Lecture 12 Visual recognition

Size: px
Start display at page:

Download "Lecture 12 Visual recognition"

Transcription

1 Lecture 12 Visual recognition Bag of words models for object recognition and classification Discriminative methods Generative methods Silvio Savarese Lecture 11 17Feb14

2 Challenges Variability due to: View point Illumination Occlusions Intraclass variability

3 Challenges: intraclass variation

4 Basic properties Representation How to represent an object category; which classification scheme? Learning How to learn the classifier, given training data Recognition How the classifier is to be used on novel data

5 Part 1: Bagofwords models This segment is based on the tutorial Recognizing and Learning Object Categories: Year 2007, by Prof A. Torralba, R. Fergus and F. Li

6 Related works Early bag of words models: mostly texture recognition Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003; Hierarchical Bayesian models for documents (plsa, LDA, etc.) Hoffman 1999; Blei, Ng & Jordan, 2004; Teh, Jordan, Beal & Blei, 2004 Object categorization Csurka, Bray, Dance & Fan, 2004; Sivic, Russell, Efros, Freeman & Zisserman, 2005; Sudderth, Torralba, Freeman & Willsky, 2005; Natural scene categorization Vogel & Schiele, 2004; FeiFei & Perona, 2005; Bosch, Zisserman & Munoz, 2006

7 Object Bag of words

8 Analogy to documents Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach the brain from our eyes. For a long time it was thought that the retinal image was transmitted sensory, point brain, by point to visual centers in the brain; the cerebral cortex was a visual, perception, movie screen, so to speak, upon which the image in retinal, the eye was cerebral projected. Through cortex, the discoveries of eye, Hubel cell, and Wiesel optical we now know that behind the origin of the visual perception in the nerve, brain there image is a considerably more complicated Hubel, course of Wiesel events. By following the visual impulses along their path to the various cell layers of the optical cortex, Hubel and Wiesel have been able to demonstrate that the message about the image falling on the retina undergoes a stepwise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image. China is forecasting a trade surplus of $90bn ( 51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports to $750bn, compared with a 18% rise in imports to $660bn. The figures China, are likely trade, to further annoy the US, which has long argued that surplus, commerce, China's exports are unfairly helped by a deliberately exports, undervalued imports, yuan. Beijing US, agrees the yuan, surplus bank, is too high, domestic, but says the yuan is only one factor. Bank of China governor Zhou foreign, Xiaochuan increase, said the country also needed to do trade, more to value boost domestic demand so more goods stayed within the country. China increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to trade freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value.

9 definition of BoW Independent features face bike violin

10 definition of BoW Independent features histogram representation codewords dictionary

11 learning Representation recognition feature detection & representation codewords dictionary image representation category models (and/or) classifiers category decision

12 1.Feature detection and description

13 1.Feature detection and description Regular grid Vogel & Schiele, 2003 FeiFei & Perona, 2005

14 1.Feature detection and description Regular grid Vogel & Schiele, 2003 FeiFei & Perona, 2005 Interest point detector Csurka, et al FeiFei & Perona, 2005 Sivic, et al. 2005

15 1.Feature detection and description Regular grid Vogel & Schiele, 2003 FeiFei & Perona, 2005 Interest point detector Csurka, Bray, Dance & Fan, 2004 FeiFei & Perona, 2005 Sivic, Russell, Efros, Freeman & Zisserman, 2005 Other methods Random sampling (VidalNaquet & Ullman, 2002) Segmentation based patches (Barnard, Duygulu, Forsyth, de Freitas, Blei, Jordan, 2003)

16 1.Feature detection and description Compute SIFT descriptor [Lowe 99] Normalize patch Detect patches [Mikojaczyk and Schmid 02] [Mata, Chum, Urban & Pajdla, 02] [Sivic & Zisserman, 03] Slide credit: Josef Sivic

17 2. Codewords dictionary formation

18 2. Codewords dictionary formation

19 Example: color feature

20 Example: color feature b g r

21 2. Codewords dictionary formation Cluster center = code word Clustering/ vector quantization E.g., Kmeans, see CS131A

22

23

24

25

26 2. Codewords dictionary formation Image patch examples of codewords Sivic et al. 2005

27 2. Codewords dictionary formation FeiFei et al. 2005

28 2. Codewords dictionary formation Typically a codeword dictionary is obtained from a training set comprising all the object classes of interests

29 Visual vocabularies: Issues How to choose vocabulary size? Too small: visual words not representative of all patches Too large: quantization artifacts, overfitting Computational efficiency Vocabulary trees (Nister & Stewenius, 2006)

30 3. Bag of word representation Nearest neighbors assignment KD tree search strategy Codewords dictionary

