1.1 INDUSTRY STANDARD BUS-IOM

Size: px
Start display at page:

Download "1.1 INDUSTRY STANDARD BUS-IOM"

Transcription

1 Design and Implementation of Extended PCM Interface Controller (EPIC) with reduced clock frequency # Nalini Iyer Jagadish Hadimani*, Santoshkumar chavan*** naliniciyer@yahoo.com* jagadish_hadimani@yahoo.com, ***santosh_s_chavan@yahoo.com B.V.B College of Engineering and Technology, Hubli Abstract This paper presents a design and implementation of EPIC, with reduced clock frequency as compared to available EPIC to suit to the requirements of C- DOT s access network. IOM bus structure is used in the design of EPIC to support ISDN and analog applications which eliminates the need to have microprocessor interface for major IC s on the line card, thus reducing and simplifying the line card cost and layout. Reduction of the clock frequency to 2 MHz compared to 4 MHz in commercially available EPIC is achieved by the use of two data memories, with 128 bytes corresponding to 128 channels for read and writes operations simultaneously, targeted towards the ideal switch architecture. One major application of the EPIC is therefore as line card controller. 1.Introduction The field of telecommunication has gone a rapid change with the advent of ISDN[1]. The demand for higher bandwidth and data rate was catered by ISDN. The ISDN brought with itself the data traffic, which should be properly switched on to the PCM side for transmission through the conventional copper wire cable. The signalling information in ISDN lines put a extra burden on processors in the line cards. To solve these problems Extended PCM Interface Controller (EPIC) evolved which is heart of such a switching application[ 2] The EPIC is principally an intelligent switch of PCM data between two serial interfaces, the system interface (PCM interface) and the configurable interface (CFI). This paper presents the design and synthesis of EPIC using VHDL on Altera s FPGA.The proposed design makes use of IOM bus to support ISDN and analog application, which eliminates the need to have a microprocessor interface on the transceiver or code, thus reducing and simplifying the line card layout and cost. The EPIC can handle up to 32 ISDN-subscribers with their 2B +D channel structure or up to 64 analog subscribers with their 1B channel structure in IOM-configuration 1.1 INDUSTRY STANDARD BUS-IOM The inter-chip bus structures that were used in single channel per line pre- ISDN telephone equipment are not well suited for the 2B+D structure of ISDN[5]. To overcome the above difficulties, new standard bus interface architecture (an industry standard bus) named ISDN Oriented Modular (IOM) interface was designed jointly by 4 major European telephone equipment manufacturers to support both ISDN and analog lines. The IOM bus provides a symmetrical full-duplex communication link, containing user data, control/programming, and status channels. Both the line-card and the ISDN terminal utilize the same basic frame and clocking structure, but differ in the number and usage of the individual channels. The various channels are time-multiplexed over a four-wire serial interface. Frames are delimited by 8-kHz frame synchronization clock (FSC). Data is carried over data upstream (DU) and data downstream (DD) signals. By supporting multiplexing (providing) of data, control, and status information over a serial channel, the IOM bus eliminates the

2 need to have microprocessor interface on the transceiver or codec. This reduces pin count and simplifies line-card layout and thus reduces its cost. The frames are subdivided into eight sub-frames, with one sub-frame being dedicated to each transceiver or pair of codec s. Organisation of the rest of the paper is as follows. Section 2 deals with the architecture of EPIC. Section 3 deals with Monitor channel operation. Section 4 presents the design methodology. Results are simulated and validated in section 5. Section 6 presents conclusions. 2 Architecture of EPIC The EPIC is principally an intelligent switch of PCM data between two serial interfaces, the system interface (PCM interface) and the configurable interface (CFI). Up to 128 channels per direction can be switched dynamically between the CFI and the PCM-interfaces, each having a bandwidth of 64 Kbps. The architecture of EPIC deals with four major functional blocks namely PCM Interface Configurable Interface Pre-processed channel Memory Structure 2.1 PCM Interface: The serial PCM interface provides 4 duplex ports consisting each of a data transmit TxD and data receive RxD and a tristate control (TSC) line. The transmit direction is referred to as upstream direction, where as receive direction is referred to as downstream direction. The output data rate is Mbps, which implies 32 time slots per frame on all four ports. The PCM interface has to be clocked with PCM Data Clock (PDC) signal having a frequency equal to the PCM data rate i.e., Mbps. For the synchronization of the time slot structure to an external PCM system, a PCM Framing Signal (PFS) must be applied with a frequency of 8 khz. 2.2 Configurable Interface The configurable interface has four duplex ports each consisting of a data output (DD) and a data input (DU) line. The output pins are called Data Downstream pins and the input pins are called Data Upstream pins. This interface is suited to realize a standard serial PCM interface (PCM highway) or to implement an IOM (ISDN-Oriented Modular) interface. The IOM interface generated by the EPIC offers all the functionality like C/I- and monitor channel handling required for operating all kinds of IOM compatible layer-1 and codec devices.the CFI-data rate is also at Mbps on all the four ports. Unassigned time slots of both PCM and CFI may be either tri-state or programmed to transmit a defined idle value Switching Functions The major task of EPIC is to dynamically switch PCM data between the serial PCM interface and the serial configurable interface (CFI). The switching functions of EPIC are as shown in Figure- 1. Figure-1.Switching paths CFI PCM time slot Switching Switching paths 1 and 2 of Figure- 1 can be realized for a total number of 32 channels per path. To establish a connection, the microprocessor writes the addresses of the involved CFI and PCM time slots to the control memory. The actual transfer is then carried out frame by frame without further microprocessor intervention. The upstream switching part is realized as random write sequential read. Switching paths 3 and 4 can be realized by programming time slots assignments in the control memory.

