Part VII Advanced Architectures. Feb Computer Architecture, Advanced Architectures Slide 1

Size: px
Start display at page:

Download "Part VII Advanced Architectures. Feb Computer Architecture, Advanced Architectures Slide 1"

Transcription

1 Part VII Advanced Architectures Feb Computer Architecture, Advanced Architectures Slide 1

2 About This Presentation This presentation is intended to support the use of the textbook Computer Architecture: From Microprocessors to Supercomputers, Oxford University Press, 2005, ISBN X. It is updated regularly by the author as part of his teaching of the upper-division course ECE 154, Introduction to Computer Architecture, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Any other use is strictly prohibited. Behrooz Parhami Edition Released Revised Revised Revised Revised First July 2003 July 2004 July 2005 Mar Feb. 2011* * Minimal update, due to this part not being used for lectures in ECE 154 at UCSB Feb Computer Architecture, Advanced Architectures Slide 2

3 VII Advanced Architectures Performance enhancement beyond what we have seen: What else can we do at the instruction execution level? Data parallelism: vector and array processing Control parallelism: parallel and distributed processing Topics in This Part Chapter 25 Road to Higher Performance Feb Computer Architecture, Advanced Architectures Slide 3

4 25 Road to Higher Performance Review past, current, and future architectural trends: General-purpose and special-purpose acceleration Introduction to data and control parallelism Topics in This Chapter 25.1 Past and Current Performance Trends 25.2 Performance-Driven ISA Extensions 25.3 Instruction-Level Parallelism 25.4 Speculation and Value Prediction 25.5 Special-Purpose Hardware Accelerators 25.6 Vector, Array, and Parallel Processing Feb Computer Architecture, Advanced Architectures Slide 4

5 25.1 Past and Current Performance Trends Intel 4004: The first p (1971) Intel Pentium 4, circa MIPS (4-bit processor) 10,000 MIPS (32-bit processor) 8-bit bit Pentium, MMX 32-bit Pentium Pro, II Pentium III, M Celeron Feb Computer Architecture, Advanced Architectures Slide 5

6 Newer methods Covered in Part VII Established methods Previously discussed Architectural Innovations for Improved Performance Computer performance grew by a factor of about between 1980 and due to faster technology 100 due to better architecture Available computing power ca. 2000: GFLOPS on desktop TFLOPS in supercomputer center PFLOPS on drawing board Architectural method Improvement factor 1. Pipelining (and superpipelining) Cache memory, 2-3 levels RISC and related ideas Multiple instruction issue (superscalar) ISA extensions (e.g., for multimedia) Multithreading (super-, hyper-) 2-5? 7. Speculation and value prediction 2-3? 8. Hardware acceleration 2-10? 9. Vector and array processing 2-10? 10. Parallel/distributed computing s? Feb Computer Architecture, Advanced Architectures Slide 6

7 PFLOPS Peak Performance of Supercomputers 10 / 5 years Earth Simulator ASCI White Pacific TFLOPS ASCI Red TMC CM-5 Cray T3D Cray X-MP TMC CM-2 Cray 2 GFLOPS Dongarra, J., Trends in High Performance Computing, Computer J., Vol. 47, No. 4, pp , [Dong04] Feb Computer Architecture, Advanced Architectures Slide 7

8 25.2 Performance-Driven ISA Extensions Adding instructions that do more work per cycle Shift-add: replace two instructions with one (e.g., multiply by 5) Multiply-add: replace two instructions with one (x := c + a b) Multiply-accumulate: reduce round-off error (s := s + a b) Conditional copy: to avoid some branches (e.g., in if-then-else) Subword parallelism (for multimedia applications) Intel MMX: multimedia extension 64-bit registers can hold multiple integer operands Intel SSE: Streaming SIMD extension 128-bit registers can hold several floating-point operands Feb Computer Architecture, Advanced Architectures Slide 8

9 25.3 Instruction-Level Parallelism 30% 3 Fraction of cycles 20% 10% Speedup attained 2 0% Issuable instructions per cycle (a) Instruction issue width (b) Figure 25.4 Available instruction-level parallelism and the speedup due to multiple instruction issue in superscalar processors [John91]. Feb Computer Architecture, Advanced Architectures Slide 9

10 Instruction-Level Parallelism Figure 25.5 A computation with inherent instruction-level parallelism. Feb Computer Architecture, Advanced Architectures Slide 10

11 VLIW and EPIC Architectures VLIW EPIC Very long instruction word architecture Explicitly parallel instruction computing General registers (128) Execution unit Execution unit... Execution unit Memory Predicates (64) Floating-point registers (128) Execution unit Execution unit... Execution unit Figure 25.6 Hardware organization for IA-64. General and floatingpoint registers are 64-bit wide. Predicates are single-bit registers. Feb Computer Architecture, Advanced Architectures Slide 11

12 25.4 Speculation and Value Prediction load spec load check load (a) Control speculation store load spec load store check load (b) Data speculation Figure 25.7 Examples of software speculation in IA-64. Feb Computer Architecture, Advanced Architectures Slide 12

13 Value Prediction Memo table Inputs Mult/ Div Miss Mux 0 1 Output Done Inputs ready Control Output ready Figure 25.8 Value prediction for multiplication or division via a memo table. Feb Computer Architecture, Advanced Architectures Slide 13

14 25.5 Special-Purpose Hardware Accelerators Data and program memory CPU Configuration memory FPGA-like unit on which accelerators can be formed via loading of configuration registers Accel. 1 Accel. 2 Unused resources Accel. 3 Figure 25.9 General structure of a processor with configurable hardware accelerators. Feb Computer Architecture, Advanced Architectures Slide 14