31 frequency 3. Bag of word representation. codewords Codewords dictionary

32 Representing textures Texture is characterized by the repetition of basic elements or textons For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003 Credit slide: S. Lazebnik

33 Representing textures histogram Universal texton dictionary Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003 Credit slide: S. Lazebnik

34 Invariance issues Scale? Rotation? View point? Occlusions? Implicit; depends on detectors and descriptors Kadir and Brady. 2003

35 Representation 1. feature detection & representation 2. codewords dictionary 3. image representation category models

36 Category models Class 1 Class N

37 Recognition codewords dictionary category models (and/or) classifiers category decision

38 Lecture 12 Visual recognition Bag of words models for object recognition and classification Discriminative methods Nearest neighborhood Linear classifier SVM Generative methods Silvio Savarese Lecture 11 17Feb14

39 Discriminative classifiers category models Model space Class 1 Class N

40 Discriminative classifiers Query image Model space Winning class: pink

41 Nearest Neighbors classifier Query image Model space Winning class: pink Assign label of nearest training data point to each test data point

42 K Nearest Neighbors classifier Query image Model space Winning class: pink For a new point, find the k closest points from training data Labels of the k points vote to classify Works well provided there is lots of data and the distance function is good

43 K Nearest Neighbors classifier from Duda et al. Voronoi partitioning of feature space for 2category 2D and 3D data For k dimensions: kd tree = spacepartitioning data structure for organizing points in a kdimensional space Enable efficient search Nice tutorial:

44 Functions for comparing histograms L1 distance χ 2 distance Quadratic distance (crossbin) N i i h i h h h D ) ( ) ( ), ( Jan Puzicha, Yossi Rubner, Carlo Tomasi, Joachim M. Buhmann: Empirical Evaluation of Dissimilarity Measures for Color and Texture. ICCV 1999 N i i h i h i h i h h h D ) ( ) ( ) ( ) ( ), ( j i ij j h i h A h h D, )) ( ) ( ( ), (

45 Discriminative classifiers (linear classifier) category models Model space Class 1 Class N w For a linear classifier, the training data is used to learn w and then discarded Only w is needed for classifying new data

46 Linear classifiers We want to classify two classes of points Each point x i can have two labels y i : {1, 1}

47 Linear classifiers GOAL: learn a classifier f(x) such that: where: Find the hyperplane (w,b) to separate training points w, b w

48 Linear classifiers Once w,b are learnt, we can do classification: if x w b 0 class 1 if x w b 0 class 2 Test point

49 Linear classifiers Which hyperplane is best?

50 Select two hyperplanes such: Support vector machines They separate the training points There are no points between them Their distance is maximized Support vectors: x i w b 1 x w b Distance between point i and hyperplane: w Margin = 2 / w Solution: w y x i i i i Support vectors Margin b 1 N N i1 ( x w i y i ) The region bounded by them is called "the margin". Maximum margin solution: most stable under perturbations of the inputs

51 Support vector machines Classification: f ( x) i i y i x i x b Test point if f ( x) 0 x class 1 if f ( x) 0 x class 2 C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

52 Linearly not separable Linearly separable with small margins Linearly separable Linear separability Courtesy of A Zisserman

53 Linear separability Two possible solutions: Introduce soft variables (through slack variables) Non linear separation function (e.g., non linear SVM)

54 Soft margins The points can be linearly separated but there is a very narrow margin Or they cannot be separated at all IDEA: still seek at large margin solution, even though one constraint is violated In general there is a trade off between the margin and the number of mistakes on the training data Courtesy of A Zisserman

55 Soft margins By Corinna Cortes and Vladimir N. Vapnik, 1995 Use soft margin violations instead of the hard one: Find hyperplanes that split the examples as cleanly as possible, while still maximizing the distance to the nearest cleanly split examples. Introduce slack variables to measure the degree of misclassification of the data

56 Nonlinear SVMs Given a nonlinearly separable dataset: 0 x Map it to a higherdimensional space: x 2 0 x Slide credit: Andrew Moore

57 Nonlinear SVMs General idea: the original input space can always be mapped to some higherdimensional feature space where the training set is separable: Φ: x φ(x) lifting transformation Slide credit: Andrew Moore

58 Nonlinear SVMs Nonlinear decision boundary in the original feature space: i i y i x i x b i yik ( xi, x ) i b The kernel K = product of the lifting transformation φ(x): K(x i,x j j) = φ(x i ) φ(x j ) NOTE: It is not required to compute φ(x) explicitly: The kernel must satisfy the Mercer inequality C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

59 Kernels for bags of features Histogram intersection kernel: I( h1, h2 ) min( h1 ( i), h2 ( i)) i1 Generalized Gaussian kernel: N 1 K( h, h2 ) exp D( h1, h A 2 1 2) D can be Euclidean distance, χ 2 distance etc J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for Classifcation of Texture and Object Categories: A Comprehensive Study, IJCV 2007

60 Which classifier to use? Linear Nonlinear

61 Which classifier to use? Linear Nonlinear Let s add more training data! A more complex model can over fit the data if these are not enough!