3 Looping back a time slot from CFI to CFI requires a spare upstream PCM time slot and looping back a time slot from PCM to PCM requires a spare downstream and upstream CFI time slot. 2.3 Pre-processed channel The pre-processed channel option must always be applied to two consecutive time slots. If two time slots are declared as pre-processed channel, the first one being always even can be accessed by the monitor/feature control handler, which gives access to the frame via 16-byte FIFO. This function is mainly intended for IOM applications. The second pre-processed time-slot, the odd one, is also accessed by the microprocessor. In upstream direction, the received 8-bit value can be read. A change detection mechanism will generate an interrupt upon a change in any of the C/I value. 2.4 Memory Structure The EPIC memory is composed of the control Memory (CM) and the Data Memory (DM). The memory structure of EPIC is shown in Fig- 2 data field depends on the function defined by the code field. Data Memory The data memory refers to the PCM interface such that for each upstream time slot there is a 4 bit code field and an 8 bit data field location, whereas for each downstream time slot there is only an 8 bit data field location and no code field. The data memory data field are two in number with 128 bytes each, corresponding to 128 channels. At any point of time one data memory will be read and the other will be written i.e., one memory will be getting the data to be transmitted and the other will be reading out the data. After a period of 125us (i.e., one frame time) the roles of the data memories are going to be interchanged. This approach implements ideal time switch architecture and hence there will be no frame delays involved. 3 MONITOR CHANNEL OPERATION 3.1 HANDSHAKE PROCEDURE The monitor channel is full duplex and operates on a pseudo-asynchronous basis, that is, while data transfers on the bus take place synchronized to frame sync, the flow of data is controlled by a handshake procedure using the MX and MR bits. MR being held inactive for two or more frame times indicates the receiver is signaling an abort. 4. DESIGN METHODOLOGY Figure-2. Memory structure Control Memory The control memory refers to the Configurable Interface (CFI) such that for each CFI time slot and for each direction (upstream and downstream) there is a 4-bit code field and an 8-bit data field location. The code field is of 4 bits with 128 such locations corresponding to 128 channels. The code field defines the function of the corresponding CFI time slot. The data field is of 8 bits with 128 such locations corresponding to128 channels. The use of the control memory 4.1 UPSTREAM The proposal for the implementation of the design of upstream part of EPIC is as shown in Figure- 4. The data to the CFI interface is coming serially through the four ports DU0, DU1, DU2, and DU3. The serial data is converted into parallel data using Serial in Parallel out (SIPO). The selector selects one of the inputs based upon select signals generated from the timing generator. This data is written into one of the data memory banks (one that is being written). The control memory data field that is read at the same time specifies the address. The timing generator gives the necessary

4 timing signals to all blocks to synchronize various events. Figure-4. Downstream Design Figure- 3 Upstream Design The code field of the control memory tells whether the data is to be written into data memory or not, as it determines whether the particular time slot is switched or a pre-processed. The other data memory bank reads out the data sequentially synchronized with the PFS (PCM Frame Synchronization). The Parallel in Serial Out shift register transmits this data serially at the PCM ports. The roles of the memories are interchanged after a PFS event. If the control memory code field indicates the pre-processed channel then data is handled by the layer-1 functions i.e., MF (Monitor Feature) handler for the MF channels and C/I (Command Indication) handler for the signaling channels. 4.2 DOWNSTREAM Downstream design is basically Sequential Write Random Read. We propose the following design for the implementation of downstream design of EPIC as in Figure-5. In our design we consider that one of the data memory data field is written sequentially whenever the data from SIPO is latched and the other one is read out depending on the address specified by the control memory data field. The address for the memory which is written is provided by a counter which counts up to 31 (1F) H After the write counter has reached to 31, both the data memory data fields are exchanged. A counter, which acts as a source of read address, reads the data written into the control memory sequentially. This address-generating counter counts from 0 to MF HANDLER DESIGN Monitor Channel operates on an asynchronous basis. The flow of data is controlled by the handshake procedure based on the monitor channel receive (MR) and the monitor channel transmit (MX) bits located at the end of the fourth time slot of the respective IOM channel. EPIC can act both as a transmitter or receiver[4]. The proposed design for the MF handler is as shown in Figure-5. Figure-5. MF Handler Design The major design issues concerning the MF handler are 1. Access control of FIFO

5 2. Start transmitter and receiver sections after receiving command from CMDR 3. Generation of MX and MR bits according to the handshake protocol. 4. Generation of Status signals for microprocessor and timing signals to Transmitter and Receiver sections. 5.Simulation Results EPIC design is implemented using Altera s MAXPLUS-II synthesis able tool.the simulation results for upstream and downstream are as shown below respectively, Figure-6 Upstream Design Acknowledgement The work was carried out using the in house facilities at B.V.B College of Eng. and Tech. Hubli and was supported by C- DOT Bangalore. Bibliography 1. World telecommunication development Report 1995-Information Infrastructure. 2. Carel-Jan Van Driel, Peter A.M. van Grinsven, Verus Pronk and Wilfred A.M. Snijders, The R evolution of Access Networks for the Information Superhighway. IEEE Commun. Mag. June Colin Low, Integrating communication services, IEEE Commun. Mag. June Bharat Doshi and P. Harshavardhana, Broadband Network Infrastructure of the Future: Roles of Network Design Tools in Technology Development Strategies, IEEE Commun. Mag. May, Bill White, Multimedia Telecommunications, Chapman & Hall 1997 Figure-7 Downstream Design 6.Conclusion The simulation result of modified EPIC with ideal time switch architecture validates the reduction of clock frequency. The modified design of EPIC with reduced clock frequency of 2 MHz is implemented on Altera s Flex10k using Altera s MAXPLUS-II synthesisable tool to suit to the requirements of C-DOT s access network.

