Outline for Today. Lab Equipment & Procedures. Teaching Assistants. Announcements

Size: px
Start display at page:

Download "Outline for Today. Lab Equipment & Procedures. Teaching Assistants. Announcements"

Transcription

1 Announcements Homework #2 (due before class) submit file on LMS. Submit a soft copy using LMS, everybody individually. Log onto the course LMS site Online Assignments Homework 2 Upload your corrected HW2-vn.c file Submit Important to remember to do this. Everybody must submit their own work. Add the provided pseudo-code for Lab 1-1 to your notebook, corrected for 1 team member's version of lab Quiz 1 in 2 classes (Mon Sept 15, sections 1,2; Tue Sept 13, sections 3,4) 40 minutes; Open book (printed manual), open printed notes No web pages, no past quizzes, no sharing, calculators allowed Coverage: number conversion, logic, pseudocode, and wiring Make sure you are registered for the correct section Homework #3 on website: Online assessment 30 min time limit REMINDER: No food or (container without lid) drink in the lab! Outline for Today Procedures of Tools and Hardware: if you don t have a toolbox from Elect Ccts or Elect Instrumentation you will need to purchase one for your team ($25) Hardware for switches and LEDS Switches are inputs, LEDs are used for Output Worksheet #3 Lab 1, part Teaching Assistants Introduce Grading TAs Side A (podium left) Yogish Didgi Side B (podium right) Yogish Didgi Introduce Helping TAs Jeremy Ang You will need to check out one logic probe per team each day of lab. Logic probes are located in a cabinet in the back right corner of the room (as entering the main door). A TA will need to unlock the cabinet and hold your ID. Students need to be responsible when using the equipment. If something is missing or not working, please let the TA or Instructor know. We will replace it. Make sure logic probes are replaced at the end of class. 4 5

2 Wire for your project can be found in the spare wire box and on the spools Please use the spare wire in the box before using new wire from the spools Less cutting, less waste, less cost Remember: red wires for 5V pwr, black wires for 0V gnd Each group will be assigned protoboards A team MUST put their names on the bottom of it (get new label sticker if needed) At end of lab, return it to the corresponding numbered location in cabinets REMEMBER THIS NUMBER Write the number of your protoboard on the inside cover of your lab notebook Cabinets located on each side of the lab (in back) Unless told otherwise, keep the circuit on the protoboard when you store your equipment at the end of class 6 7 Each group will be assigned a bag of chips and components. These should be left with the protoboard - not taken home (so you won t damage parts or forget to bring it to class). Not all components are in your bag LEDs, resistors, and some other components can be found in the trays on the center table 8 9

3 Preparing for Hardware Clean up your station before leaving lab! Don t just wipe wires onto floor! Turn off power on car. Remember: no food or drink allowed in lab! Take a few minutes and perform the following tasks (TAs will hand them out): If no one on the team owns a toolbox from Elect Ccts or Elect Instr then 1 member will need to sign up to purchase one ($25) One student get a protoboard and logic probe Partner get a bag of parts and label Mount label on bottom of protoboard and write names, section # & side, and semester on label Understand the protoboard nodes (see LITEC Manual, end of Ch. 2) Mount the protoboard on the car Connect the ribbon cable to the protoboard Wiring Rules All partners should have a copy of your code Make sure all have a copy at end of each day One partner may be late/sick/gone next class Homework needs to be submitted on LMS If equipment is broken, inform a TA so it can get replaced or repaired Please be careful, only limited supplies and some equipment is custom built Power/Ground and color convention All connections to power (+5V) use red wire All connections to ground use black wire Do not use red or black wires for any other connections No wires over chips Wire around them Use tight wiring Easier to debug Trim leads of resistors & LEDs 13 14

4 Help Procedures TAs there to help you Be aware there are only four or five TAs in the room with up to 70 students We are limited Try to use the resources available & troubleshoot on your own first, then ask a TA if you cannot solve the problem If TAs and professor are busy, please wait patiently Help Procedures There are also Open Shop hours posted in the lab and on-line The schedule is posted on the pillar in the center of the room TAs will be in the lab at those times to help if necessary Lab 1-1 Overview Lab 1 focuses on the hardware and the functions used to interface the hardware to the C8051 Lab 1-1 specifically introduces the use of digital inputs and outputs Acquire digital input from external source Use this to determine a digital output It is important to develop reusable code Use of functions in your programming GOAL: Control 2 LEDs and a buzzer with two switches 17 Common Digital Gates Inverter Buffer X Q X Q (logic level unchanged, voltage level may change & current increased) OR X Q 7404 X Q Y 7432 X Q X Y Q

5 AND NAND Common Digital Gates X Y X Y There are many, many other digital circuits, but these are the common ones we will use. Q Q X Y Q X Y Q Hardware Components Refer to the components when discussing the following slides Buffer chips LEDs Pushbuttons Slide switches Note: voltage inputs/outputs corresponding to On/Off are not necessarily 0/5 [V] Circuit examples 19 9/1/2016 Lecture #3 20 Chip Numbering Resistors & Potentiometers On the physical chip, the pin numbers are arranged from the top-left around the chip in a counterclockwise (CCW) direction. The top-left is found by locating the small dot or notch on the chip. Example of a resistor component: Physical appearance Electrical symbol Resistance value is indicated by the colored bars. Resistor color codes can be found in Appendix C of the lab manual and on the poster on center column in the lab