62 What about multiclass SVMs? No definitive multiclass SVM formulation In practice, we have to obtain a multiclass SVM by combining multiple twoclass SVMs One vs. others Traning: learn an SVM for each class vs. the others Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value One vs. one Training: learn an SVM for each pair of classes Testing: each learned SVM votes for a class to assign to the test example Credit slide: S. Lazebnik

63 SVMs: Pros and cons Pros Many publicly available SVM packages: Kernelbased framework is very powerful, flexible SVMs work very well in practice, even with very small training sample sizes Cons No direct multiclass SVM, must combine twoclass SVMs Computation, memory During training time, must compute matrix of kernel values for every pair of examples Learning can take a very long time for largescale problems

64 Discriminative classifiers (linear classifier) category models Model space Class 1 Class N w

65 Discriminative classifiers (linear classifier) Query image Model space Winning class: pink w

66 Caltech 101

67 Caltech 101 BOW ~15%

68 Spatial Pyramid Matching Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. S. Lazebnik, C. Schmid, and J. Ponce N I( h1, h2 ) min( h1 ( i), h2 ( i)) i1

69 Caltech 101

70 Caltech 101 Pyramid matching

71 Discriminative models Nearest neighbor Neural networks 10 6 examples Shakhnarovich, Viola, Darrell 2003 Berg, Berg, Malik LeCun, Bottou, Bengio, Haffner 1998 Rowley, Baluja, Kanade 1998 Support Vector Machines Latent SVM Structural SVM Boosting Guyon, Vapnik, Heisele, Serre, Poggio Felzenszwalb 00 Ramanan 03 Viola, Jones 2001, Torralba et al. 2004, Opelt et al. 2006, Courtesy of Vittorio Ferrari Slide credit: Kristen Grauman Slide adapted from Antonio Torralba

72 Next Lecture Bag of words models for object recognition and classification Generative methods 18Feb14

EECS 442 Computer vision. Object Recognition

EECS 442 Computer vision. Object Recognition EECS 442 Computer vision Object Recognition Intro Recognition of 3D objects Recognition of object categories: Bag of world models Part based models 3D object categorization Computer Vision: Algorithms

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Session 19 Object Recognition II Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering Lab

More information

Recognition with Bag-ofWords. (Borrowing heavily from Tutorial Slides by Li Fei-fei)

Recognition with Bag-ofWords. (Borrowing heavily from Tutorial Slides by Li Fei-fei) Recognition with Bag-ofWords (Borrowing heavily from Tutorial Slides by Li Fei-fei) Recognition So far, we ve worked on recognizing edges Now, we ll work on recognizing objects We will use a bag-of-words

More information

By Suren Manvelyan,

By Suren Manvelyan, By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan,

More information

Introduction to Object Recognition & Bag of Words (BoW) Models

Introduction to Object Recognition & Bag of Words (BoW) Models : Introduction to Object Recognition & Bag of Words (BoW) Models Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Introduction to object recognition Representation Learning Recognition

More information

Lecture 15: Object recognition: Bag of Words models & Part based generative models

Lecture 15: Object recognition: Bag of Words models & Part based generative models Lecture 15: Object recognition: Bag of Words models & Part based generative models Professor Fei Fei Li Stanford Vision Lab 1 Basic issues Representation How to represent an object category; which classification

More information

Pattern recognition (3)

Pattern recognition (3) Pattern recognition (3) 1 Things we have discussed until now Statistical pattern recognition Building simple classifiers Supervised classification Minimum distance classifier Bayesian classifier Building

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Object Recognition in Large Databases Some material for these slides comes from www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture18_index.pptx

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 16: Bag-of-words models Object Bag of words Announcements Project 3: Eigenfaces due Wednesday, November 11 at 11:59pm solo project Final project presentations:

More information

Distances and Kernels. Motivation

Distances and Kernels. Motivation Distances and Kernels Amirshahed Mehrtash Motivation How similar? 1 Problem Definition Designing a fast system to measure the similarity il it of two images. Used to categorize images based on appearance.