Single Channel HDLC Core V1.3. LogiCORE Facts. Features. General Description. Applications

Single Channel HDLC Core V1.3. LogiCORE Facts. Features. General Description. Applications Sept 8, 2000 Product Specification R Powered by Xilinx Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 E-mail: logicore@xilinx.com URL: www.xilinx.com/ipcenter Support:

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Communication Module No: CS/ES/11 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Communication Module No: CS/ES/11 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Communication Module No: CS/ES/11 Quadrant 1 e-text In this lecture, serial port communication will be discussed in

More information

32 Channel HDLC Core V1.2. Applications. LogiCORE Facts. Features. General Description. X.25 Frame Relay B-channel and D-channel

32 Channel HDLC Core V1.2. Applications. LogiCORE Facts. Features. General Description. X.25 Frame Relay B-channel and D-channel May 3, 2000 Xilinx Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 E-mail: logicore@xilinx.com URL: www.xilinx.com/ipcenter Support: www.support.xilinx.com Features

More information

Few Multiplexing Applications

Few Multiplexing Applications Few Multiplexing Applications by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/ The

More information

ISDN - SOC. DesignGuide. Rev 2.2

ISDN - SOC. DesignGuide. Rev 2.2 ISDN - SOC DesignGuide Rev 2.2 Content 1 Objective... 3 2 Product description... 3 3 Software interfaces... 4 3.1 Dialing procedures... 4 3.2 AT commands... 4 Configuration commands... 4 AT connection

More information

Serial Communication. Simplex Half-Duplex Duplex

Serial Communication. Simplex Half-Duplex Duplex 1.5. I/O 135 Serial Communication Simplex Half-Duplex Duplex 136 Serial Communication Master-Slave Master Master-Multi-Slave Master Slave Slave Slave (Multi-)Master Multi-Slave Master Slave Slave Slave

More information

FPGA Implementation Of SPI To I2C Bridge

FPGA Implementation Of SPI To I2C Bridge FPGA Implementation Of SPI To I2C Bridge Abhilash S.Warrier Akshay S.Belvadi Dhiraj R.Gawhane Babu Ravi Teja K Abstract Today s electronic system is not a standalone unit instead working in a group, where

More information

July 19, 1999 (Version 1.0) White Paper

July 19, 1999 (Version 1.0) White Paper July 19, 1999 (Version 1.0) White Paper Summary This white paper gives an overview of ISDN modem technologies and how Xilinx high volume programmable devices can be used to implement complex system level

More information

Fig.12.5 Serial Data Line during Serial Communication

Fig.12.5 Serial Data Line during Serial Communication Lecture-66 Asynchronous Serial Data Communication A serial data signal is divided into time intervals called bit times as shown in fig.2.5. During each bit time interval (T B ), the signal is either a

More information

ISDN OEM1. DesignGuide V1.2

ISDN OEM1. DesignGuide V1.2 ISDN OEM1 DesignGuide V1.2 Content ISDN OEM1...1 1 Objective...3 2 Product description...3 3 Software interfaces...4 3.1 Dialing procedures...4 3.2 AT commands...4 3.2.1 Configuration commands...4 3.2.2

More information

Additional Chip Select Allows Another Device to Be Accessed from the ISA Bus. Plug and Play Register Settings Stored in External Low Cost E 2 PROM.

Additional Chip Select Allows Another Device to Be Accessed from the ISA Bus. Plug and Play Register Settings Stored in External Low Cost E 2 PROM. Order this document by P/D Product Brief Passive ISDN Protocol Engine The Passive ISDN Protocol Engine (PIPE) is a communication controller optimized for ISDN passive cards, with an ISA PNP interface and

More information

Input-Output Organization

Input-Output Organization Ted Borys - CSI 404 5/1/2004 Page 11-1 Section 11 Input-Output Organization ASCII Character Set 94 printable characters Upper & lowercase letters 10 numerals Special characters such as $, @, #, % 34 control

More information

Lecture-9 Intel 8085 Microprocessor It is a 40-pin DIP(Dual in package) chip, base on NMOS technology, on a single chip of silicon.

Lecture-9 Intel 8085 Microprocessor It is a 40-pin DIP(Dual in package) chip, base on NMOS technology, on a single chip of silicon. Lecture-9 Intel 8085 Microprocessor It is a 40-pin DIP(Dual in package) chip, base on NMOS technology, on a single chip of silicon. It requires a single +5v supply between Vcc at pin no 40 and GND at pin

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT IV I/O INTERFACING PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT IV I/O INTERFACING PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT IV I/O INTERFACING PART A (2 Marks) 1. Name the three modes used by the DMA processor to transfer data? [NOV/DEC 2006] Signal transfer mode (cycling

More information

Modems, DSL, and Multiplexing. CS158a Chris Pollett Feb 19, 2007.