6 Light-Emitting Diodes Application in Circuit LEDs are common components that provide a visible indication of a digital output. Diodes only allow current to flow through in one direction. From the cathode to the anode Must be a potential drop across it to emit light Current (i) 23 Connect an LED and resistor in series Power +5V Choose resistor to limit current in LED to rated value i<=10 ma Can use an output pin on microcontroller to turn on/off Power +5V Current (i) Ground 0V Logic High no current flow Logic Low current flow Use buffer gate to protect microcontroller (acts as a current sink) 24 Switches Different types of switches can provide digital input to the microprocessor. Pushbuttons provide different status only when pressed. Slide switches can be placed in either status. Application in Circuit Connect a switch and resistor in series Resistor limits current and provides a voltage drop When open circuit, no current flow, no voltage drop across resistor, therefore reading +5V at point A When closed circuit, current flows, voltage drops across resistor, therefore reading 0V at point A Microcontroller can read the status at this point A - Voltage at this point w.r.t. ground is: High when not pressed (no current) Low when pressed common 25 Power +5V Current (i) only when pressed Ground 0V 26

7 Worksheets #3 and #4 To prepare for Lab 1, we will begin with an example Port initialization and hardware circuit. Worksheet #3 uses hardware similar to Lab 1, part 1, but without the microprocessor control. One switch activates an LED and one activates a buzzer. This circuit can be used as the basis circuitry for Lab 1 (note the similarities). Use proper wiring conventions (neatness, wire color) Don t disassemble it when finished! Hardware Wiring and Testing Additional items in open supply in the Parts Drawers on the table in the middle of the room. Wire, Resistors Some special items like LEDs Read the schematic for Worksheet #03. Plan the circuit layout on the protoboard. Connect wires and check. Remember to connect power and ground to the chip. Turn on power. Verify correct function. Debug if necessary with logic probe. Enter procedure and results in Lab Notebook Show TA the result. Save your work for Lab 1, part 1. Lecture restarts in 30 minutes Lab 1, part 1 Objectives Lab 1, part 1 Representation Your program for Lab 1, part 1 should (or some variation of): When the Slide switch is off (input is a HIGH voltage), LED0 is on, all other output devices are off When the Slide switch is on and both Pushbuttons are pushed, the Buzzer is turned on When the Slide switch is on and only Pushbutton 1 is pushed, the BiLED is green When the Slide switch is on and only Pushbutton 2 is pushed, the BiLED is red print LED and buzzer status to the screen Print button and switch states to the SecureCRT window See Tutorials website for helpful info. C code Switches (pushbutton, slide switch) Input Port 2 & 3 C8051 Controller Port 3 Output buzzer LED0 BicolorLED 29 30

8 Lab 1, part 1 Schematic Inputs Why do we need inputs? We want to send some type of information to the system. What type of signals can we send? Digital (True/False, 1/0, High/Low, +5V/0V) High for the C8051 microcontroller is ~3V, while logic gates need ~5V Analog (variable voltage) Creating Digital Inputs Creating Digital Inputs The Goal: Communicate information to the microcontroller. The Approach: Force an input line to a TRUE or FALSE condition. Recommended practice: Make the input line either high or low at all times do not let input lines float. Floating lines create the possibility of ambiguous information at best, and undesirable information at worst. The usual implementation: R V cc To input pin 33 34

9 C Program for Lab 1, part 1 Sample Code Look on LMS Course material, Laboratory 1 for the lab1-1.c starting code. This code is incomplete in many ways As we look over this example now, think of these questions: How can this be applied in this project? What modifications and additions need to be made to meet our goals? Your pseudo-code should reflect these considerations Lets refer to the Sample code provided with Laboratory1-1. This code will control one LED with one switch You need to modify this code to control 2 LEDs and a buzzer with two switches (as described previously) Things to note as a review of C programming Include header files we need to include c8051_sdcc.h (website) Function prototypes note what is returned/passed Variable declarations must declare at beginning of function Use of indentation & brackets proper use is very helpful Function calls need () for functions, not variables Lab Check-Off Lab Notebooks When you complete a lab assignment, you will need to demonstrate your lab to a TA Check-off procedure TAs/Prof from any section may check you off All partners should to be present (no credit if missing) Lab Notebook needs to be completed to that point You will be asked questions from the Demonstration and Verification section at end of lab as well as some additional questions All partners need to know lab well Questions will be directed towards each partner individually Don t forget to keep your lab notebooks up-to-date! Details in Lab Manual Appendix B Part of lab check-off procedure 53 54

10 Good Communication Connections to the Microcontroller Inform TAs of any partner changes over next week. After that, you will remain partners for rest of semester You will receive updates from your grading TA Be sure to check your Thank you for your help in making this course run smoothly Each protoboard has an EVB Port Connector, see back cover of lab manual and pin sheet For example, hardware connects to Port 3 by using pins Review the numbering scheme on the protoboard connector block to EVB. Note the location of pins 1 and 2 to see how they are sequenced Additional Hardware Notes Note: LEDs will only turn on for forward current flow. Reverse connections if they do not light. See lab manual. The same applies to the polarized buzzer (look for +). Slide protoboards into the slots on top of the car above EVB. This will ensure proper connection of the ribbon cable. Brown edge of cable should be at low number end of pin connector. Next Class Homework 3 is due before class C8051 SFRs & Port I/O Continue Lab 1, part 1 Before you leave Return your protoboard to cabinet slot that matches number on protoboard. Parts bags should be left with protoboard. Return your toolbox (with everything put back) to the TA by the back cabinet. Turn off your car

Announcements Homework #3 due today. Ports. Outline for Today C8051 SFRs & Port I/O Worksheet #4 - simple I/O code. Using Ports

Announcements Homework #3 due today. Ports. Outline for Today C8051 SFRs & Port I/O Worksheet #4 - simple I/O code. Using Ports Announcements Homework #3 due today Online LMS Assessment Everybody submits their own on LMS You should have a lab notebook by now You should have the Lab Manual by now Outline for Today C8051 SFRs & Port

More information

Before Class Install SDCC Instructions in Installing_SiLabs-SDCC- Drivers document. Solutions to Number Systems Worksheet. Announcements.