15 Graphic Processors, Network Processors, etc. PE 0 PE 1 PE 2 PE 3 Input buffer PE 4 PE 8 PE PE 5 PE 9 PE 6 PE 10 PE 7 PE 11 Output buffer PE 12 PE 13 PE 14 PE 15 Feedback path Column memory Column memory Column memory Column memory Figure Simplified block diagram of Toaster2, Cisco Systems network processor. Feb Computer Architecture, Advanced Architectures Slide 15

16 25.6 Vector, Array, and Parallel Processing Single data stream Multiple data streams Shared variables Message passing Single instr stream Multiple instr streams SISD Uniprocessors MISD Rarely used SIMD Array or vector processors MIMD Multiproc s or multicomputers Johnson s expansion Global memory Distributed memory GMSV Shared-memory multiprocessors DMSV Distributed shared memory GMMP Rarely used DMMP Distrib-memory multicomputers Flynn s categories Figure The Flynn-Johnson classification of computer systems. Feb Computer Architecture, Advanced Architectures Slide 16

17 SIMD Architectures Data parallelism: executing one operation on multiple data streams Concurrency in time vector processing Concurrency in space array processing Example to provide context Multiplying a coefficient vector by a data vector (e.g., in filtering) y[i] := c[i] x[i], 0 i < n Sources of performance improvement in vector processing One instruction is fetched and decoded for the entire operation The multiplications are known to be independent (no checking) Pipelining/concurrency in memory access as well as in arithmetic Array processing is similar Feb Computer Architecture, Advanced Architectures Slide 17

18 MISD Architecture Example I n s t r u c t i o n s t r e a m s 1-5 Data in Data out Figure Multiple instruction streams operating on a single data stream (MISD). Feb Computer Architecture, Advanced Architectures Slide 18

19 MIMD Architectures Control parallelism: executing several instruction streams in parallel GMSV: Shared global memory symmetric multiprocessors DMSV: Shared distributed memory asymmetric multiprocessors DMMP: Message passing multicomputers Processors Memory modules Memories and processors Routers Processortoprocessor network Processorto- 1 memory network p Parallel I/O... m 1 Parallel input/output A computing node 0 1 Inter- p 1. connection network... Figure 27.1 Centralized shared memory. Figure 28.1 Distributed memory. Feb Computer Architecture, Advanced Architectures Slide 19

20 Amdahl s Law Revisited Speedup (s ) f = 0 f = 0.01 f = 0.02 f = 0.05 f = Enhancement factor (p ) f = sequential fraction p = speedup of the rest with p processors s = 1 f + (1 f)/p min(p, 1/f) Figure 4.4 Amdahl s law: speedup achieved if a fraction f of a task is unaffected and the remaining 1 f part runs p times as fast. Feb Computer Architecture, Advanced Architectures Slide 20

21 26 Vector and Array Processing Single instruction stream operating on multiple data streams Data parallelism in time = vector processing Data parallelism in space = array processing Topics in This Chapter 26.1 Operations on Vectors 26.2 Vector Processor Implementation Feb Computer Architecture, Advanced Architectures Slide 21

22 26.1 Operations on Vectors Sequential processor: for i = 0 to 63 do P[i] := W[i] D[i] endfor for i = 0 to 63 do X[i+1] := X[i] + Z[i] Y[i+1] := X[i+1]+Y[i] endfor Vector processor: load W load D P := W D store P Unparallelizable Feb Computer Architecture, Advanced Architectures Slide 22

23 26.2 Vector Processor Implementation From scalar registers Function unit 1 pipeline To and from memory unit Load unit A Load unit B Store unit Vector register file Function unit 2 pipeline Function unit 3 pipeline Figure 26.1 Forwarding muxes Simplified generic structure of a vector processor. Feb Computer Architecture, Advanced Architectures Slide 23

24 Example Array Processor Control Processor array Switches Control broadcast Parallel I/O Figure 26.7 Array processor with 2D torus interprocessor communication network. Feb Computer Architecture, Advanced Architectures Slide 24

25 27 Shared-Memory Multiprocessing Multiple processors sharing a memory unit seems naïve Didn t we conclude that memory is the bottleneck? How then does it make sense to share the memory? Topics in This Chapter 27.1 Centralized Shared Memory 27.2 Multiple Caches and Cache Coherence 27.3 Implementing Symmetric Multiprocessors 27.6 Implementing Asymmetric Multiprocessors Feb Computer Architecture, Advanced Architectures Slide 25

26 Parallel Processing as a Topic of Study An important area of study that allows us to overcome fundamental speed limits Our treatment of the topic is quite brief (Chapters 26-27) Graduate course ECE 254B: Adv. Computer Architecture Parallel Processing Feb Computer Architecture, Advanced Architectures Slide 26

27 27.1 Centralized Shared Memory Processors Memory modules 0 0 Processortoprocessor network 1 Processorto- 1 memory network p 1... Parallel I/O Figure 27.1 Structure of a multiprocessor with centralized shared-memory. m 1 Feb Computer Architecture, Advanced Architectures Slide 27

28 27.2 Multiple Caches and Cache Coherence Processors Caches Memory modules 0 0 Processortoprocessor network 1 Processorto- 1 memory network p 1... Parallel I/O m 1 Private processor caches reduce memory access traffic through the interconnection network but lead to challenging consistency problems. Feb Computer Architecture, Advanced Architectures Slide 28

29 27.3 Implementing Symmetric Multiprocessors Computing nodes (typically, 1-4 CPUs and caches per node) Interleaved memory I/O modules Standard interfaces Bus adapter Bus adapter Very wide, high-bandwidth bus Figure 27.6 Structure of a generic bus-based symmetric multiprocessor. Feb Computer Architecture, Advanced Architectures Slide 29