Modems, DSL, and Multiplexing. CS158a Chris Pollett Feb 19, 2007. Modems, DSL, and Multiplexing CS158a Chris Pollett Feb 19, 2007. Outline Finish up Modems DSL Multiplexing The fastest modems Last day, we say the combinations and phases used to code symbols on a 2400

More information

Memory Time Switch CMOS (MTSC) PEB 2045 PEF 2045

Memory Time Switch CMOS (MTSC) PEB 2045 PEF 2045 Memory Time Switch CMOS (MTSC) PEB 245 PEF 245 Preliminary Data CMOS IC Features Time/space switch for 248-, 496- or 892-kbit/s PCM systems Switching of up to 52 incoming PCM channels to up to 256 outgoing

More information

Application Note. Motorola MC to CMX865A Migration. CML Microcircuits

Application Note. Motorola MC to CMX865A Migration. CML Microcircuits CML Microcircuits COMMUICATIO SEMICODUCTORS A/Telecom/CMX865A Migration/1 February 2007 Application ote Motorola MC145443 to CMX865A Migration 1 Introduction Many designs have used the Motorola/Freescale

More information

Lecture 15: Multiplexing (2)

Lecture 15: Multiplexing (2) Lecture 15: Multiplexing (2) Last Lecture Multiplexing (1) Source: chapter 8 This Lecture Multiplexing (2) Source: chapter8 Next Lecture Circuit switching (1) Source: chapter9 Digital Carrier Systems Hierarchy

More information

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Figure 1-5 Intel Corporation s 8086 Microprocessor. The 8086, announced in 1978, was the first 16-bit microprocessor

More information

MT8952B. ISO-CMOS ST-BUS FAMILY HDLC Protocol Controller. Features. Description. Applications

MT8952B. ISO-CMOS ST-BUS FAMILY HDLC Protocol Controller. Features. Description. Applications ISO-CMOS ST-BUS FAMILY HDLC Protocol Controller Features Formats data as per X.25 (CCITT) level-2 standards Go-Ahead sequence generation and detection Single byte address recognition Microprocessor port

More information

Typical modules include interfaces to ARINC-429, ARINC-561, ARINC-629 and RS-422. Each module supports up to 8 Rx or 8Tx channels.

Typical modules include interfaces to ARINC-429, ARINC-561, ARINC-629 and RS-422. Each module supports up to 8 Rx or 8Tx channels. Modular PCI Range of Cards Summary features Modular Architecture Interface compatible with PCI Local bus Specification, revision 2.1, June 1995 2 or 4 Module General Purpose Carrier Cards 8 Channels per

More information

Course 10: Interfaces Agenda

Course 10: Interfaces Agenda Course 10: Interfaces 1 Agenda Introduction V.24 interface (RS232) USB 2 Introduction 3 Definition(s) (from the web) A boundary across which two independent systems meet and act on or communicate with

More information

PPP. Point-to-Point Protocol

PPP. Point-to-Point Protocol PPP Point-to-Point Protocol 1 Introduction One of the most common types of WAN connection is the point-to-point connection. Point-to-point connections are used to connect LANs to service provider WANs,

More information

ECE251: Thursday November 8

ECE251: Thursday November 8 ECE251: Thursday November 8 Universal Asynchronous Receiver & Transmitter Text Chapter 22, Sections 22.1.1-22.1.4-read carefully TM4C Data Sheet Section 14-no need to read this A key topic but not a lab

More information

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an Microcontroller Basics MP2-1 week lecture topics 2 Microcontroller basics - Clock generation, PLL - Address space, addressing modes - Central Processing Unit (CPU) - General Purpose Input/Output (GPIO)

More information

Multiplexing (Recap)

Multiplexing (Recap) Multiplexing (Recap) Multiplexing How to transfer data between two sites once there is a digital link between them? Analog to Digital (A2D) conversion Human voice is a continuous signal in the range 0-4

More information

Telecommunication Switching Network

Telecommunication Switching Network Telecommunication Switching Network Tuhina Samanta IT-602: TELECOMMUNICATION SYSTEMS Introduction, elements of Tele traffic, Erlang's formula. Switching techniques - Electronics switching, generic switch

More information

Serial Communication. Simplex Half-Duplex Duplex

Serial Communication. Simplex Half-Duplex Duplex 1.5. I/O 128 Serial Communication Simplex Half-Duplex Duplex 129 Serial Communication Master-Slave Master Master-Multi-Slave Master Slave Slave Slave (Multi-)Master Multi-Slave Master Slave Slave Slave

More information

PCI-SIO8BXS-SYNC. Features:

PCI-SIO8BXS-SYNC. Features: PCI-SIO8BXS-SYNC Eight Channel High Performance Serial I/O PCI Card Featuring /RS232/RS423 Software Configurable Transceivers and 32K Byte Buffers (512K Byte total) The PCI-SI08BXS-SYNC is an eight channel

More information

Functional Diagram: Serial Interface: Serial Signals:

Functional Diagram: Serial Interface: Serial Signals: PCIe4-SIO8BX2-SYNC Eight Channel High Performance Synchronous Serial I/O PCIe Card Featuring RS422/RS485/RS232 Software Configurable Transceivers and 32K Byte Buffers (512K Byte total) The PCIe4-SIO8BX2-SYNC