More information

Object Classification for Video Surveillance

Object Classification for Video Surveillance Object Classification for Video Surveillance Rogerio Feris IBM TJ Watson Research Center rsferis@us.ibm.com http://rogerioferis.com 1 Outline Part I: Object Classification in Far-field Video Part II: Large

More information

Indexing local features and instance recognition May 16 th, 2017

Indexing local features and instance recognition May 16 th, 2017 Indexing local features and instance recognition May 16 th, 2017 Yong Jae Lee UC Davis Announcements PS2 due next Monday 11:59 am 2 Recap: Features and filters Transforming and describing images; textures,

More information

Advanced Techniques for Mobile Robotics Bag-of-Words Models & Appearance-Based Mapping

Advanced Techniques for Mobile Robotics Bag-of-Words Models & Appearance-Based Mapping Advanced Techniques for Mobile Robotics Bag-of-Words Models & Appearance-Based Mapping Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Motivation: Analogy to Documents O f a l l t h e s e

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

Indexing local features and instance recognition May 14 th, 2015

Indexing local features and instance recognition May 14 th, 2015 Indexing local features and instance recognition May 14 th, 2015 Yong Jae Lee UC Davis Announcements PS2 due Saturday 11:59 am 2 We can approximate the Laplacian with a difference of Gaussians; more efficient

More information

Indexing local features and instance recognition May 15 th, 2018

Indexing local features and instance recognition May 15 th, 2018 Indexing local features and instance recognition May 15 th, 2018 Yong Jae Lee UC Davis Announcements PS2 due next Monday 11:59 am 2 Recap: Features and filters Transforming and describing images; textures,

More information

Lecture 14: Indexing with local features. Thursday, Nov 1 Prof. Kristen Grauman. Outline

Lecture 14: Indexing with local features. Thursday, Nov 1 Prof. Kristen Grauman. Outline Lecture 14: Indexing with local features Thursday, Nov 1 Prof. Kristen Grauman Outline Last time: local invariant features, scale invariant detection Applications, including stereo Indexing with invariant

More information

Today. Main questions 10/30/2008. Bag of words models. Last time: Local invariant features. Harris corner detector: rotation invariant detection

Today. Main questions 10/30/2008. Bag of words models. Last time: Local invariant features. Harris corner detector: rotation invariant detection Today Indexing with local features, Bag of words models Matching local features Indexing features Bag of words model Thursday, Oct 30 Kristen Grauman UT-Austin Main questions Where will the interest points

More information

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Bag-of-words models Object Bag of words Bag of Words Models Adapted from slides by Rob Fergus and Svetlana Lazebnik 1 Object Bag of words Origin 1: Texture Recognition

More information

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Classification 3: Bag of Words Aaron Bobick School of Interactive Computing Administrivia PS 6 is out. Due Tues Nov 25th, 11:55pm. One more assignment after that Mea culpa This

More information

Supervised learning. y = f(x) function

Supervised learning. y = f(x) function Supervised learning y = f(x) output prediction function Image feature Training: given a training set of labeled examples {(x 1,y 1 ),, (x N,y N )}, estimate the prediction function f by minimizing the

More information

Patch Descriptors. CSE 455 Linda Shapiro

Patch Descriptors. CSE 455 Linda Shapiro Patch Descriptors CSE 455 Linda Shapiro How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Introduction to object recognition Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Overview Basic recognition tasks A statistical learning approach Traditional or shallow recognition

More information

Bag-of-features. Cordelia Schmid

Bag-of-features. Cordelia Schmid Bag-of-features for category classification Cordelia Schmid Visual search Particular objects and scenes, large databases Category recognition Image classification: assigning a class label to the image

More information

Recognizing Object Instances. Prof. Xin Yang HUST

Recognizing Object Instances. Prof. Xin Yang HUST Recognizing Object Instances Prof. Xin Yang HUST Applications Image Search 5 Years Old Techniques Applications For Toys Applications Traffic Sign Recognition Today: instance recognition Visual words quantization,

More information

Visual Object Recognition

Visual Object Recognition Perceptual and Sensory Augmented Computing Visual Object Recognition Tutorial Visual Object Recognition Bastian Leibe Computer Vision Laboratory ETH Zurich Chicago, 14.07.2008 & Kristen Grauman Department

More information

EECS 442 Computer vision. Object Recognition

EECS 442 Computer vision. Object Recognition EECS 442 Computer vision Object Recognition Intro Recognition of 3D objects Recognition of object categories: Bag of world models Part based models 3D object categorization Challenges: intraclass variation

More information

Recognizing object instances

Recognizing object instances Recognizing object instances UT-Austin Instance recognition Motivation visual search Visual words quantization, index, bags of words Spatial verification affine; RANSAC, Hough Other text retrieval tools

More information

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models CS4495/6495 Introduction to Computer Vision 8C-L1 Classification: Discriminative models Remember: Supervised classification Given a collection of labeled examples, come up with a function that will predict

More information

Local Features and Bag of Words Models

Local Features and Bag of Words Models 10/14/11 Local Features and Bag of Words Models Computer Vision CS 143, Brown James Hays Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others Computer Engineering