Before Class Install SDCC Instructions in Installing_SiLabs-SDCC- Drivers document. Solutions to Number Systems Worksheet. Announcements. August 15, 2016 Before Class Install SDCC Instructions in Installing_SiLabs-SDCC- Drivers document Install SiLabs Instructions in Installing_SiLabs-SDCC- Drivers document Install SecureCRT On LMS, also

More information

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab By the end of Class Pseudo-code for Lab 1-2 due as part of prelab Homework #5 on website due before next class Outline Introduce Lab 1-2 Counting Timers on C8051 Interrupts Laboratory Worksheet #05 Copy

More information

Finite State Machine Lab

Finite State Machine Lab Finite State Machine Module: Lab Procedures Goal: The goal of this experiment is to reinforce state machine concepts by having students design and implement a state machine using simple chips and a protoboard.

More information

Lab #2: Building the System

Lab #2: Building the System Lab #: Building the System Goal: In this second lab exercise, you will design and build a minimal microprocessor system, consisting of the processor, an EPROM chip for the program, necessary logic chips

More information

IME-100 ECE. Lab 3. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE,

IME-100 ECE. Lab 3. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE, IME-100 ECE Lab 3 Electrical and Computer Engineering Department Kettering University 3-1 1. Laboratory Computers Getting Started i. Log-in with User Name: Kettering Student (no password required) ii.

More information

PIC Dev 14 Surface Mount PCB Assembly and Test Lab 1

PIC Dev 14 Surface Mount PCB Assembly and Test Lab 1 Name Lab Day Lab Time PIC Dev 14 Surface Mount PCB Assembly and Test Lab 1 Introduction: The Pic Dev 14 SMD is a simple 8-bit Microchip Pic microcontroller breakout board for learning and experimenting

More information

EECE 2411/2211-Introduction to Electrical and Computer Engineering Lab. Lab 3

EECE 2411/2211-Introduction to Electrical and Computer Engineering Lab. Lab 3 EECE 2411/2211-Introduction to Electrical and Computer Engineering Lab Lab 3 Building Multi-Gate Logic Circuits Introduction: In this lab we will look at combining the simple logic gates we used in the

More information

IME-100 ECE. Lab 4. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE,

IME-100 ECE. Lab 4. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE, IME-100 ECE Lab 4 Electrical and Computer Engineering Department Kettering University 4-1 1. Laboratory Computers Getting Started i. Log-in with User Name: Kettering Student (no password required) ii.

More information

PIC Dev 14 Through hole PCB Assembly and Test Lab 1

PIC Dev 14 Through hole PCB Assembly and Test Lab 1 Name Lab Day Lab Time PIC Dev 14 Through hole PCB Assembly and Test Lab 1 Introduction: The Pic Dev 14 is a simple 8-bit Microchip Pic microcontroller breakout board for learning and experimenting with

More information

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 2020 Fall 2017 Lab #1: Digital Logic Module

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 2020 Fall 2017 Lab #1: Digital Logic Module GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 2020 Fall 2017 Lab #1: Digital Logic Module GOAL To introduce the physical implementation of digital logic circuits including

More information

Physics 120/220 Lab Equipment, Hints & Tips

Physics 120/220 Lab Equipment, Hints & Tips Physics 120/220 Lab Equipment, Hints & Tips Solderless Breadboard... 2 Power supply... 4 Multimeters... 5 Function generator... 5 Oscilloscope... 6 10X probe... 7 Resistor color code... 7 Components...

More information

This Presentation Will

This Presentation Will Investigating Basic Circuits Pre-Activity Discussion Digital Electronics 2014 Project Lead The Way, Inc. This Presentation Will Introduce you to basic circuits and their symbols. Introduce you to components

More information

Thursday, September 15, electronic components

Thursday, September 15, electronic components electronic components a desktop computer relatively complex inside: screen (CRT) disk drive backup battery power supply connectors for: keyboard printer n more! Thursday, September 15, 2011 integrated

More information

RFID: Read and Display V2010. Version 1.1. Sept Cytron Technologies Sdn. Bhd.

RFID: Read and Display V2010. Version 1.1. Sept Cytron Technologies Sdn. Bhd. PR8-B RFID: Read and Display V2010 Version 1.1 Sept 2010 Cytron Technologies Sdn. Bhd. Information contained in this publication regarding device applications and the like is intended through suggestion

More information

ECE 103 In-Class Exercise L1 Guide

ECE 103 In-Class Exercise L1 Guide ECE 10 In-Class Exercise L1 Guide Hardware and software needed to complete this lab exercise LabJack U, USB cable, and screwdriver (Qty 1) Red LED (Light Emitting Diode) Short lead is cathode (negative)

More information

Laboratory of Sensors Engineering Sciences 9 CFU

Laboratory of Sensors Engineering Sciences 9 CFU Laboratory of Sensors Engineering Sciences 9 CFU Contacts Alexandro Catini catini@ing.uniroma2.it Phone: +39 06 7259 7347 Department of Electronic Engineering First Floor - Room B1-07b Course Outline THEORY

More information

Goal: We want to build an autonomous vehicle (robot)

Goal: We want to build an autonomous vehicle (robot) Goal: We want to build an autonomous vehicle (robot) This means it will have to think for itself, its going to need a brain Our robot s brain will be a tiny computer called a microcontroller Specifically