More information

WAN Technologies CCNA 4

WAN Technologies CCNA 4 WAN Technologies CCNA 4 Overview Note: Most of this will be described in more detail in later chapters. Differentiate between a LAN and WAN Identify the devices used in a WAN List WAN standards Describe

More information

Integrated services Digital Network

Integrated services Digital Network Integrated services Digital Network 1 Integrated Services Digital Network Public networks are used for a variety of services Public Switched Telephone Network Private Lines (leased) Packet Switched Data

More information

Few Multiplexing Applications

Few Multiplexing Applications Few Multiplexing Applications by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/ The

More information

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to central processing unit

More information

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller. UNIT V -8051 MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS 1. What is micro controller? Micro controller is a microprocessor with limited number of RAM, ROM, I/O ports and timer on a single chip

More information

Review for Exam 3. Write 0x05 to ATD0CTL4 to set at fastest conversion speed and 10-bit conversions

Review for Exam 3. Write 0x05 to ATD0CTL4 to set at fastest conversion speed and 10-bit conversions Review for Exam 3 A/D Converter Power-up A/D converter (ATD0CTL2) Write 0x05 to ATD0CTL4 to set at fastest conversion speed and 10-bit conversions Write 0x85 to ATD0CTL4 to set at fastest conversion speed

More information

More on IO: The Universal Serial Bus (USB)

More on IO: The Universal Serial Bus (USB) ecture 37 Computer Science 61C Spring 2017 April 21st, 2017 More on IO: The Universal Serial Bus (USB) 1 Administrivia Project 5 is: USB Programming (read from a mouse) Optional (helps you to catch up

More information

UNIVERSAL VERIFICATION METHODOLOGY BASED VERIFICATION ENVIRONMENT FOR PCIE DATA LINK LAYER

UNIVERSAL VERIFICATION METHODOLOGY BASED VERIFICATION ENVIRONMENT FOR PCIE DATA LINK LAYER UNIVERSAL VERIFICATION METHODOLOGY BASED VERIFICATION ENVIRONMENT FOR PCIE DATA LINK LAYER Dr.T.C.Thanuja [1], Akshata [2] Professor, Dept. of VLSI Design & Embedded systems, VTU, Belagavi, Karnataka,

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Microcontroller It is essentially a small computer on a chip Like any computer, it has memory,

More information

Pin diagram Common SignalS Architecture: Sub: 8086 HARDWARE

Pin diagram Common SignalS Architecture: Sub: 8086 HARDWARE 1 CHAPTER 6 HARDWARE ARCHITECTURE OF 8086 8086 Architecture: 6.1 8086 Pin diagram 8086 is a 40 pin DIP using CHMOS technology. It has 2 GND s as circuit complexity demands a large amount of current flowing

More information

Growing Together Globally Serial Communication Design In Embedded System

Growing Together Globally Serial Communication Design In Embedded System Growing Together Globally Serial Communication Design In Embedded System Contents Serial communication introduction......... 01 The advantages of serial design......... 02 RS232 interface......... 04 RS422

More information

UART Register Set. UART Master Controller. Tx FSM. Rx FSM XMIT FIFO RCVR. i_rx_clk o_intr. o_out1 o_txrdy_n. o_out2 o_rxdy_n i_cs0 i_cs1 i_ads_n

UART Register Set. UART Master Controller. Tx FSM. Rx FSM XMIT FIFO RCVR. i_rx_clk o_intr. o_out1 o_txrdy_n. o_out2 o_rxdy_n i_cs0 i_cs1 i_ads_n October 2012 Reference Design RD1138 Introduction The Universal Asynchronous Receiver/Transmitter (UART) performs serial-to-parallel conversion on data characters received from a peripheral device or a

More information

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS UNIT 1 - THE 8085 AND 8086

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

Architecture of 8085 microprocessor

Architecture of 8085 microprocessor Architecture of 8085 microprocessor 8085 consists of various units and each unit performs its own functions. The various units of a microprocessor are listed below Accumulator Arithmetic and logic Unit

More information

Design and Implementation of High Performance DDR3 SDRAM controller

Design and Implementation of High Performance DDR3 SDRAM controller Design and Implementation of High Performance DDR3 SDRAM controller Mrs. Komala M 1 Suvarna D 2 Dr K. R. Nataraj 3 Research Scholar PG Student(M.Tech) HOD, Dept. of ECE Jain University, Bangalore SJBIT,Bangalore

More information

Universität Dortmund. IO and Peripheral Interfaces

Universität Dortmund. IO and Peripheral Interfaces IO and Peripheral Interfaces Microcontroller System Architecture Each MCU (micro-controller unit) is characterized by: Microprocessor 8,16,32 bit architecture Usually simple in-order microarchitecture,

More information

UNIT - II PERIPHERAL INTERFACING WITH 8085

UNIT - II PERIPHERAL INTERFACING WITH 8085 UNIT - II PERIPHERAL INTERFACING WITH 8085 Peripheral Interfacing is considered to be a main part of Microprocessor, as it is the only way to interact with the external world. The interfacing happens with

More information

An Overview. 12/22/2011 Hardev Singh Manager (BB-NOC) MTNL Delhi

An Overview. 12/22/2011 Hardev Singh Manager (BB-NOC) MTNL Delhi Broadband Technology An Overview 12/22/2011 Hardev Singh Manager (BB-NOC) MTNL Delhi 1 1 2 3 4 5 6 7 8 9 * 8 # 1 2 3 4 5 6 7 8 9 * 8 # Typical Narrowband (voice) setup Local Exchange PSTNSwitch telephone

