An Implementation Comparison of an IDEA Encryption Cryptosystem on Two General-Purpose Reconfigurable Computers

Size: px
Start display at page:

Download "An Implementation Comparison of an IDEA Encryption Cryptosystem on Two General-Purpose Reconfigurable Computers"

Transcription

1 An Implementation Comparison of an IDEA Encryption Cryptosystem on Two General-Purpose Reconfigurable Computers Allen Michalski 1, Kris Gaj 1, Tarek El-Ghazawi 2 1 ECE Department, George Mason University 2 ECE Department, The George Washington University

2 What is a Reconfigurable Computer? Microprocessor system Reconfigurable processor system µp... µp FPGA... FPGA µp memory... µp memory FPGA memory... FPGA memory IO Interface Interface IO

3 Characteristic Features composed of traditional microprocessors and FPGAs programming does not require knowledge of hardware design permit run-time reconfiguration of FPGAs SRC-6E Examples: Starbridge HC-36

4 SRC and Star Bridge Systems

5 SRC Hardware Architecture 528 MBs P3 P3 (1GHz) (1GHz) 8000 MBs 528 MBs 8000 MBs L2 L2 PCI up Board 800 MBs MIOC 800 MBs Computer Memory (1.5 GB) DDR Interface SNAP 800 MBs FPGA 1 XC2V6000 Control FPGA XC2V MBs (6x64 bits) On-Board Memory (24 MB) 4800 MBs (6x 64 bits) 2400 MBs (192 bits) (108 bits) 4800 MBs (6x 64 bits) (108 bits) ½MAP Board FPGA 2 XC2V6000 Chain Ports 2400 MBs

6 SRC Compilation Process Application sources Macro sources.c or.f files.vhd or.v files HDL sources.v files Logic synthesis µp Compiler MAP Compiler Netlists.ngo files Object files.o files.o files Place & Route Linker Application executable.bin files Configuration bitstreams

7 SRC Programming Model Program in C or Fortran Main program Function_1(a, d, e) Function_2(d, e, f) Function_1 Macro_1(a, b, c) Macro_2(b, d) Macro_2(c, e) Function_2 Macro_3(s, t) Macro_1(n, b) Macro_4(t, k) FPGA contents after the Function_1 call FPGA b Macro_2 d a Macro_1 c Macro_2 e

8 Star Bridge Hardware Architecture Xeon (1GHz) L2 Computer Memory (4 GB) MIOC Xeon (1GHz) L2 PCI µp Board 64 PCIX Bus Bus Controler XC2V XPOINT XC2V Clock 94 Bus Router XC2V User PE(x1x5) XC2V6000 User PE(x2x6) XC2V6000 User PE(x3x7) XC2V6000 User PE(x4x8) XC2V6000 Single Quad FPGA Board Connector J1-J10 (560 PIN IO)

9 Star Bridge Processing Element (PE) 16x MT46V64M4 DDR RAM 3 64M x 64 bit 0.5 GB 64 data address 16x MT46V64M4 DDR RAM 4 64M x 64 bit 0.5 GB User PE XC2V x MT46V64M4 DDR RAM 1 64M x 64 bit 0.5 GB address data 64 16x MT46V64M4 DDR RAM 2 64M x 64 bit 0.5 GB

10 Sheets Library Object

11 Star Bridge Compilation Process User input Graphical User Interface VIVA Netlists.ngo files Xilinx Place & Route.bin files Application executable Configuration bitstreams

12 SRC vs. Star Bridge Design Entry SRC Software Hardware HDL Data Flow HLL Star Bridge Software Hardware porting EDIF COM objects Increased productivity Increased capability to describe parallel execution

13 High-Throughput Secret-Key Encryption with IDEA

14 IDEA International Data Encryption Algorithm, published in 1990 Conventional encryption algorithm suggested to replace DES Largest use in PGP Block cipher 128 bit key 64 bit data block 8 ½ rounds

15 IDEA Three Basic Operations X K Y = X K Y = X + K mod 2 16 X K X K Y = X K mod ( ) where 0 represents 2 16

16 Fully Pipelined Architecture of IDEA rounds 14 pipeline stagesround 116 pipeline stages New input & new output every clock cycle