More information

Universal Keying Adapter 3+

Universal Keying Adapter 3+ Universal Keying Adapter 3+ The Universal Keying Adapter Version 3+ kit will allow you to key nearly any transmitter or transceiver with a straight key, electronic keyer, computer serial or parallel port

More information

Drexel University Electrical and Computer Engineering Department ECE 200 Intelligent Systems Spring Lab 1. Pencilbox Logic Designer

Drexel University Electrical and Computer Engineering Department ECE 200 Intelligent Systems Spring Lab 1. Pencilbox Logic Designer Lab 1. Pencilbox Logic Designer Introduction: In this lab, you will get acquainted with the Pencilbox Logic Designer. You will also use some of the basic hardware with which digital computers are constructed

More information

7 8 9 C. PRELAB REQUIREMENTS You must adhere to the Lab Rules and Policies document for every lab.

7 8 9 C. PRELAB REQUIREMENTS You must adhere to the Lab Rules and Policies document for every lab. Page 1/ Revision 1 OBJECTIVES To understand how a keypad functions as a raster scan input device and to learn how to interface a keypad to a microprocessor. Further explore and understand the implementation

More information

Quicksilver 606 TR-606 CPU Upgrade

Quicksilver 606 TR-606 CPU Upgrade Quicksilver 606 TR-606 CPU Upgrade D650C 128 Installation Guide Social Entropy Electronic Music Instruments TABLE OF CONTENTS WARNINGS... 1 OVERVIEW... 2 WHAT'S IN THE BOX... 3 OPENING THE TR-606 CASE...

More information

ECE383: Microcomputers Lab 2 PIC24 System Schematic Creation in PCB Artist

ECE383: Microcomputers Lab 2 PIC24 System Schematic Creation in PCB Artist ECE383: Microcomputers Lab 2 PIC24 System Schematic Creation in PCB Artist Goals: The goals of this lab are to introduce students to the creation of a partial PIC24-based schematic and printed circuit

More information

CSC 258 lab notes, Fall 2003

CSC 258 lab notes, Fall 2003 CSC 258 lab notes, Fall 2003 Instructor: E. R. C. Hehner Lab demonstrators: Nicolas Kokkalis, Andrés Lagar Cavilla Successful completion of the three graded labs in this course involves a significant amount

More information

INTRODUCTION TO LABVIEW

INTRODUCTION TO LABVIEW INTRODUCTION TO LABVIEW 2nd Year Microprocessors Laboratory 2012-2013 INTRODUCTION For the first afternoon in the lab you will learn to program using LabVIEW. This handout is designed to give you an introduction

More information

CURIE Academy, Summer 2014 Lab 1: Computer Engineering Hardware Perspective Sign-Off Sheet

CURIE Academy, Summer 2014 Lab 1: Computer Engineering Hardware Perspective Sign-Off Sheet CURIE Academy, Summer 204 Lab : Computer Engineering Hardware Perspective Sign-Off Sheet NAME: NAME: DATE: Sign-Off Milestone TA Initials Part.A Part.B Part.C Part 2.A Part 2.B Part 3.A Part 3.B Part 3.C

More information

EE251: Thursday September 20

EE251: Thursday September 20 EE251: Thursday September 20 Parallel I/O aka General Purpose I/O aka GPIO Common Devices: Switches, LEDs, Keypads Read Lab 4 carefully, and Chapter 14 in text Think about what you would like to review

More information

Button Code Kit. Assembly Instructions and User Guide. Single Button Code Entry System

Button Code Kit. Assembly Instructions and User Guide. Single Button Code Entry System Button Code Kit Single Button Code Entry System Assembly Instructions and User Guide Rev 1.0 December 2009 www.alan-parekh.com Copyright 2009 Alan Electronic Projects Inc. 1. Introduction... 4 1.1 Concept

More information

ELECTRONIC INSTRUMENTATION AND SYSTEMS LABORATORY

ELECTRONIC INSTRUMENTATION AND SYSTEMS LABORATORY ELECTRONIC INSTRUMENTATION AND SYSTEMS LABORATORY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING MICHIGAN STATE UNIVERSITY I. TITLE: Lab IX - Light Activated Exhaust Fan II. PURPOSE: One use of bipolar

More information

Elec 326: Digital Logic Design

Elec 326: Digital Logic Design Elec 326: Digital Logic Design Project Requirements Fall 2005 For this project you will design and test a three-digit binary-coded-decimal (BCD) adder capable of adding positive and negative BCD numbers.

More information

CpSc 1111 Lab 9 2-D Arrays

CpSc 1111 Lab 9 2-D Arrays CpSc 1111 Lab 9 2-D Arrays Overview This week, you will gain some experience with 2-dimensional arrays, using loops to do the following: initialize a 2-D array with data from an input file print out the

More information

Magic 8 Ball. Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name

Magic 8 Ball. Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name MPS Magic 8 Ball Lab Exercise Magic 8 Ball Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name Notes: You must work on this assignment with your partner. Hand in a printer

More information

Welcome to Lab! You do not need to keep the same partner from last lab. We will come around checking your prelabs after we introduce the lab

Welcome to Lab! You do not need to keep the same partner from last lab. We will come around checking your prelabs after we introduce the lab Welcome to Lab! Feel free to get started until we start talking! The lab document is located on the course website: http://users.wpi.edu/~ndemarinis/ece2049/ You do not need to keep the same partner from

More information

UF-3701 Power Board Construction Guide

UF-3701 Power Board Construction Guide Page 1/5 Soldering and Part Placement See the Chapter 3 of the MIT 6270 Manual for information on electronic assembly, including soldering techniques and component mounting. Construction Information All