More information

CHAPTER 5 REGISTER DESCRIPTIONS

CHAPTER 5 REGISTER DESCRIPTIONS USER S MANUAL 5 CHAPTER 5 REGISTER DESCRIPTIONS 5. INTRODUCTION This section describes the functions of the various bits in the registers of the SCC (Tables 5- and 5-2). Reserved bits are not used in this

More information

1 The Attractions of Soft Modems

1 The Attractions of Soft Modems Application Note AN2451/D Rev. 0, 1/2003 Interfacing a Low Data Rate Soft Modem to the MCF5407 Microprocessor The traditional modem has been a box or an add-on card with a phone connection on one end and

More information

PIN DIAGRAM. Richa Upadhyay Prabhu. NMIMS s MPSTME January 19, 2016

PIN DIAGRAM. Richa Upadhyay Prabhu. NMIMS s MPSTME January 19, 2016 PIN DIAGRAM Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu January 19, 2016 Richa Upadhyay Prabhu (MPSTME) 8080 Microprocessor January 19, 2016 1 / 51 Pin Diagram of 8086 Richa Upadhyay

More information

CPE/EE 421/521 Fall 2004 Chapter 4 The CPU Hardware Model. Dr. Rhonda Kay Gaede UAH. The CPU Hardware Model - Overview

CPE/EE 421/521 Fall 2004 Chapter 4 The CPU Hardware Model. Dr. Rhonda Kay Gaede UAH. The CPU Hardware Model - Overview CPE/EE 421/521 Fall 2004 Chapter 4 The 68000 CPU Hardware Model Dr. Rhonda Kay Gaede UAH Fall 2004 1 The 68000 CPU Hardware Model - Overview 68000 interface Timing diagram Minimal configuration using the

More information

17. I 2 C communication channel

17. I 2 C communication channel 17. I 2 C communication channel Sometimes sensors are distant to the microcontroller. In such case it might be impractical to send analog signal from the sensor to the ADC included in the microcontroller

More information

Universal Serial Bus Host Interface on an FPGA

Universal Serial Bus Host Interface on an FPGA Universal Serial Bus Host Interface on an FPGA Application Note For many years, designers have yearned for a general-purpose, high-performance serial communication protocol. The RS-232 and its derivatives

More information

Universal Asynchronous Receiver/Transmitter Core

Universal Asynchronous Receiver/Transmitter Core Datasheet iniuart Universal Asynchronous Receiver/Transmitter Core Revision 2.0 INICORE INC. 5600 Mowry School Road Suite 180 Newark, CA 94560 t: 510 445 1529 f: 510 656 0995 e: info@inicore.com www.inicore.com

More information

Freescale Semiconductor, I

Freescale Semiconductor, I nc. MC68QH302/D (Motorola Order Number) 11/97 REV 0 MC68QH302 Advance Information MC68QH302 Quad HDLC Integrated Multiprotocol Processor Technical Summary The MC68QH302, quad HDLC integrated multiprotocol

More information

Chapter 8: Multiplexing

Chapter 8: Multiplexing NET 456 High Speed Networks Chapter 8: Multiplexing Dr. Anis Koubaa Reformatted slides from textbook Data and Computer Communications, Ninth Edition by William Stallings, 1 (c) Pearson Education - Prentice

More information

Interconnecting National Semiconductor s TP3420A SID to Motorola SCP/HDLC Devices

Interconnecting National Semiconductor s TP3420A SID to Motorola SCP/HDLC Devices Interconnecting National Semiconductor s TP3420A SID to Motorola SCP/HDLC Devices When interconnecting the s TP3420A to a Motorola SCP/HDLC device (such as the MC68302), it is necessary to consider the

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Prabal Dutta University of Michigan Lecture 10: Serial buses October 2, 2014 Some material from: Brehob, Le, Ramadas, Tikhonov & Mahal 1 Announcements Special

More information

EITF35 - Introduction to the Structured VLSI Design (Fall 2016) Interfacing Keyboard with FPGA Board. (FPGA Interfacing) Teacher: Dr.

EITF35 - Introduction to the Structured VLSI Design (Fall 2016) Interfacing Keyboard with FPGA Board. (FPGA Interfacing) Teacher: Dr. EITF35 - Introduction to the Structured VLSI Design (Fall 2016) Interfacing Keyboard with FPGA Board (FPGA Interfacing) Teacher: Dr. Liang Liu v.1.0.0 1 Abstract This document describes the basic behavior

More information

A typical WAN structure includes the following components.

A typical WAN structure includes the following components. CBCN4103 WAN is a computer network that spans a relatively large geographical area. Typically, a WAN consists of two or more LANs. A WAN is a network usually provided by a specialised company called a

More information

Optimal Porting of Embedded Software on DSPs

Optimal Porting of Embedded Software on DSPs Optimal Porting of Embedded Software on DSPs Benix Samuel and Ashok Jhunjhunwala ADI-IITM DSP Learning Centre, Department of Electrical Engineering Indian Institute of Technology Madras, Chennai 600036,

More information

Asynchronous Data Transfer

Asynchronous Data Transfer Asynchronous Data Transfer In asynchronous data transfer, there is no clock line between the two devices Both devices use internal clocks with the same frequency Both devices agree on how many data bits