More information

Patch Descriptors. EE/CSE 576 Linda Shapiro

Patch Descriptors. EE/CSE 576 Linda Shapiro Patch Descriptors EE/CSE 576 Linda Shapiro 1 How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

Feature Matching + Indexing and Retrieval

Feature Matching + Indexing and Retrieval CS 1699: Intro to Computer Vision Feature Matching + Indexing and Retrieval Prof. Adriana Kovashka University of Pittsburgh October 1, 2015 Today Review (fitting) Hough transform RANSAC Matching points

More information

Instance recognition

Instance recognition Instance recognition Thurs Oct 29 Last time Depth from stereo: main idea is to triangulate from corresponding image points. Epipolar geometry defined by two cameras We ve assumed known extrinsic parameters

More information

Window based detectors

Window based detectors Window based detectors CS 554 Computer Vision Pinar Duygulu Bilkent University (Source: James Hays, Brown) Today Window-based generic object detection basic pipeline boosting classifiers face detection

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

Supervised learning. y = f(x) function

Supervised learning. y = f(x) function Supervised learning y = f(x) output prediction function Image feature Training: given a training set of labeled examples {(x 1,y 1 ),, (x N,y N )}, estimate the prediction function f by minimizing the

More information

Recognizing object instances. Some pset 3 results! 4/5/2011. Monday, April 4 Prof. Kristen Grauman UT-Austin. Christopher Tosh.

Recognizing object instances. Some pset 3 results! 4/5/2011. Monday, April 4 Prof. Kristen Grauman UT-Austin. Christopher Tosh. Recognizing object instances Some pset 3 results! Monday, April 4 Prof. UT-Austin Brian Bates Christopher Tosh Brian Nguyen Che-Chun Su 1 Ryu Yu James Edwards Kevin Harkness Lucy Liang Lu Xia Nona Sirakova

More information

Image classification Computer Vision Spring 2018, Lecture 18

Image classification Computer Vision Spring 2018, Lecture 18 Image classification http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 18 Course announcements Homework 5 has been posted and is due on April 6 th. - Dropbox link because course

More information

Visual Navigation for Flying Robots. Structure From Motion

Visual Navigation for Flying Robots. Structure From Motion Computer Vision Group Prof. Daniel Cremers Visual Navigation for Flying Robots Structure From Motion Dr. Jürgen Sturm VISNAV Oral Team Exam Date and Time Student Name Student Name Student Name Mon, July

More information

Machine Learning Crash Course

Machine Learning Crash Course Machine Learning Crash Course Photo: CMU Machine Learning Department protests G20 Computer Vision James Hays Slides: Isabelle Guyon, Erik Sudderth, Mark Johnson, Derek Hoiem The machine learning framework

More information

Beyond Bags of Features

Beyond Bags of Features : for Recognizing Natural Scene Categories Matching and Modeling Seminar Instructed by Prof. Haim J. Wolfson School of Computer Science Tel Aviv University December 9 th, 2015

More information

Artistic ideation based on computer vision methods

Artistic ideation based on computer vision methods Journal of Theoretical and Applied Computer Science Vol. 6, No. 2, 2012, pp. 72 78 ISSN 2299-2634 http://www.jtacs.org Artistic ideation based on computer vision methods Ferran Reverter, Pilar Rosado,

More information

CV as making bank. Intel buys Mobileye! $15 billion. Mobileye:

CV as making bank. Intel buys Mobileye! $15 billion. Mobileye: CV as making bank Intel buys Mobileye! $15 billion Mobileye: Spin-off from Hebrew University, Israel 450 engineers 15 million cars installed 313 car models June 2016 - Tesla left Mobileye Fatal crash car

More information

Supervised learning. f(x) = y. Image feature

Supervised learning. f(x) = y. Image feature Coffer Illusion Coffer Illusion Supervised learning f(x) = y Prediction function Image feature Output (label) Training: Given a training set of labeled examples: {(x 1,y 1 ),, (x N,y N )} Estimate the

More information

Beyond Bags of features Spatial information & Shape models

Beyond Bags of features Spatial information & Shape models Beyond Bags of features Spatial information & Shape models Jana Kosecka Many slides adapted from S. Lazebnik, FeiFei Li, Rob Fergus, and Antonio Torralba Detection, recognition (so far )! Bags of features

More information

The bits the whirl-wind left out..

