we are using MPLAB IDE software. After opening the software,

More information

BME 361 Biomeasurement Laboratory Demonstration Biomedical Engineering Program University of Rhode Island June 10, 2015

BME 361 Biomeasurement Laboratory Demonstration Biomedical Engineering Program University of Rhode Island June 10, 2015 BME 361 Biomeasurement Laboratory Demonstration Biomedical Engineering Program University of Rhode Island June 10, 2015 The functional units on this demonstration bread board include a PIC18F4525 processor,

More information

ELEG3923 Microprocessor Ch.9 Timer Programming

ELEG3923 Microprocessor Ch.9 Timer Programming Department of Electrical Engineering University of Arkansas ELEG3923 Microprocessor Ch.9 Timer Programming Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Programming 8051 Timers Counter programming Timer programming

More information

unsigned char ReadADC() { /************* start A/D, read from an A/D channel *****************/ unsigned char ADC_VALUE;

unsigned char ReadADC() { /************* start A/D, read from an A/D channel *****************/ unsigned char ADC_VALUE; /*********************************************************************************************/ /* BME 361 Biomeasurement Lab - PIC18F4525BT Demo */ /* Laboratories 1-8: A/D, D/A, LCD display, ECG simulation,

More information

Remote Controlled KitchenAid Mixer for the Clients at ADEC. Appendices. Arnaud Bacye Karina Dubé Justin Erman Matthew Martin

Remote Controlled KitchenAid Mixer for the Clients at ADEC. Appendices. Arnaud Bacye Karina Dubé Justin Erman Matthew Martin Mix Masters Remote Controlled KitchenAid Mixer for the Clients at ADEC Appendices Arnaud Bacye Karina Dubé Justin Erman Matthew Martin Table of Contents A Hardware Schematics and Boards 2 A.1 Current Schematics

More information

Sales: Technical: Fax:

Sales: Technical: Fax: DATA SHEET PIC Microcontrollers Order code Manufacturer code Description 73-3352 n/a PIC16F877A-I/P (RC) PIC Microcontrollers The enclosed information is believed to be correct, Information may change

More information