More information

ME456: Mechatronics. Prof. Clark Radcliffe. Do you have the knack? Joonho Lee, TA. What s Mechatronics? Mechatronics

ME456: Mechatronics. Prof. Clark Radcliffe. Do you have the knack? Joonho Lee, TA. What s Mechatronics? Mechatronics ME456: Mechatronics Prof. Clark J. Radcliffe Mechanical Engineering Michigan State University Prof. Clark Radcliffe Office: 2445 Engineering Phone: 355-5198 Email: radcliff@egr.msu.edu Web: http://www.egr.msu.edu/classes/me456/radcliff/

More information

ECE383: Microprocessors Lab 9 Analog-to-Digital and Digital-to-Analog Conversion with I 2 C Serial EEPROM Data Storage

ECE383: Microprocessors Lab 9 Analog-to-Digital and Digital-to-Analog Conversion with I 2 C Serial EEPROM Data Storage ECE383: Microprocessors Lab 9 Analog-to-Digital and Digital-to-Analog Conversion with I 2 C Serial EEPROM Data Storage Goals: The goals of this lab are to introduce students to a PIC24-based hardware system

More information

Fundamentals of Digital System Design ECE 3700, CPSC 3700

Fundamentals of Digital System Design ECE 3700, CPSC 3700 Fundamentals of Digital System Design ECE 3700, CPSC 3700 Instructor: Priyank Kalla (kalla@ece.utah.edu) 4 Credits Tue, Thu 1:25-1:45pm, WEB 1230 Office Hours: Tue, Thu: 2:30-4pm, or by appointment Office:

More information

ENGR 210 Lab1. Ohm's Law

ENGR 210 Lab1. Ohm's Law ENGR 210 Lab1 Ohm's Law Background In the class lectures we have discussed the fundamental electrical quantities of voltage, current and resistance. Since these quantities are so important there are specialized

More information

Digital Pins and Constants

Digital Pins and Constants Lesson Lesson : Digital Pins and Constants Digital Pins and Constants The Big Idea: This lesson is the first step toward learning to connect the Arduino to its surrounding world. You will connect lights

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2010 Lecture Outline Class # 04 September 28, 2010 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Programming/Software Lab Homework

More information

EECE 690/890 Digital Radio Hardware Design. Team 3 Assignment 2. Informal Design Review: Thurs 10/15/98 Deliverables Due: Tues 10/20/98

EECE 690/890 Digital Radio Hardware Design. Team 3 Assignment 2. Informal Design Review: Thurs 10/15/98 Deliverables Due: Tues 10/20/98 EECE 690/890 Digital Radio Hardware Design Team 3 Assignment 2 Informal Design Review: Thurs 10/15/98 Deliverables Due: Tues 10/20/98 Introduction This is the second in a series of assignments designed

More information

Lab Overview. Lab Details. ECEN 4613/5613 Embedded System Design Week #1 Fall 2008 Lab #1 8/27/2008

Lab Overview. Lab Details. ECEN 4613/5613 Embedded System Design Week #1 Fall 2008 Lab #1 8/27/2008 ECEN 4613/5613 Embedded System Design Week #1 Fall 2008 Lab #1 8/27/2008 Lab Overview In this lab assignment, you will do the following: Learn how to use the ASM51 (or AS31) assembler and Emily52 simulator.

More information

Welcome to Lab! Feel free to get started until we start talking! The lab document is located on the course website:

Welcome to Lab! Feel free to get started until we start talking! The lab document is located on the course website: Welcome to Lab! Feel free to get started until we start talking! The lab document is located on the course website: https://users.wpi.edu/~sjarvis/ece2049_smj/ We will come around checking your pre-labs

More information

CSCB58 - Lab 0. Intro to The Lab & The DE2 Board. Prelab /4 Part I (in-lab) /1 Part II (in-lab) /1

CSCB58 - Lab 0. Intro to The Lab & The DE2 Board. Prelab /4 Part I (in-lab) /1 Part II (in-lab) /1 CSCB58 - Lab 0 Intro to The Lab & The DE2 Board Learning Objectives This week we will be getting you familiar with the lab and the boards that we will be using in later labs. You will also learn how to

More information

Embedded Systems and Software

Embedded Systems and Software Embedded Systems and Software Lecture 12 Some Hardware Considerations Hardware Considerations Slide 1 Logic States Digital signals may be in one of three states State 1: High, or 1. Using positive logic

More information

COS 116 The Computational Universe Laboratory 7: Digital Logic I

COS 116 The Computational Universe Laboratory 7: Digital Logic I COS 116 The Computational Universe Laboratory 7: Digital Logic I In this lab you ll construct simple combinational circuits in software, using a simulator, and also in hardware, with a breadboard and silicon

More information

Arduino 05: Digital I/O. Jeffrey A. Meunier University of Connecticut

Arduino 05: Digital I/O. Jeffrey A. Meunier University of Connecticut Arduino 05: Digital I/O Jeffrey A. Meunier jeffm@engr.uconn.edu University of Connecticut About: How to use this document I designed this tutorial to be tall and narrow so that you can read it on one side

More information

CS12020 (Computer Graphics, Vision and Games) Worksheet 1

CS12020 (Computer Graphics, Vision and Games) Worksheet 1 CS12020 (Computer Graphics, Vision and Games) Worksheet 1 Jim Finnis (jcf1@aber.ac.uk) 1 Getting to know your shield First, book out your shield. This might take a little time, so be patient. Make sure

More information

Chat Activity. Moodle: Collaborative Activities & Blocks. Creating Chats

Chat Activity. Moodle: Collaborative Activities & Blocks. Creating Chats Chat Activity The Moodle chat tool allows communication between instructors and students in real time. Unlike in discussion forums, which are a means for asynchronous communication, online chat sessions

More information

The GENIE Light Kit is ideal for introducing simple lighting projects, such as an electronic die, a wearable badge or a night-time warning system.