The bits the whirl-wind left out.. The bits the whirl-wind left out.. Reading: Szeliski Background: 1 Edge Features Reading: Szeliski - 1.1 + 4.2.1 (Background: Ch 2 + 3.1 3.3) Background: 2 Edges as Gradients Edge detection = differential

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech Image Features and Categorization Computer Vision Jia-Bin Huang, Virginia Tech Administrative stuffs Final project Proposal due 11:59 PM on Thursday, Oct 27 Submit via CANVAS Send a copy to Jia-Bin and

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce Object Recognition Computer Vision Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce How many visual object categories are there? Biederman 1987 ANIMALS PLANTS OBJECTS

More information

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14 Announcements Computer Vision I CSE 152 Lecture 14 Homework 3 is due May 18, 11:59 PM Reading: Chapter 15: Learning to Classify Chapter 16: Classifying Images Chapter 17: Detecting Objects in Images Given

More information

Overview of section. Lecture 10 Discriminative models. Discriminative methods. Discriminative vs. generative. Discriminative methods.

Overview of section. Lecture 10 Discriminative models. Discriminative methods. Discriminative vs. generative. Discriminative methods. Overview of section Lecture 0 Discriminative models Object detection with classifiers Boosting Gentle boosting Object model Object detection Nearest-Neighbor methods Multiclass object detection Context

More information

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech Image Features and Categorization Computer Vision Jia-Bin Huang, Virginia Tech Administrative stuffs Final project Got your proposals! Thanks! Will reply with feedbacks this week. HW 4 Due 11:59pm on Wed,

More information

Object detection as supervised classification

Object detection as supervised classification Object detection as supervised classification Tues Nov 10 Kristen Grauman UT Austin Today Supervised classification Window-based generic object detection basic pipeline boosting classifiers face detection

More information

Generic Object-Face detection

Generic Object-Face detection Generic Object-Face detection Jana Kosecka Many slides adapted from P. Viola, K. Grauman, S. Lazebnik and many others Today Window-based generic object detection basic pipeline boosting classifiers face

More information

Bias-Variance Trade-off + Other Models and Problems

Bias-Variance Trade-off + Other Models and Problems CS 1699: Intro to Computer Vision Bias-Variance Trade-off + Other Models and Problems Prof. Adriana Kovashka University of Pittsburgh November 3, 2015 Outline Support Vector Machines (review + other uses)

More information

Recognition Tools: Support Vector Machines

Recognition Tools: Support Vector Machines CS 2770: Computer Vision Recognition Tools: Support Vector Machines Prof. Adriana Kovashka University of Pittsburgh January 12, 2017 Announcement TA office hours: Tuesday 4pm-6pm Wednesday 10am-12pm Matlab

More information

Object Classification Problem

Object Classification Problem HIERARCHICAL OBJECT CATEGORIZATION" Gregory Griffin and Pietro Perona. Learning and Using Taxonomies For Fast Visual Categorization. CVPR 2008 Marcin Marszalek and Cordelia Schmid. Constructing Category

More information

Object recognition. Methods for classification and image representation

Object recognition. Methods for classification and image representation Object recognition Methods for classification and image representation Credits Slides by Pete Barnum Slides by FeiFei Li Paul Viola, Michael Jones, Robust Realtime Object Detection, IJCV 04 Navneet Dalal

More information

Loose Shape Model for Discriminative Learning of Object Categories

Loose Shape Model for Discriminative Learning of Object Categories Loose Shape Model for Discriminative Learning of Object Categories Margarita Osadchy and Elran Morash Computer Science Department University of Haifa Mount Carmel, Haifa 31905, Israel rita@cs.haifa.ac.il

More information

Previously. Window-based models for generic object detection 4/11/2011

Previously. Window-based models for generic object detection 4/11/2011 Previously for generic object detection Monday, April 11 UT-Austin Instance recognition Local features: detection and description Local feature matching, scalable indexing Spatial verification Intro to

More information

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space.

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space. Visual words Map high-dimensional descriptors to tokens/words by quantizing the feature space. Quantize via clustering; cluster centers are the visual words Word #2 Descriptor feature space Assign word

More information

Unsupervised Identification of Multiple Objects of Interest from Multiple Images: discover

Unsupervised Identification of Multiple Objects of Interest from Multiple Images: discover Unsupervised Identification of Multiple Objects of Interest from Multiple Images: discover Devi Parikh and Tsuhan Chen Carnegie Mellon University {dparikh,tsuhan}@cmu.edu Abstract. Given a collection of

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Large-scale visual recognition The bag-of-words representation

Large-scale visual recognition The bag-of-words representation Large-scale visual recognition The bag-of-words representation Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline Bag-of-words Large or small vocabularies? Extensions for instance-level

More information

Support vector machines

Support vector machines Support vector machines When the data is linearly separable, which of the many possible solutions should we prefer? SVM criterion: maximize the margin, or distance between the hyperplane and the closest

More information

Improving Recognition through Object Sub-categorization

Improving Recognition through Object Sub-categorization Improving Recognition through Object Sub-categorization Al Mansur and Yoshinori Kuno Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570,