30 27.6 Implementing Asymmetric Multiprocessors To I/O controllers Computing nodes (typically, 1-4 CPUs and associated memory) Node 0 Node 1 Node 2 Node 3 Link Memory Link Link Link Ring network Figure Structure of a ring-based distributed-memory multiprocessor. Feb Computer Architecture, Advanced Architectures Slide 30

31 28 Distributed Multicomputing Computer architects dream: connect computers like toy blocks Building multicomputers from loosely connected nodes Internode communication is done via message passing Topics in This Chapter 28.1 Communication by Message Passing 28.2 Interconnection Networks 28.3 Message Composition and Routing 28.6 Grid Computing and Beyond Feb Computer Architecture, Advanced Architectures Slide 31

32 28.1 Communication by Message Passing Memories and processors Routers Parallel input/output A computing node 0 1 Inter- p 1. connection network Figure 28.1 Structure of a distributed multicomputer. Feb Computer Architecture, Advanced Architectures Slide 32

33 Router Design Injection channel Ejection channel LC LC Link controller Routing and arbitration Q Q Message queue Input queues Output queues Input channels LC LC LC LC Q Q Q Q Switch Q Q Q Q LC LC LC LC Output channels Figure 28.2 The structure of a generic router. Feb Computer Architecture, Advanced Architectures Slide 33

34 Interprocess Communication via Messages Process A Process B Communication latency Time send x receive x Process B is suspended Process B is awakened Figure 28.4 Use of send and receive message-passing primitives to synchronize two processes. Feb Computer Architecture, Advanced Architectures Slide 34

35 28.2 Interconnection Networks Nodes Routers Nodes (a) Direct network (b) Indirect network Figure 28.5 Examples of direct and indirect interconnection networks. Feb Computer Architecture, Advanced Architectures Slide 35

36 Direct Interconnection Networks (a) 2D torus (b) 4D hypercube (c) Chordal ring (d) Ring of rings Figure 28.6 A sampling of common direct interconnection networks. Only routers are shown; a computing node is implicit for each router. Feb Computer Architecture, Advanced Architectures Slide 36

37 Indirect Interconnection Networks Level-3 bus Level-2 bus Level-1 bus (a) Hierarchical buses (b) Omega network Figure 28.7 Two commonly used indirect interconnection networks. Feb Computer Architecture, Advanced Architectures Slide 37

38 28.3 Message Composition and Routing Message Padding Packet data A transmitted packet First packet Header Data or payload Last packet Trailer Flow control digits (flits) Figure 28.8 Messages and their parts for message passing. Feb Computer Architecture, Advanced Architectures Slide 38

39 Computing in the Cloud Computational resources, both hardware and software, are provided by, and managed within, the cloud Users pay a fee for access Managing / upgrading is much more efficient in large, centralized facilities (warehouse-sized data centers or server farms) Image from Wikipedia This is a natural continuation of the outsourcing trend for special services, so that companies can focus their energies on their main business Feb Computer Architecture, Advanced Architectures Slide 39

40 Warehouse-Sized Data Centers Image from IEEE Spectrum, June 2009 Feb Computer Architecture, Advanced Architectures Slide 40

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

CSE Introduction to Parallel Processing. Chapter 4. Models of Parallel Processing

CSE Introduction to Parallel Processing. Chapter 4. Models of Parallel Processing Dr Izadi CSE-4533 Introduction to Parallel Processing Chapter 4 Models of Parallel Processing Elaborate on the taxonomy of parallel processing from chapter Introduce abstract models of shared and distributed

More information

Computer Architecture: Parallel Processing Basics. Prof. Onur Mutlu Carnegie Mellon University

Computer Architecture: Parallel Processing Basics. Prof. Onur Mutlu Carnegie Mellon University Computer Architecture: Parallel Processing Basics Prof. Onur Mutlu Carnegie Mellon University Readings Required Hill, Jouppi, Sohi, Multiprocessors and Multicomputers, pp. 551-560 in Readings in Computer

More information

Parallel Processors. The dream of computer architects since 1950s: replicate processors to add performance vs. design a faster processor

Parallel Processors. The dream of computer architects since 1950s: replicate processors to add performance vs. design a faster processor Multiprocessing Parallel Computers Definition: A parallel computer is a collection of processing elements that cooperate and communicate to solve large problems fast. Almasi and Gottlieb, Highly Parallel

More information

Lecture 7: Parallel Processing

Lecture 7: Parallel Processing Lecture 7: Parallel Processing Introduction and motivation Architecture classification Performance evaluation Interconnection network Zebo Peng, IDA, LiTH 1 Performance Improvement Reduction of instruction

More information

Lecture 7: Parallel Processing

Lecture 7: Parallel Processing Lecture 7: Parallel Processing Introduction and motivation Architecture classification Performance evaluation Interconnection network Zebo Peng, IDA, LiTH 1 Performance Improvement Reduction of instruction

More information

Lecture 8: RISC & Parallel Computers. Parallel computers

Lecture 8: RISC & Parallel Computers. Parallel computers Lecture 8: RISC & Parallel Computers RISC vs CISC computers Parallel computers Final remarks Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) is an important innovation in computer

More information

anced computer architecture CONTENTS AND THE TASK OF THE COMPUTER DESIGNER The Task of the Computer Designer

anced computer architecture CONTENTS AND THE TASK OF THE COMPUTER DESIGNER The Task of the Computer Designer Contents advanced anced computer architecture i FOR m.tech (jntu - hyderabad & kakinada) i year i semester (COMMON TO ECE, DECE, DECS, VLSI & EMBEDDED SYSTEMS) CONTENTS UNIT - I [CH. H. - 1] ] [FUNDAMENTALS