The GENIE Light Kit is ideal for introducing simple lighting projects, such as an electronic die, a wearable badge or a night-time warning system. Introduction 1 Welcome to the GENIE microcontroller system! The GENIE Light Kit is ideal for introducing simple lighting projects, such as an electronic die, a wearable badge or a night-time warning system.

More information

Lab 4: Digital Electronics Innovation Fellows Program Boot Camp Prof. Steven S. Saliterman

Lab 4: Digital Electronics Innovation Fellows Program Boot Camp Prof. Steven S. Saliterman Lab 4: Digital Electronics Innovation Fellows Program Boot Camp Prof. Steven S. Saliterman Exercise 4-1: Familiarization with Lab Box Contents & Reference Books 4-1-1 CMOS Cookbook (In the bookcase in

More information

Arduino Prof. Dr. Magdy M. Abdelhameed

Arduino Prof. Dr. Magdy M. Abdelhameed Course Code: MDP 454, Course Name:, Second Semester 2014 Arduino What is Arduino? Microcontroller Platform Okay but what s a Microcontroller? Tiny, self-contained computers in an IC Often contain peripherals

More information

Computer Interfacing Using LabView

Computer Interfacing Using LabView Computer Interfacing Using LabView Physics 258 Last revised September 25, 2005 by Ed Eyler Purpose: Note: To write a simple LabView program that digitizes data using an ADC on a data acquisition card,

More information

Microprocessors B Lab 3 Spring PIC24/24LC515 EEPROM Interface Using I 2 C

Microprocessors B Lab 3 Spring PIC24/24LC515 EEPROM Interface Using I 2 C PIC24/24LC515 EEPROM Interface Using I 2 C Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To

More information

1/Build a Mintronics: MintDuino

1/Build a Mintronics: MintDuino 1/Build a Mintronics: The is perfect for anyone interested in learning (or teaching) the fundamentals of how micro controllers work. It will have you building your own micro controller from scratch on

More information

ENGG1015: Lab 7. In Search of Light

ENGG1015: Lab 7. In Search of Light ENGG0: Lab 7 In Search of Light st Semester 202-3 $ ' The goal of this lab is to complete the basic construction of the last stage of your project a light tracker. By doing so, you will learn to use an

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introductory Digital Systems Laboratory

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introductory Digital Systems Laboratory Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.111 -- Introductory Digital Systems Laboratory NUBUS LABORATORY KIT For your pleasure and convenience,

More information

Onwards and Upwards, Your near space guide Overview of the NearSys Two Sensor Temperature Array Figure 1. A complete Two Sensor Temperature Array

Onwards and Upwards, Your near space guide Overview of the NearSys Two Sensor Temperature Array Figure 1. A complete Two Sensor Temperature Array The NearSys Two Sensor Temperature Array is a kit that permits a BalloonSat to measure two separate temperatures. When plugged into a flight computer like the BalloonSat Mini, the flight computer provides

More information

Figure 1. A complete Temperature Sensor

Figure 1. A complete Temperature Sensor The NearSys Temperature Sensor is a kit that permits a BalloonSat to measure the temperature of the air, interior, or object the sensor itself is placed in contact with. When plugged into a flight computer

More information

E40M. An Introduction to Making: What is EE?

E40M. An Introduction to Making: What is EE? E40M An Introduction to Making: What is EE? Jim Plummer Stanford University plummer@stanford.edu Chuan-Zheng Lee Stanford University czlee@stanford.edu Roger Howe Stanford University rthowe@stanford.edu

More information

Week 9: Design a Night Light. The experimental procedure Is not in the lab manual

Week 9: Design a Night Light. The experimental procedure Is not in the lab manual Week 9: Design a Night Light The experimental procedure Is not in the lab manual Goal Design a circuit that cause a green LED to turn on when the intensity of light on a CdS photocell is below a certain

More information

VG-305A AC Traffic Light Controller Kit

VG-305A AC Traffic Light Controller Kit Galak Electronics Electronic kits and components Website: GalakElectronics.com Email: sales@galakelectronics.com Phone: (302) 832-1978 VG-305A AC Traffic Light Controller Kit Thank you for your purchase

More information

Discharge by touching: BNC coax shield, outlet metal cover plate, wire connected to GND

Discharge by touching: BNC coax shield, outlet metal cover plate, wire connected to GND Step-down transformer Very High Voltage Very Low Current Lower Voltage, 110V Power Station Grounding contact (3rd wire) Faulty wiring makes box hot!! Current path splits: 1) to ground (mostly) 2) through

More information

EECS 140 Laboratory Exercise 4 3-to-11 Counter Implementation

EECS 140 Laboratory Exercise 4 3-to-11 Counter Implementation EECS 140 Laboratory Exercise 4 3-to-11 Counter Implementation 1. Objectives A. To apply knowledge of combinatorial design. B. Gain expertise in designing and building a simple combinatorial circuit This

More information

solutions for teaching and learning

solutions for teaching and learning RKP18Motor Component List and Instructions PCB layout Constructed PCB Schematic Diagram RKP18Motor Project PCB Page 1 Description The RKP18Motor project PCB has been designed to use PIC microcontrollers

More information

Lab 4: Digital Electronics BMEn 2151 Introductory Medical Device Prototyping Prof. Steven S. Saliterman