More information

Efficient Kernels for Identifying Unbounded-Order Spatial Features

Efficient Kernels for Identifying Unbounded-Order Spatial Features Efficient Kernels for Identifying Unbounded-Order Spatial Features Yimeng Zhang Carnegie Mellon University yimengz@andrew.cmu.edu Tsuhan Chen Cornell University tsuhan@ece.cornell.edu Abstract Higher order

More information

Fuzzy based Multiple Dictionary Bag of Words for Image Classification

Fuzzy based Multiple Dictionary Bag of Words for Image Classification Available online at www.sciencedirect.com Procedia Engineering 38 (2012 ) 2196 2206 International Conference on Modeling Optimisation and Computing Fuzzy based Multiple Dictionary Bag of Words for Image

More information

Basic Problem Addressed. The Approach I: Training. Main Idea. The Approach II: Testing. Why a set of vocabularies?

Basic Problem Addressed. The Approach I: Training. Main Idea. The Approach II: Testing. Why a set of vocabularies? Visual Categorization With Bags of Keypoints. ECCV,. G. Csurka, C. Bray, C. Dance, and L. Fan. Shilpa Gulati //7 Basic Problem Addressed Find a method for Generic Visual Categorization Visual Categorization:

More information

CS 343H: Honors AI. Lecture 23: Kernels and clustering 4/15/2014. Kristen Grauman UT Austin

CS 343H: Honors AI. Lecture 23: Kernels and clustering 4/15/2014. Kristen Grauman UT Austin CS 343H: Honors AI Lecture 23: Kernels and clustering 4/15/2014 Kristen Grauman UT Austin Slides courtesy of Dan Klein, except where otherwise noted Announcements Office hours Kim s office hours this week:

More information

Determining Patch Saliency Using Low-Level Context

Determining Patch Saliency Using Low-Level Context Determining Patch Saliency Using Low-Level Context Devi Parikh 1, C. Lawrence Zitnick 2, and Tsuhan Chen 1 1 Carnegie Mellon University, Pittsburgh, PA, USA 2 Microsoft Research, Redmond, WA, USA Abstract.

More information

Descriptors for CV. Introduc)on:

Descriptors for CV. Introduc)on: Descriptors for CV Content 2014 1.Introduction 2.Histograms 3.HOG 4.LBP 5.Haar Wavelets 6.Video based descriptor 7.How to compare descriptors 8.BoW paradigm 1 2 1 2 Color RGB histogram Introduc)on: Image

More information

Image Analysis. Window-based face detection: The Viola-Jones algorithm. iphoto decides that this is a face. It can be trained to recognize pets!

Image Analysis. Window-based face detection: The Viola-Jones algorithm. iphoto decides that this is a face. It can be trained to recognize pets! Image Analysis 2 Face detection and recognition Window-based face detection: The Viola-Jones algorithm Christophoros Nikou cnikou@cs.uoi.gr Images taken from: D. Forsyth and J. Ponce. Computer Vision:

More information

Templates and Background Subtraction. Prof. D. Stricker Doz. G. Bleser

Templates and Background Subtraction. Prof. D. Stricker Doz. G. Bleser Templates and Background Subtraction Prof. D. Stricker Doz. G. Bleser 1 Surveillance Video: Example of multiple people tracking http://www.youtube.com/watch?v=inqv34bchem&feature=player_embedded As for

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

Comparing Local Feature Descriptors in plsa-based Image Models

Comparing Local Feature Descriptors in plsa-based Image Models Comparing Local Feature Descriptors in plsa-based Image Models Eva Hörster 1,ThomasGreif 1, Rainer Lienhart 1, and Malcolm Slaney 2 1 Multimedia Computing Lab, University of Augsburg, Germany {hoerster,lienhart}@informatik.uni-augsburg.de

More information

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators HW due on Thursday Face Recognition: Dimensionality Reduction Biometrics CSE 190 Lecture 11 CSE190, Winter 010 CSE190, Winter 010 Perceptron Revisited: Linear Separators Binary classification can be viewed

More information

Local Image Features

Local Image Features Local Image Features Ali Borji UWM Many slides from James Hayes, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Overview of Keypoint Matching 1. Find a set of distinctive key- points A 1 A 2 A 3 B 3

More information

Integrated Feature Selection and Higher-order Spatial Feature Extraction for Object Categorization

Integrated Feature Selection and Higher-order Spatial Feature Extraction for Object Categorization Integrated Feature Selection and Higher-order Spatial Feature Extraction for Object Categorization David Liu, Gang Hua 2, Paul Viola 2, Tsuhan Chen Dept. of ECE, Carnegie Mellon University and Microsoft

More information

Effect of Salient Features in Object Recognition

Effect of Salient Features in Object Recognition Effect of Salient Features in Object Recognition Kashif Ahmad University of Engineering & Technology, Peshawar, Pakistan Nasir Ahmad University of Engineering & Technology, Peshawar, Pakistan Muhammad