17 High-Throughput Encryption.... M i+2 M i+1 M i K 0 IDEA C i+2 C i+1 C i

18 High-Throughput Secret-Key Encryption in SRC

19 Data Flow During Encryption µp P Board µp P Board Xeon µp Xeon µp Xeon µp Xeon µp L2 L2 MAP Board L2 L2 MIOC Control Chip (6x) Control Chip (6x) MIOC PCI Slot Private Memory SNA P On-Board Memory (24 MB) On-Board Memory (24 MB) SN A P Private Memory PCI Slot (6x) (6x) User Chip User Chip User Chip User Chip

20 Execution Time (ms) IDEA Encryption 5 MB 10 MB 15 MB 20 MB Amount Data Processed MAP Data Transfer Out MAP FPGA Processing MAP Data Transfer In MAP FPGA Config

21 Problems Execution time dominated by - Configuration of the MAP FPGA and - Data transfer between the System Common Memory and On-Board-Memory Configuration time hiding techniques Preloading the configuration before execution Flip-flopping FPGAs during reconfiguration

22 Comparison of SRC MAP vs. Pentium 4 Data Processed 5MB 10MB 15MB 20MB SRC (sec) Pentium 4 (sec) SRC Speed-up Pentium 4 implementation based on the Crypto library

23 IDEA in VIVA

24

25 Star Bridge Results Hardware interface and software support for efficient data transfer still under development Unable to measure end-to-end time without file io, data transfer in time, or data transfer out time MAP FPGA Processing Time the same as on the SRC machine

26 Results Comparison

27 IDEA Compilation Time SRC Synthesis 2 min Mapping 4 min Placing and Routing 1 hr 34 min Star Bridge Viva compilation time ~36 hrs Mapping 14 min Placing and Routing 1 hr 25 min

28 IDEA Use of FPGA Resources Xilinx XC2V % 50% 40% 30% 20% 10% 0% SRC VHDL Only SRC VHDL-C VIVA CLB Slices Slice FFs LUTs

29 IDEA Timing FPGA Processing Time the same in both systems The same number of clock cycles The same maximum clock frequency 100 MHz The End-to-End time much smaller in SRC, but the exact comparison impossible because of the early development stage of the Star Bridge hardware and software

30 Conclusions Both platforms are unique expansions of existing paradigms FPGA data transfer is a significant bottleneck for IO intensive applications, such as encryption SRC hardware and software more advanced Star Bridge system still in early development state Two order-of-magnitude speedup versus softwareonly solution for the high-speed IDEA encryption on SRC

Implementation of Elliptic Curve Cryptosystems over GF(2 n ) in Optimal Normal Basis on a Reconfigurable Computer

Implementation of Elliptic Curve Cryptosystems over GF(2 n ) in Optimal Normal Basis on a Reconfigurable Computer Implementation of Elliptic Curve Cryptosystems over GF(2 n ) in Optimal Normal Basis on a Reconfigurable Computer Sashisu Bajracharya, Chang Shu, Kris Gaj George Mason University Tarek El-Ghazawi The George

More information

Tools for Reconfigurable Supercomputing. Kris Gaj George Mason University

Tools for Reconfigurable Supercomputing. Kris Gaj George Mason University Tools for Reconfigurable Supercomputing Kris Gaj George Mason University 1 Application Development for Reconfigurable Computers Program Entry Platform mapping Debugging & Verification Compilation Execution

More information

Performance and Overhead in a Hybrid Reconfigurable Computer

Performance and Overhead in a Hybrid Reconfigurable Computer Performance and Overhead in a Hybrid Reconfigurable Computer Osman Devrim Fidanci 1, Dan Poznanovic 2, Kris Gaj 3, Tarek El-Ghazawi 1, Nikitas Alexandridis 1 1 George Washington University, 2 SRC Computers

More information

Reconfigurable Hardware Implementation of Mesh Routing in the Number Field Sieve Factorization