Lab 4: Digital Electronics BMEn 2151 Introductory Medical Device Prototyping Prof. Steven S. Saliterman Lab 4: Digital Electronics BMEn 2151 Introductory Medical Device Prototyping Prof. Steven S. Saliterman Exercise 4-1: Familiarization with Lab Box Contents & Reference Books 4-1-1 CMOS Cookbook (In the

More information

Lab 2.2 Ohm s Law and Introduction to Arduinos

Lab 2.2 Ohm s Law and Introduction to Arduinos Lab 2.2 Ohm s Law and Introduction to Arduinos Objectives: Get experience using an Arduino Learn to use a multimeter to measure Potential units of volts (V) Current units of amps (A) Resistance units of

More information

Build Your Own Home Security System

Build Your Own Home Security System Build Your Own Home Security System Student Lab Guide Engineering Teaching Laboratory Name Date Lab Partner(s) NEW TERMS Electric Circuit: Electric circuits are paths for transmitting electric current,

More information

9 Output Devices: Buzzers

9 Output Devices: Buzzers 9 Output Devices: Buzzers Project In this project, you will learn how to connect and control LEDs (Light Emitting Diode) and a buzzer with the Raspberry Pi. Components In addition to your Raspberry Pi,

More information

Pre-Lab: Part 1 Using The Development Environment. Purpose: Minimum Parts Required: References: Handouts:

Pre-Lab: Part 1 Using The Development Environment. Purpose: Minimum Parts Required: References: Handouts: Purpose: Minimum Parts Required: References: Handouts: Laboratory Assignment Number 1 for Mech 143/ELEN123 Due by 5:00pm in lab box on Friday, April 19, 2002 Pre-Lab due by 5:00pm in lab box on Tuesday,

More information

AXE Stack 18. BASIC-Programmable Microcontroller Kit. An inexpensive introduction to microcontroller technology for all ability levels

AXE Stack 18. BASIC-Programmable Microcontroller Kit. An inexpensive introduction to microcontroller technology for all ability levels Ltd AXE Stack 18 BASIC-Programmable Microcontroller Kit a division of An inexpensive introduction to microcontroller technology for all ability levels Free Windows interface software Programmable in BASIC

More information

Look closely at this schematic diagram, in thid class you will be asked to construct this circuit WITHOUT using the textbook!

Look closely at this schematic diagram, in thid class you will be asked to construct this circuit WITHOUT using the textbook! LEARNING TO READ SCHEMATIC DIAGRAMS So far you have been constructing the circuits by following the detailed pictures in the textbook. For example, you were following the pictures to connect the LED between

More information

CONTENTS. dspicpro4 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6

CONTENTS. dspicpro4 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 CONTENTS dspicpro4 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 Switches and Jumpers 7 MCU Sockets 8 Power Supply 10 On-Board USB 2.0 Programmer 11 MikroICD 12 RS-232 Communication Circuit 13

More information

TECH 3821 Lab #2 Relay Driver with Computer Control

TECH 3821 Lab #2 Relay Driver with Computer Control TECH 3821 Lab #2 Relay Driver with Computer Control Name: Background: One of the most basic controls in industry is the ability to turn things on and off. As we saw in Lab #1, a relay is often used to

More information

Problem Score 1 / 27 2 / 19 3 / 16 4 / 14 code check off 5 / 22 /2 Total /100

Problem Score 1 / 27 2 / 19 3 / 16 4 / 14 code check off 5 / 22 /2 Total /100 ME430 Mechatronics Examination I Page 1 Name CM Section You may use only: ME430 Mechatronics Examination I Sept 22nd, 2016 Problem Score 1 / 27 2 / 19 3 / 16 4 / 14 code check off 5 / 22 /2 Total /100

More information

Advanced Strobe 1.0 Kit

Advanced Strobe 1.0 Kit Kit Instruction Manual Eastern Voltage Research, LLC December 2013, Rev 1 1 http://www.easternvoltageresearch.com Kit Introduction to the Kit Thank you for purchasing the Kit. If you are looking for a

More information

- create new schematic to the new project, PCB design begins with a schematic diagram, which present how components are connected

- create new schematic to the new project, PCB design begins with a schematic diagram, which present how components are connected Eagle 8.x tutorial - create a new project, Eagle designs are organized as projects - create new schematic to the new project, PCB design begins with a schematic diagram, which present how components are

More information

PRE-LAB #4: Voltage-Divider-Based Cloud Detector

PRE-LAB #4: Voltage-Divider-Based Cloud Detector Name/NetID: PRE-LAB #4: Voltage-Divider-Based Cloud Detector Learning Objectives Gain experience in reading datasheets of electronic components Build a circuit by following the design specified on a circuit

More information

EE 330 Laboratory 3 Layout, DRC, and LVS Fall 2015

EE 330 Laboratory 3 Layout, DRC, and LVS Fall 2015 EE 330 Laboratory 3 Layout, DRC, and LVS Fall 2015 Contents Objective:... 2 Part 1 Creating a layout... 2 1.1 Run DRC Early and Often... 2 1.2 Create N active and connect the transistors... 3 1.3 Vias...