More information

Aggregating Descriptors with Local Gaussian Metrics

Aggregating Descriptors with Local Gaussian Metrics Aggregating Descriptors with Local Gaussian Metrics Hideki Nakayama Grad. School of Information Science and Technology The University of Tokyo Tokyo, JAPAN nakayama@ci.i.u-tokyo.ac.jp Abstract Recently,

More information

Bayes Risk. Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Discriminative vs Generative Models. Loss functions in classifiers

Bayes Risk. Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Discriminative vs Generative Models. Loss functions in classifiers Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Examine each window of an image Classify object class within each window based on a training set images Example: A Classification Problem Categorize

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

String distance for automatic image classification

String distance for automatic image classification String distance for automatic image classification Nguyen Hong Thinh*, Le Vu Ha*, Barat Cecile** and Ducottet Christophe** *University of Engineering and Technology, Vietnam National University of HaNoi,

More information

arxiv: v3 [cs.cv] 3 Oct 2012

arxiv: v3 [cs.cv] 3 Oct 2012 Combined Descriptors in Spatial Pyramid Domain for Image Classification Junlin Hu and Ping Guo arxiv:1210.0386v3 [cs.cv] 3 Oct 2012 Image Processing and Pattern Recognition Laboratory Beijing Normal University,

More information

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1 Outline What are grouping problems in vision? Segmentation & Grouping Wed, Feb 9 Prof. UT-Austin Inspiration from human perception Gestalt properties Bottom-up segmentation via clustering Algorithms: Mode

More information

Classifiers for Recognition Reading: Chapter 22 (skip 22.3)

Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Examine each window of an image Classify object class within each window based on a training set images Slide credits for this chapter: Frank

More information

Grouping and Segmentation

Grouping and Segmentation Grouping and Segmentation CS 554 Computer Vision Pinar Duygulu Bilkent University (Source:Kristen Grauman ) Goals: Grouping in vision Gather features that belong together Obtain an intermediate representation

More information

Mining Discriminative Adjectives and Prepositions for Natural Scene Recognition

Mining Discriminative Adjectives and Prepositions for Natural Scene Recognition Mining Discriminative Adjectives and Prepositions for Natural Scene Recognition Bangpeng Yao 1, Juan Carlos Niebles 2,3, Li Fei-Fei 1 1 Department of Computer Science, Princeton University, NJ 08540, USA

More information

Preliminary Local Feature Selection by Support Vector Machine for Bag of Features

Preliminary Local Feature Selection by Support Vector Machine for Bag of Features Preliminary Local Feature Selection by Support Vector Machine for Bag of Features Tetsu Matsukawa Koji Suzuki Takio Kurita :University of Tsukuba :National Institute of Advanced Industrial Science and

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

OBJECT CATEGORIZATION

OBJECT CATEGORIZATION OBJECT CATEGORIZATION Ing. Lorenzo Seidenari e-mail: seidenari@dsi.unifi.it Slides: Ing. Lamberto Ballan November 18th, 2009 What is an Object? Merriam-Webster Definition: Something material that may be

More information

Spatial Hierarchy of Textons Distributions for Scene Classification

Spatial Hierarchy of Textons Distributions for Scene Classification Spatial Hierarchy of Textons Distributions for Scene Classification S. Battiato 1, G. M. Farinella 1, G. Gallo 1, and D. Ravì 1 Image Processing Laboratory, University of Catania, IT {battiato, gfarinella,

More information

Category Recognition. Jia-Bin Huang Virginia Tech ECE 6554 Advanced Computer Vision

Category Recognition. Jia-Bin Huang Virginia Tech ECE 6554 Advanced Computer Vision Category Recognition Jia-Bin Huang Virginia Tech ECE 6554 Advanced Computer Vision Administrative stuffs Presentation and discussion leads assigned https://docs.google.com/spreadsheets/d/1p5pfycio5flq

More information

Distribution Distance Functions

Distribution Distance Functions COMP 875 November 10, 2009 Matthew O Meara Question How similar are these? Outline Motivation Protein Score Function Object Retrieval Kernel Machines 1 Motivation Protein Score Function Object Retrieval

More information

Bag of Words or Bag of Features. Lecture-16 (Slides Credit: Cordelia Schmid LEAR INRIA Grenoble)

Bag of Words or Bag of Features. Lecture-16 (Slides Credit: Cordelia Schmid LEAR INRIA Grenoble) Bag of Words or Bag of Features Lecture-16 (Slides Credit: Cordelia Schmid LEAR INRIA Grenoble) Contents Interest Point Detector Interest Point Descriptor K-means clustering Support Vector Machine (SVM)

More information