More information

Unit 9 : Fundamentals of Parallel Processing

Unit 9 : Fundamentals of Parallel Processing Unit 9 : Fundamentals of Parallel Processing Lesson 1 : Types of Parallel Processing 1.1. Learning Objectives On completion of this lesson you will be able to : classify different types of parallel processing

More information

Static Compiler Optimization Techniques

Static Compiler Optimization Techniques Static Compiler Optimization Techniques We examined the following static ISA/compiler techniques aimed at improving pipelined CPU performance: Static pipeline scheduling. Loop unrolling. Static branch

More information

18-447: Computer Architecture Lecture 30B: Multiprocessors. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 4/22/2013

18-447: Computer Architecture Lecture 30B: Multiprocessors. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 4/22/2013 18-447: Computer Architecture Lecture 30B: Multiprocessors Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 4/22/2013 Readings: Multiprocessing Required Amdahl, Validity of the single processor

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

WHY PARALLEL PROCESSING? (CE-401)

WHY PARALLEL PROCESSING? (CE-401) PARALLEL PROCESSING (CE-401) COURSE INFORMATION 2 + 1 credits (60 marks theory, 40 marks lab) Labs introduced for second time in PP history of SSUET Theory marks breakup: Midterm Exam: 15 marks Assignment:

More information

Module 5 Introduction to Parallel Processing Systems

Module 5 Introduction to Parallel Processing Systems Module 5 Introduction to Parallel Processing Systems 1. What is the difference between pipelining and parallelism? In general, parallelism is simply multiple operations being done at the same time.this

More information

Fundamentals of Computers Design

Fundamentals of Computers Design Computer Architecture J. Daniel Garcia Computer Architecture Group. Universidad Carlos III de Madrid Last update: September 8, 2014 Computer Architecture ARCOS Group. 1/45 Introduction 1 Introduction 2

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 7 Parallel Processing 1 Parallelism Instruction-level parallelism (Ch.6) pipeline superscalar latency issues hazards Processor-level parallelism (Ch.7) array/vector of processors

More information

A Multiprocessor system generally means that more than one instruction stream is being executed in parallel.

A Multiprocessor system generally means that more than one instruction stream is being executed in parallel. Multiprocessor Systems A Multiprocessor system generally means that more than one instruction stream is being executed in parallel. However, Flynn s SIMD machine classification, also called an array processor,

More information

COSC 6385 Computer Architecture - Thread Level Parallelism (I)

COSC 6385 Computer Architecture - Thread Level Parallelism (I) COSC 6385 Computer Architecture - Thread Level Parallelism (I) Edgar Gabriel Spring 2014 Long-term trend on the number of transistor per integrated circuit Number of transistors double every ~18 month

More information

Fundamentals of Computer Design

Fundamentals of Computer Design Fundamentals of Computer Design Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department University

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 23 Mahadevan Gomathisankaran April 27, 2010 04/27/2010 Lecture 23 CSCE 4610/5610 1 Reminder ABET Feedback: http://www.cse.unt.edu/exitsurvey.cgi?csce+4610+001 Student

More information

Chap. 4 Multiprocessors and Thread-Level Parallelism

Chap. 4 Multiprocessors and Thread-Level Parallelism Chap. 4 Multiprocessors and Thread-Level Parallelism Uniprocessor performance Performance (vs. VAX-11/780) 10000 1000 100 10 From Hennessy and Patterson, Computer Architecture: A Quantitative Approach,

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 24 Mahadevan Gomathisankaran April 29, 2010 04/29/2010 Lecture 24 CSCE 4610/5610 1 Reminder ABET Feedback: http://www.cse.unt.edu/exitsurvey.cgi?csce+4610+001 Student

More information

CS/COE1541: Intro. to Computer Architecture

CS/COE1541: Intro. to Computer Architecture CS/COE1541: Intro. to Computer Architecture Multiprocessors Sangyeun Cho Computer Science Department Tilera TILE64 IBM BlueGene/L nvidia GPGPU Intel Core 2 Duo 2 Why multiprocessors? For improved latency

More information

CMSC 313 Lecture 27. System Performance CPU Performance Disk Performance. Announcement: Don t use oscillator in DigSim3

CMSC 313 Lecture 27. System Performance CPU Performance Disk Performance. Announcement: Don t use oscillator in DigSim3 System Performance CPU Performance Disk Performance CMSC 313 Lecture 27 Announcement: Don t use oscillator in DigSim3 UMBC, CMSC313, Richard Chang Bottlenecks The performance of a process

More information

Pipeline and Vector Processing 1. Parallel Processing SISD SIMD MISD & MIMD

Pipeline and Vector Processing 1. Parallel Processing SISD SIMD MISD & MIMD Pipeline and Vector Processing 1. Parallel Processing Parallel processing is a term used to denote a large class of techniques that are used to provide simultaneous data-processing tasks for the purpose

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 6 Parallel Processors from Client to Cloud Introduction Goal: connecting multiple computers to get higher performance

More information

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I UNIT-I 1. List and explain the functional units of a computer with a neat diagram 2. Explain the computer levels of programming languages 3. a) Explain about instruction formats b) Evaluate the arithmetic

More information

Computer Architecture and Organization

Computer Architecture and Organization 10-1 Chapter 10 - Advanced Computer Architecture Computer Architecture and Organization Miles Murdocca and Vincent Heuring Chapter 10 Advanced Computer Architecture 10-2 Chapter 10 - Advanced Computer

More information

Lecture 1: Introduction

Lecture 1: Introduction Contemporary Computer Architecture Instruction set architecture Lecture 1: Introduction CprE 581 Computer Systems Architecture, Fall 2016 Reading: Textbook, Ch. 1.1-1.7 Microarchitecture; examples: Pipeline

More information

Keywords and Review Questions

Keywords and Review Questions Keywords and Review Questions lec1: Keywords: ISA, Moore s Law Q1. Who are the people credited for inventing transistor? Q2. In which year IC was invented and who was the inventor? Q3. What is ISA? Explain

More information

Lecture 2 Parallel Programming Platforms

Lecture 2 Parallel Programming Platforms Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple

More information

Review of Last Lecture. CS 61C: Great Ideas in Computer Architecture. The Flynn Taxonomy, Intel SIMD Instructions. Great Idea #4: Parallelism.