More information

PROSPECTIVITY OF ASYMMETRIC DIGITAL SUBSCRIBER LINE TECHNOLOGY Dr. Ayman Ahmed Abu Samra

PROSPECTIVITY OF ASYMMETRIC DIGITAL SUBSCRIBER LINE TECHNOLOGY Dr. Ayman Ahmed Abu Samra PROSPECTIVITY OF ASYMMETRIC DIGITAL SUBSCRIBER LINE TECHNOLOGY Dr. Ayman Ahmed Abu Samra ABSTRACT: Users of the Internet require more and more speed of data transfer to be able to deal easily with websites

More information

MOS INTEGRATED CIRCUIT

MOS INTEGRATED CIRCUIT DATA SHEET MOS INTEGRATED CIRCUIT µpd6708 IEBus (Inter Equipment Bus ) PROTOCOL CONTROL LSI DESCRIPTION The µpd6708 is a peripheral LSI for microcontrollers that controls the protocol of the IEBus. This

More information

Residential Broadband (RBB)

Residential Broadband (RBB) Residential Broadband (RBB) Professor of Computer and Information Science Columbus, OH 43210 Jain@CIS.Ohio-State.Edu http://www.cis.ohio-state.edu/~jain/ 1 Service Aspects and Applications (SAA) Voice

More information

(1) Define following terms: Instruction, Machine Cycle, Opcode, Oprand & Instruction Cycle. Instruction:

(1) Define following terms: Instruction, Machine Cycle, Opcode, Oprand & Instruction Cycle. Instruction: (1) Define following terms: Instruction, Machine Cycle, Opcode, Oprand & Instruction Cycle. Instruction: Instruction is the command given by the programmer to the Microprocessor to Perform the Specific

More information

Starlink 9003T1 T1/E1 Digital Transmission

Starlink 9003T1 T1/E1 Digital Transmission Starlink 9003T1 T1/E1 Digital Transmission A Digital Audio via T1/E1 C ombining Moseley s unparalleled reputation for high quality RF aural Studio-Transmitter Links (STLs) with the performance and speed

More information

or between microcontrollers)

or between microcontrollers) : Communication Interfaces in Embedded Systems (e.g., to interface with sensors and actuators or between microcontrollers) Spring 2016 : Communication Interfaces in Embedded Systems Spring (e.g., 2016

More information

UNIT-V COMMUNICATION INTERFACE

UNIT-V COMMUNICATION INTERFACE UNIT-V COMMUNICATION INTERFACE SERIAL DATA TRANSFER INTRODUCTION Data transmission, digital transmission or digital communications is the physical transfer of data (a digital bit stream) over a point-to-point

More information

White Paper Broadband Multimedia Servers for IPTV Design options with ATCA

White Paper Broadband Multimedia Servers for IPTV Design options with ATCA Internet channels provide individual audiovisual content on demand. Such applications are frequently summarized as IPTV. Applications include the traditional programmed Video on Demand from a library of

More information

Module 11 Narrowband and Broadband ISDN

Module 11 Narrowband and Broadband ISDN Module 11 Narrowband and Broadband ISDN Lesson 37 ISDN: Reference Points, Services And Standards OBJECTIVE General This lesson is continued on giving the reader the concept and definition of Integrated

More information

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07)

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07) Serial I-O for 8051 Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai 400 076 (version 14/10/07) 1 Motivation Serial communications means sending data a single bit at a time. But

More information

ISSN Vol.05, Issue.12, December-2017, Pages:

ISSN Vol.05, Issue.12, December-2017, Pages: ISSN 2322-0929 Vol.05, Issue.12, December-2017, Pages:1174-1178 www.ijvdcs.org Design of High Speed DDR3 SDRAM Controller NETHAGANI KAMALAKAR 1, G. RAMESH 2 1 PG Scholar, Khammam Institute of Technology

More information

Distributed Queue Dual Bus

Distributed Queue Dual Bus Distributed Queue Dual Bus IEEE 802.3 to 802.5 protocols are only suited for small LANs. They cannot be used for very large but non-wide area networks. IEEE 802.6 DQDB is designed for MANs It can cover

More information

Design and Simulation of UART for Serial Communication

Design and Simulation of UART for Serial Communication Design and Simulation of UART for Serial Communication 1 Manju Wadhvani 1 Electronic and Telecommunication Engineering, Chhatisgarh Swami Vivekanand Technical university, Disha Institute of Management

More information

Chapter Operation Pinout Operation 35

Chapter Operation Pinout Operation 35 68000 Operation 35 Chapter 6 68000 Operation 6-1. 68000 Pinout We will do no construction in this chapter; instead, we will take a detailed look at the individual pins of the 68000 and what they do. Fig.

More information

Advantages and disadvantages

Advantages and disadvantages Advantages and disadvantages Advantages Disadvantages Asynchronous transmission Simple, doesn't require synchronization of both communication sides Cheap, timing is not as critical as for synchronous transmission,

More information

A B C D E F 0480 FE B F5 3B FC F3 E 1A 1D 2A 2D 3A 3D 4A 4D 5A 5D 6A 6D 7A 7D

A B C D E F 0480 FE B F5 3B FC F3 E 1A 1D 2A 2D 3A 3D 4A 4D 5A 5D 6A 6D 7A 7D What's on the 9S12 bus as it executes a program The 9S12 Serial Communications Interface 9S12 Serial Communications Interface (SCI) Block Guide V02.05 Huang, Sections 9.2-9.6 Consider a 9S12 executing

More information

Serial Communication Prof. James L. Frankel Harvard University. Version of 2:30 PM 6-Oct-2015 Copyright 2015 James L. Frankel. All rights reserved.