More information

manufactured by SF8150-ZIF14

manufactured by SF8150-ZIF14 manufactured by manufactured by SF8150- ZIF14 Butterfly packaged laser diode controller Datasheet & Users Manual Before powering on your driver, read this manual thoroughly. If you have any doubt or suggestion,

More information

None. MICROCONTROLLERS III

None. MICROCONTROLLERS III MICROCONTROLLERS III PREREQUISITES: MODULE 10: MICROCONTROLLERS II. OUTLINE OF MODULE 11: What you will learn about in this Module: Use of a much more powerful microcontroller: the PIC16F877 In-circuit

More information

Parallel I/O and Keyboard Scanning

Parallel I/O and Keyboard Scanning 4 4.1 Objectives: Microprocessors can monitor the outside world using input ports. They can also control it using output ports. The TM4C123G (Tiva) performs I/O using 6 ports. Computer keyboards are typically

More information

Standard Logic Chips and National Instruments ELVIS Breadboarding for Combinational Logic Circuits

Standard Logic Chips and National Instruments ELVIS Breadboarding for Combinational Logic Circuits ECE380 Digital Logic: Design Activity #4 Standard Logic Chips and National Instruments ELVIS Breadboarding for Combinational Logic Circuits INTRODUCTION In Design Activity #4 you will use the National

More information

Lab 8: Debugging Embedded Devices and Software

Lab 8: Debugging Embedded Devices and Software Lab 8: Debugging Embedded Devices and Software Summary: Given pre-written code, isolate code and functional errors to create a working memory interfacing program. Learning Objectives: Debug and fix pre-written

More information

Butterfly Laser Diode Mount

Butterfly Laser Diode Mount LM14S2 Butterfly Laser Diode Mount Operating Manual LM14S2 Laser On TEC Driver LD Driver THORLABS, Inc. Ph: (973) 579-7227 435 Route 206N Fax: (973) 383-8406 Newton, NJ 07860 USA www.thorlabs.com 10614-D02

More information

Module 3B: Arduino as Power Supply

Module 3B: Arduino as Power Supply Name/NetID: Teammate/NetID: Module 3B: Laboratory Outline As you work on through the labs during the semester and some of the modules you may want to continue experimenting at home. Luckily the microprocessor

More information

Lab 0: Wire Wrapping Project: Counter Board

Lab 0: Wire Wrapping Project: Counter Board Lab 0: Wire Wrapping Project: Counter Board September 3, 2008 In this experiment, you will build a simple counter circuit that can be plugged into your breadboard. It will provide a set of TTL output signals

More information

Procedure: Determine the polarity of the LED. Use the following image to help:

Procedure: Determine the polarity of the LED. Use the following image to help: Section 2: Lab Activity Section 2.1 Getting started: LED Blink Purpose: To understand how to upload a program to the Arduino and to understand the function of each line of code in a simple program. This

More information

eace PLC Velocio s Embedded Ace (eace) PLC

eace PLC Velocio s Embedded Ace (eace) PLC Velocio s Embedded Ace (eace) PLC eace PLC The eace PLC is a member of the Velocio s groundbreaking series of programmable logic controllers. These PLCs introduce revolutionary new concepts, capabilities,

More information

BUILDING YOUR KIT. For the Toadstool Mega328.

BUILDING YOUR KIT. For the Toadstool Mega328. BUILDING YOUR KIT For the Toadstool Mega328 www.crash-bang.com @crashbang_proto This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Congratulations! You re

More information

Electronics & Control

Electronics & Control Engineering Science Electronics & Control Logic Page 2 Introduction Electronic circuits can be use to control a huge variety of systems but in each case there are IN- PUTS, PROCESSES and OUTPUTS. In this

More information

A B A+B

A B A+B ECE 25 Lab 2 One-bit adder Design Introduction The goal of this lab is to design a one-bit adder using programmable logic on the BASYS board. Due to the limitations of the chips we have in stock, we need

More information

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS)

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) Objective Part A: To become acquainted with Spectre (or HSpice) by simulating an inverter,

More information

E85: Digital Design and Computer Engineering Lab 1: Electrical Characteristics of Logic Gates

E85: Digital Design and Computer Engineering Lab 1: Electrical Characteristics of Logic Gates E85: Digital Design and Computer Engineering Lab 1: Electrical Characteristics of Logic Gates Objective The purpose of this lab is to become comfortable with logic gates as physical objects, to interpret

More information

USER MANUAL FOR HARDWARE REV

USER MANUAL FOR HARDWARE REV PI-REPEATER-2X 1. WELCOME 2. CONTENTS PAGE 1 3. GETTING STARTED There are many features built into this little board that you should be aware of as they can easily be missed when setting up the hardware

More information

Introduction 1. Liquid crystal display (16 characters by 2 rows) Contrast dial: turn the dial to adjust the contrast of the display (see page 5)

Introduction 1. Liquid crystal display (16 characters by 2 rows) Contrast dial: turn the dial to adjust the contrast of the display (see page 5) Welcome to the GENIE Serial LCD module. Introduction 1 The GENIE Serial LCD module allows GENIE-based projects to display messages on a 16 character by 2 row liquid crystal display (LCD). This worksheet

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science EECS 150 Fall 2000 Original Lab By: J.Wawrzynek and N. Weaver Edited by B. Choi, R.

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science. EECS 150 Spring 2000

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science. EECS 150 Spring 2000 University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science EECS 150 Spring 2000 Lab 1 Introduction to Xilinx Design Software 1 Objectives In this

More information

Intro to Multisim & Ultiboard

Intro to Multisim & Ultiboard Intro to Multisim & Ultiboard (Lab by Wayne Stanton) Note: This document was written for version 13.0 of Multisim and Ultiboard. Note: A grade for this lab will be applied upon receipt of the project file.

More information

OPERATING INSTRUCTIONS 7 SERIES STATIC GENERATORS

OPERATING INSTRUCTIONS 7 SERIES STATIC GENERATORS OPERATING INSTRUCTIONS 7 SERIES STATIC GENERATORS GB Contents Page 1 Introduction 4 2 Safety 5 3 Use 6 4 Checking on Delivered Equipment 6 5 General Specification and Dimensions 7 6 Positioning 10 7 Operating

More information