Review of Last Lecture. CS 61C: Great Ideas in Computer Architecture. The Flynn Taxonomy, Intel SIMD Instructions. Great Idea #4: Parallelism. CS 61C: Great Ideas in Computer Architecture The Flynn Taxonomy, Intel SIMD Instructions Instructor: Justin Hsia 1 Review of Last Lecture Amdahl s Law limits benefits of parallelization Request Level Parallelism

More information

omputer Design Concept adao Nakamura

omputer Design Concept adao Nakamura omputer Design Concept adao Nakamura akamura@archi.is.tohoku.ac.jp akamura@umunhum.stanford.edu 1 1 Pascal s Calculator Leibniz s Calculator Babbage s Calculator Von Neumann Computer Flynn s Classification

More information

Parallel Computers. CPE 631 Session 20: Multiprocessors. Flynn s Tahonomy (1972) Why Multiprocessors?

Parallel Computers. CPE 631 Session 20: Multiprocessors. Flynn s Tahonomy (1972) Why Multiprocessors? Parallel Computers CPE 63 Session 20: Multiprocessors Department of Electrical and Computer Engineering University of Alabama in Huntsville Definition: A parallel computer is a collection of processing

More information

Course II Parallel Computer Architecture. Week 2-3 by Dr. Putu Harry Gunawan

Course II Parallel Computer Architecture. Week 2-3 by Dr. Putu Harry Gunawan Course II Parallel Computer Architecture Week 2-3 by Dr. Putu Harry Gunawan www.phg-simulation-laboratory.com Review Review Review Review Review Review Review Review Review Review Review Review Processor

More information

CS 61C: Great Ideas in Computer Architecture. The Flynn Taxonomy, Intel SIMD Instructions

CS 61C: Great Ideas in Computer Architecture. The Flynn Taxonomy, Intel SIMD Instructions CS 61C: Great Ideas in Computer Architecture The Flynn Taxonomy, Intel SIMD Instructions Instructor: Justin Hsia 3/08/2013 Spring 2013 Lecture #19 1 Review of Last Lecture Amdahl s Law limits benefits

More information

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism Motivation for Parallelism Motivation for Parallelism The speed of an application is determined by more than just processor speed. speed Disk speed Network speed... Multiprocessors typically improve the

More information

Advanced d Instruction Level Parallelism. Computer Systems Laboratory Sungkyunkwan University

Advanced d Instruction Level Parallelism. Computer Systems Laboratory Sungkyunkwan University Advanced d Instruction ti Level Parallelism Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ILP Instruction-Level Parallelism (ILP) Pipelining:

More information

Multiprocessors & Thread Level Parallelism

Multiprocessors & Thread Level Parallelism Multiprocessors & Thread Level Parallelism COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Introduction

More information

Parallel Computer Architectures. Lectured by: Phạm Trần Vũ Prepared by: Thoại Nam

Parallel Computer Architectures. Lectured by: Phạm Trần Vũ Prepared by: Thoại Nam Parallel Computer Architectures Lectured by: Phạm Trần Vũ Prepared by: Thoại Nam Outline Flynn s Taxonomy Classification of Parallel Computers Based on Architectures Flynn s Taxonomy Based on notions of

More information

Computer Architecture Lecture 27: Multiprocessors. Prof. Onur Mutlu Carnegie Mellon University Spring 2015, 4/6/2015

Computer Architecture Lecture 27: Multiprocessors. Prof. Onur Mutlu Carnegie Mellon University Spring 2015, 4/6/2015 18-447 Computer Architecture Lecture 27: Multiprocessors Prof. Onur Mutlu Carnegie Mellon University Spring 2015, 4/6/2015 Assignments Lab 7 out Due April 17 HW 6 Due Friday (April 10) Midterm II April

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport CPS 303 High Performance Computing Wensheng Shen Department of Computational Science SUNY Brockport Chapter 2: Architecture of Parallel Computers Hardware Software 2.1.1 Flynn s taxonomy Single-instruction

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Complex Pipelining: Superscalar Prof. Michel A. Kinsy Summary Concepts Von Neumann architecture = stored-program computer architecture Self-Modifying Code Princeton architecture

More information

Number of processing elements (PEs). Computing power of each element. Amount of physical memory used. Data access, Communication and Synchronization

Number of processing elements (PEs). Computing power of each element. Amount of physical memory used. Data access, Communication and Synchronization Parallel Computer Architecture A parallel computer is a collection of processing elements that cooperate to solve large problems fast Broad issues involved: Resource Allocation: Number of processing elements

More information

Course web site: teaching/courses/car. Piazza discussion forum:

Course web site:   teaching/courses/car. Piazza discussion forum: Announcements Course web site: http://www.inf.ed.ac.uk/ teaching/courses/car Lecture slides Tutorial problems Courseworks Piazza discussion forum: http://piazza.com/ed.ac.uk/spring2018/car Tutorials start

More information

Issues in Multiprocessors

Issues in Multiprocessors Issues in Multiprocessors Which programming model for interprocessor communication shared memory regular loads & stores message passing explicit sends & receives Which execution model control parallel