Serial Communication Prof. James L. Frankel Harvard University. Version of 2:30 PM 6-Oct-2015 Copyright 2015 James L. Frankel. All rights reserved. Serial Communication Prof. James L. Frankel Harvard University Version of 2:30 PM 6-Oct-2015 Copyright 2015 James L. Frankel. All rights reserved. Overview of the Serial Protocol Simple protocol for communicating

More information

Lecture (03) Circuit switching

Lecture (03) Circuit switching Agenda Lecture (03) Circuit switching Switched communication network Circuit switching technology Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU Fall 2011, Networks I ٢ Dr. Ahmed ElShafee, ACU Fall 2011,

More information

MC MC ISDN S/T Interface Transceiver

MC MC ISDN S/T Interface Transceiver Order this document by MC145474/D Rev. 1 MC145474 MC145475 ISDN S/T Interface Transceiver Coming through loud and clear. NOTICE PRODUCT ENHANCEMENT AND DATA UPDATE This notice outlines changes made to

More information

PON Functional Requirements: Services and Performance

PON Functional Requirements: Services and Performance PON Functional Requirements: Services and Performance Dolors Sala Ajay Gummalla {dolors,ajay}@broadcom.com July 10-12, 2001 Ethernet in the First Mile Study Group 1 July 2001 Objective Outline the PON-specific

More information

Fig 1. Block diagram of a microcomputer

Fig 1. Block diagram of a microcomputer Computer: A computer is a multipurpose programmable machine that reads binary instructions from its memory, accepts binary data as input,processes the data according to those instructions and provides

More information

)454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

)454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU INTERNATIONAL TELECOMMUNICATION UNION )454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+ #/$%).$%0%.$%.4 %22/2#/.42/, 3934%- )454 Recommendation 6 (Extract

More information

I 2 C Slave Controller. I 2 C Master o_timeout_intr

I 2 C Slave Controller. I 2 C Master o_timeout_intr February 2015 Reference Design RD1140 Introduction I 2 C, or Inter-Integrated Circuit, is a popular serial interface protocol that is widely used in many electronic systems. The I 2 C interface is a two-wire

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller 1 Salient Features (1). 8 bit microcontroller originally developed by Intel in 1980. (2). High-performance CMOS Technology. (3). Contains Total 40 pins. (4). Address bus is of 16 bit

More information

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1 M68HC08 Microcontroller The MC68HC908GP32 Babak Kia Adjunct Professor Boston University College of Engineering Email: bkia -at- bu.edu ENG SC757 - Advanced Microprocessor Design General Description The

More information

UNIT II SYSTEM BUS STRUCTURE 1. Differentiate between minimum and maximum mode 2. Give any four pin definitions for the minimum mode. 3. What are the pins that are used to indicate the type of transfer

More information

Chapter 1: Basics of Microprocessor [08 M]

Chapter 1: Basics of Microprocessor [08 M] Microprocessor: Chapter 1: Basics of Microprocessor [08 M] It is a semiconductor device consisting of electronic logic circuits manufactured by using either a Large scale (LSI) or Very Large Scale (VLSI)

More information

Chapter 9. High Speed Digital Access

Chapter 9. High Speed Digital Access Chapter 9 High Speed Digital Access 9-1 TELEPHONE NETWORK Telephone networks use circuit switching. The telephone network had its beginnings in the late 1800s. The entire network, which is referred to

More information

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS UNIT I INTRODUCTION TO 8085 8085 Microprocessor - Architecture and its operation, Concept of instruction execution and timing diagrams, fundamentals of

More information

Introduction to Partial Reconfiguration Methodology

Introduction to Partial Reconfiguration Methodology Methodology This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Define Partial Reconfiguration technology List common applications

More information

Basic Video Troubleshooting 101

Basic Video Troubleshooting 101 Basic Video Troubleshooting 101 Check Power On Self-Test (POST) beeps. Re-seat video card. Check any configuration switch settings. Swap video card, monitor, video cable. 80 Basic Video Troubleshooting

More information

An Overview of Microprocessor The first question comes in a mind "What is a microprocessor?. Let us start with a more familiar term computer. A digital computer is an electronic machine capable of quickly

More information

Universal Asynchronous Receiver Transmitter (UART ) CSCE 612 Project #2 Specification

Universal Asynchronous Receiver Transmitter (UART ) CSCE 612 Project #2 Specification Universal Asynchronous Receiver Transmitter (UART - 8251) CSCE 612 Project #2 Specification VLSI Design Lab Department of Computer Science and Engineering University of South Carolina Dr. James P. Davis

More information

XAPP170 May 19, 1999 (Version 1.0) Application Note

XAPP170 May 19, 1999 (Version 1.0) Application Note XAPP170 May 19, 1999 (Version 1.0) Application Note Summary This application note illustrates the use of Spartan devices in an ISDN modem. The design example shows how cost effective a Spartan device can

More information

Internet Access Technologies

Internet Access Technologies Lecture 4: Local Loop Technologies, Internet Access and Leased Lines Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE426: Communication Networks Internet Access Technologies

More information

Accessories / 7XV5662

Accessories / 7XV5662 Accessories / XV Communication Converter XV-0AA00/GG for X. / RS / G.0. *) Fig. / Communication converter for X./ RS and G.0. The communication converter CC-XG for coupling to a communication network is

More information