More information

Parallel Computing: Parallel Architectures Jin, Hai

Parallel Computing: Parallel Architectures Jin, Hai Parallel Computing: Parallel Architectures Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology Peripherals Computer Central Processing Unit Main Memory Computer

More information

Overview. Processor organizations Types of parallel machines. Real machines

Overview. Processor organizations Types of parallel machines. Real machines Course Outline Introduction in algorithms and applications Parallel machines and architectures Overview of parallel machines, trends in top-500, clusters, DAS Programming methods, languages, and environments

More information

ARCHITECTURES FOR PARALLEL COMPUTATION

ARCHITECTURES FOR PARALLEL COMPUTATION Datorarkitektur Fö 11/12-1 Datorarkitektur Fö 11/12-2 Why Parallel Computation? ARCHITECTURES FOR PARALLEL COMTATION 1. Why Parallel Computation 2. Parallel Programs 3. A Classification of Computer Architectures

More information

Intel released new technology call P6P

Intel released new technology call P6P P6 and IA-64 8086 released on 1978 Pentium release on 1993 8086 has upgrade by Pipeline, Super scalar, Clock frequency, Cache and so on But 8086 has limit, Hard to improve efficiency Intel released new

More information

EITF20: Computer Architecture Part 5.2.1: IO and MultiProcessor

EITF20: Computer Architecture Part 5.2.1: IO and MultiProcessor EITF20: Computer Architecture Part 5.2.1: IO and MultiProcessor Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration I/O MultiProcessor Summary 2 Virtual memory benifits Using physical memory efficiently

More information

CS 61C: Great Ideas in Computer Architecture. The Flynn Taxonomy, Intel SIMD Instructions

CS 61C: Great Ideas in Computer Architecture. The Flynn Taxonomy, Intel SIMD Instructions CS 61C: Great Ideas in Computer Architecture The Flynn Taxonomy, Intel SIMD Instructions Guest Lecturer: Alan Christopher 3/08/2014 Spring 2014 -- Lecture #19 1 Neuromorphic Chips Researchers at IBM and

More information

Chapter 9 Multiprocessors

Chapter 9 Multiprocessors ECE200 Computer Organization Chapter 9 Multiprocessors David H. lbonesi and the University of Rochester Henk Corporaal, TU Eindhoven, Netherlands Jari Nurmi, Tampere University of Technology, Finland University

More information

Parallel Systems I The GPU architecture. Jan Lemeire

Parallel Systems I The GPU architecture. Jan Lemeire Parallel Systems I The GPU architecture Jan Lemeire 2012-2013 Sequential program CPU pipeline Sequential pipelined execution Instruction-level parallelism (ILP): superscalar pipeline out-of-order execution

More information

CS4230 Parallel Programming. Lecture 3: Introduction to Parallel Architectures 8/28/12. Homework 1: Parallel Programming Basics

CS4230 Parallel Programming. Lecture 3: Introduction to Parallel Architectures 8/28/12. Homework 1: Parallel Programming Basics CS4230 Parallel Programming Lecture 3: Introduction to Parallel Architectures Mary Hall August 28, 2012 Homework 1: Parallel Programming Basics Due before class, Thursday, August 30 Turn in electronically

More information

Review: Parallelism - The Challenge. Agenda 7/14/2011

Review: Parallelism - The Challenge. Agenda 7/14/2011 7/14/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) The Flynn Taxonomy, Data Level Parallelism Instructor: Michael Greenbaum Summer 2011 -- Lecture #15 1 Review: Parallelism - The

More information

Chapter 4 Data-Level Parallelism

Chapter 4 Data-Level Parallelism CS359: Computer Architecture Chapter 4 Data-Level Parallelism Yanyan Shen Department of Computer Science and Engineering Shanghai Jiao Tong University 1 Outline 4.1 Introduction 4.2 Vector Architecture

More information

PIPELINE AND VECTOR PROCESSING

PIPELINE AND VECTOR PROCESSING PIPELINE AND VECTOR PROCESSING PIPELINING: Pipelining is a technique of decomposing a sequential process into sub operations, with each sub process being executed in a special dedicated segment that operates

More information

Parallel Processing. Computer Architecture. Computer Architecture. Outline. Multiple Processor Organization

Parallel Processing. Computer Architecture. Computer Architecture. Outline. Multiple Processor Organization Computer Architecture Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Parallel Processing http://www.yildiz.edu.tr/~naydin 1 2 Outline Multiple Processor

More information

Multiprocessors - Flynn s Taxonomy (1966)

Multiprocessors - Flynn s Taxonomy (1966) Multiprocessors - Flynn s Taxonomy (1966) Single Instruction stream, Single Data stream (SISD) Conventional uniprocessor Although ILP is exploited Single Program Counter -> Single Instruction stream The

More information

PARALLEL COMPUTER ARCHITECTURES

PARALLEL COMPUTER ARCHITECTURES 8 ARALLEL COMUTER ARCHITECTURES 1 CU Shared memory (a) (b) Figure 8-1. (a) A multiprocessor with 16 CUs sharing a common memory. (b) An image partitioned into 16 sections, each being analyzed by a different

More information

Portland State University ECE 588/688. Cray-1 and Cray T3E

Portland State University ECE 588/688. Cray-1 and Cray T3E Portland State University ECE 588/688 Cray-1 and Cray T3E Copyright by Alaa Alameldeen 2014 Cray-1 A successful Vector processor from the 1970s Vector instructions are examples of SIMD Contains vector

More information

Multiprocessors and Thread-Level Parallelism. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiprocessors and Thread-Level Parallelism. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multiprocessors and Thread-Level Parallelism Multithreading Increasing performance by ILP has the great advantage that it is reasonable transparent to the programmer, ILP can be quite limited or hard to

More information

Intro to Multiprocessors

Intro to Multiprocessors The Big Picture: Where are We Now? Intro to Multiprocessors Output Output Datapath Input Input Datapath [dapted from Computer Organization and Design, Patterson & Hennessy, 2005] Multiprocessor multiple

More information

Computer Architecture Spring 2016

Computer Architecture Spring 2016 Computer Architecture Spring 2016 Lecture 19: Multiprocessing Shuai Wang Department of Computer Science and Technology Nanjing University [Slides adapted from CSE 502 Stony Brook University] Getting More

More information

Aleksandar Milenkovich 1

Aleksandar Milenkovich 1 Parallel Computers Lecture 8: Multiprocessors Aleksandar Milenkovic, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Definition: A parallel computer is a collection

More information

Online Course Evaluation. What we will do in the last week?

Online Course Evaluation. What we will do in the last week? Online Course Evaluation Please fill in the online form The link will expire on April 30 (next Monday) So far 10 students have filled in the online form Thank you if you completed it. 1 What we will do

More information

Multiple Issue and Static Scheduling. Multiple Issue. MSc Informatics Eng. Beyond Instruction-Level Parallelism

Multiple Issue and Static Scheduling. Multiple Issue. MSc Informatics Eng. Beyond Instruction-Level Parallelism Computing Systems & Performance Beyond Instruction-Level Parallelism MSc Informatics Eng. 2012/13 A.J.Proença From ILP to Multithreading and Shared Cache (most slides are borrowed) When exploiting ILP,

More information

BlueGene/L (No. 4 in the Latest Top500 List)

BlueGene/L (No. 4 in the Latest Top500 List) BlueGene/L (No. 4 in the Latest Top500 List) first supercomputer in the Blue Gene project architecture. Individual PowerPC 440 processors at 700Mhz Two processors reside in a single chip. Two chips reside

More information

Academic Course Description. EM2101 Computer Architecture

Academic Course Description. EM2101 Computer Architecture Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering EM2101 Computer Architecture Third Semester, 2015-2016 (Odd Semester)

More information

Hakam Zaidan Stephen Moore

Hakam Zaidan Stephen Moore Hakam Zaidan Stephen Moore Outline Vector Architectures Properties Applications History Westinghouse Solomon ILLIAC IV CDC STAR 100 Cray 1 Other Cray Vector Machines Vector Machines Today Introduction

More information

Exploring different level of parallelism Instruction-level parallelism (ILP): how many of the operations/instructions in a computer program can be performed simultaneously 1. e = a + b 2. f = c + d 3.

More information

The Processor: Instruction-Level Parallelism

The Processor: Instruction-Level Parallelism The Processor: Instruction-Level Parallelism Computer Organization Architectures for Embedded Computing Tuesday 21 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy

More information

Issues in Parallel Processing. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Issues in Parallel Processing. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Issues in Parallel Processing Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Introduction Goal: connecting multiple computers to get higher performance

More information

Parallel Architectures

Parallel Architectures Parallel Architectures CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Parallel Architectures Spring 2018 1 / 36 Outline 1 Parallel Computer Classification Flynn s

More information

Advanced Parallel Architecture. Annalisa Massini /2017

Advanced Parallel Architecture. Annalisa Massini /2017 Advanced Parallel Architecture Annalisa Massini - 2016/2017 References Advanced Computer Architecture and Parallel Processing H. El-Rewini, M. Abd-El-Barr, John Wiley and Sons, 2005 Parallel computing

More information

Lecture 26: Parallel Processing. Spring 2018 Jason Tang

Lecture 26: Parallel Processing. Spring 2018 Jason Tang Lecture 26: Parallel Processing Spring 2018 Jason Tang 1 Topics Static multiple issue pipelines Dynamic multiple issue pipelines Hardware multithreading 2 Taxonomy of Parallel Architectures Flynn categories:

More information

ECE 172 Digital Systems. Chapter 4.2 Architecture. Herbert G. Mayer, PSU Status 6/10/2018

ECE 172 Digital Systems. Chapter 4.2 Architecture. Herbert G. Mayer, PSU Status 6/10/2018 ECE 172 Digital Systems Chapter 4.2 Architecture Herbert G. Mayer, PSU Status 6/10/2018 1 Syllabus l Introduction l Uni Processor l Multi Processor l Instruction Set Architecture l Iron Law l Amdahl's

More information

Multiprocessors. Flynn Taxonomy. Classifying Multiprocessors. why would you want a multiprocessor? more is better? Cache Cache Cache.

Multiprocessors. Flynn Taxonomy. Classifying Multiprocessors. why would you want a multiprocessor? more is better? Cache Cache Cache. Multiprocessors why would you want a multiprocessor? Multiprocessors and Multithreading more is better? Cache Cache Cache Classifying Multiprocessors Flynn Taxonomy Flynn Taxonomy Interconnection Network

More information

CPS104 Computer Organization and Programming Lecture 20: Superscalar processors, Multiprocessors. Robert Wagner

CPS104 Computer Organization and Programming Lecture 20: Superscalar processors, Multiprocessors. Robert Wagner CS104 Computer Organization and rogramming Lecture 20: Superscalar processors, Multiprocessors Robert Wagner Faster and faster rocessors So much to do, so little time... How can we make computers that

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Processor (IV) - advanced ILP. Hwansoo Han

Processor (IV) - advanced ILP. Hwansoo Han Processor (IV) - advanced ILP Hwansoo Han Instruction-Level Parallelism (ILP) Pipelining: executing multiple instructions in parallel To increase ILP Deeper pipeline Less work per stage shorter clock cycle

More information

ECE/CS 552: Pipelining to Superscalar Prof. Mikko Lipasti

ECE/CS 552: Pipelining to Superscalar Prof. Mikko Lipasti ECE/CS 552: Pipelining to Superscalar Prof. Mikko Lipasti Lecture notes based in part on slides created by Mark Hill, David Wood, Guri Sohi, John Shen and Jim Smith Pipelining to Superscalar Forecast Real

More information

Announcement. Computer Architecture (CSC-3501) Lecture 25 (24 April 2008) Chapter 9 Objectives. 9.2 RISC Machines

Announcement. Computer Architecture (CSC-3501) Lecture 25 (24 April 2008) Chapter 9 Objectives. 9.2 RISC Machines Announcement Computer Architecture (CSC-3501) Lecture 25 (24 April 2008) Seung-Jong Park (Jay) http://wwwcsclsuedu/~sjpark 1 2 Chapter 9 Objectives 91 Introduction Learn the properties that often distinguish

More information

Handout 3 Multiprocessor and thread level parallelism

Handout 3 Multiprocessor and thread level parallelism Handout 3 Multiprocessor and thread level parallelism Outline Review MP Motivation SISD v SIMD (SIMT) v MIMD Centralized vs Distributed Memory MESI and Directory Cache Coherency Synchronization and Relaxed

More information

Spring 2011 Parallel Computer Architecture Lecture 4: Multi-core. Prof. Onur Mutlu Carnegie Mellon University

Spring 2011 Parallel Computer Architecture Lecture 4: Multi-core. Prof. Onur Mutlu Carnegie Mellon University 18-742 Spring 2011 Parallel Computer Architecture Lecture 4: Multi-core Prof. Onur Mutlu Carnegie Mellon University Research Project Project proposal due: Jan 31 Project topics Does everyone have a topic?

More information

10 Parallel Organizations: Multiprocessor / Multicore / Multicomputer Systems

10 Parallel Organizations: Multiprocessor / Multicore / Multicomputer Systems 1 License: http://creativecommons.org/licenses/by-nc-nd/3.0/ 10 Parallel Organizations: Multiprocessor / Multicore / Multicomputer Systems To enhance system performance and, in some cases, to increase

More information

Computer Architecture: SIMD and GPUs (Part I) Prof. Onur Mutlu Carnegie Mellon University

Computer Architecture: SIMD and GPUs (Part I) Prof. Onur Mutlu Carnegie Mellon University Computer Architecture: SIMD and GPUs (Part I) Prof. Onur Mutlu Carnegie Mellon University A Note on This Lecture These slides are partly from 18-447 Spring 2013, Computer Architecture, Lecture 15: Dataflow

More information

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT : CS6303 / COMPUTER ARCHITECTURE SEM / YEAR : VI / III year B.E. Unit I OVERVIEW AND INSTRUCTIONS Part A Q.No Questions BT Level

More information

Performance of Computer Systems. CSE 586 Computer Architecture. Review. ISA s (RISC, CISC, EPIC) Basic Pipeline Model.

Performance of Computer Systems. CSE 586 Computer Architecture. Review. ISA s (RISC, CISC, EPIC) Basic Pipeline Model. Performance of Computer Systems CSE 586 Computer Architecture Review Jean-Loup Baer http://www.cs.washington.edu/education/courses/586/00sp Performance metrics Use (weighted) arithmetic means for execution

More information

CMSC 611: Advanced. Parallel Systems

CMSC 611: Advanced. Parallel Systems CMSC 611: Advanced Computer Architecture Parallel Systems Parallel Computers Definition: A parallel computer is a collection of processing elements that cooperate and communicate to solve large problems

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III/VI Section : CSE-1 & CSE-2 Subject Code : CS2354 Subject Name : Advanced Computer Architecture Degree & Branch : B.E C.S.E. UNIT-1 1.

More information

Flynn s Classification

Flynn s Classification Flynn s Classification Guang R. Gao ACM Fellow and IEEE Fellow Endowed Distinguished Professor Electrical & Computer Engineering University of Delaware ggao@capsl.udel.edu 652-14F-PXM-intro 1 Execution

More information

Parallel Numerics, WT 2013/ Introduction

Parallel Numerics, WT 2013/ Introduction Parallel Numerics, WT 2013/2014 1 Introduction page 1 of 122 Scope Revise standard numerical methods considering parallel computations! Required knowledge Numerics Parallel Programming Graphs Literature

More information

UNIT 8 1. Explain in detail the hardware support for preserving exception behavior during Speculation.

UNIT 8 1. Explain in detail the hardware support for preserving exception behavior during Speculation. UNIT 8 1. Explain in detail the hardware support for preserving exception behavior during Speculation. July 14) (June 2013) (June 2015)(Jan 2016)(June 2016) H/W Support : Conditional Execution Also known

More information

Aleksandar Milenkovic, Electrical and Computer Engineering University of Alabama in Huntsville

Aleksandar Milenkovic, Electrical and Computer Engineering University of Alabama in Huntsville Lecture 18: Multiprocessors Aleksandar Milenkovic, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Parallel Computers Definition: A parallel computer is a collection

More information

Types of Parallel Computers

Types of Parallel Computers slides1-22 Two principal types: Types of Parallel Computers Shared memory multiprocessor Distributed memory multicomputer slides1-23 Shared Memory Multiprocessor Conventional Computer slides1-24 Consists

More information

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University A.R. Hurson Computer Science and Engineering The Pennsylvania State University 1 Large-scale multiprocessor systems have long held the promise of substantially higher performance than traditional uniprocessor

More information