Reconfigurable Hardware Implementation of Mesh Routing in the Number Field Sieve Factorization Reconfigurable Hardware Implementation of Mesh Routing in the Number Field Sieve Factorization Sashisu Bajracharya, Deapesh Misra, Kris Gaj George Mason University Tarek El-Ghazawi The George Washington

More information

Master s Thesis Presentation Hoang Le Director: Dr. Kris Gaj

Master s Thesis Presentation Hoang Le Director: Dr. Kris Gaj Master s Thesis Presentation Hoang Le Director: Dr. Kris Gaj Outline RSA ECM Reconfigurable Computing Platforms, Languages and Programming Environments Partitioning t ECM Code between HDLs and HLLs Implementation

More information

Implementation of Elliptic Curve Cryptosystems over GF(2 n ) in Optimal Normal Basis on a Reconfigurable Computer

Implementation of Elliptic Curve Cryptosystems over GF(2 n ) in Optimal Normal Basis on a Reconfigurable Computer Implementation of Elliptic Curve Cryptosystems over GF(2 n ) in Optimal Normal Basis on a Reconfigurable Computer Sashisu Bajracharya 1, Chang Shu 1, Kris Gaj 1, Tarek El-Ghazawi 2 1 ECE Department, George

More information

ECE 699: Lecture 12. Introduction to High-Level Synthesis

ECE 699: Lecture 12. Introduction to High-Level Synthesis ECE 699: Lecture 12 Introduction to High-Level Synthesis Required Reading The ZYNQ Book Chapter 14: Spotlight on High-Level Synthesis Chapter 15: Vivado HLS: A Closer Look S. Neuendorffer and F. Martinez-Vallina,

More information

Implementation of the rho, p-1 & the Elliptic Curve Methods of Factoring in Reconfigurable Hardware

Implementation of the rho, p-1 & the Elliptic Curve Methods of Factoring in Reconfigurable Hardware Implementation of the rho, p-1 & the Elliptic Curve Methods of Factoring in Reconfigurable Hardware Kris Gaj Patrick Baier Soonhak Kwon Hoang Le Ramakrishna Bachimanchi Khaleeluddin Mohammed Paul Kohlbrenner

More information

RECONFIGURABLE COMPUTING: A DESIGN AND IMPLEMENTATION STUDY OF ELLIPTIC CURVE METHOD OF FACTORING USING SRC CARTE-C AND CELOXICA HANDEL-C

RECONFIGURABLE COMPUTING: A DESIGN AND IMPLEMENTATION STUDY OF ELLIPTIC CURVE METHOD OF FACTORING USING SRC CARTE-C AND CELOXICA HANDEL-C RECONFIGURABLE COMPUTING: A DESIGN AND IMPLEMENTATION STUDY OF ELLIPTIC CURVE METHOD OF FACTORING USING SRC CARTE-C AND CELOXICA HANDEL-C Committee: by Hoang Le A Thesis Submitted to the Graduate Faculty

More information

Considerations for Algorithm Selection and C Programming Style for the SRC-6E Reconfigurable Computer

Considerations for Algorithm Selection and C Programming Style for the SRC-6E Reconfigurable Computer Considerations for Algorithm Selection and C Programming Style for the SRC-6E Reconfigurable Computer Russ Duren and Douglas Fouts Naval Postgraduate School Abstract: The architecture and programming environment

More information

An Optimized Hardware Architecture for the Montgomery Multiplication Algorithm

An Optimized Hardware Architecture for the Montgomery Multiplication Algorithm An Optimized Hardware Architecture for the Montgomery Multiplication Algorithm Miaoqing Huang 1, Kris Gaj 2, Soonhak Kwon 3, Tarek El-Ghazawi 1 1 The George Washington University, Washington, D.C., U.S.A.

More information

Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable Gate Arrays

Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable Gate Arrays Kris Gaj and Pawel Chodowiec Electrical and Computer Engineering George Mason University Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable

More information

ECE 297:11 Reconfigurable Architectures for Computer Security

ECE 297:11 Reconfigurable Architectures for Computer Security ECE 297:11 Reconfigurable Architectures for Computer Security Course web page: http://mason.gmu.edu/~kgaj/ece297 Instructors: Kris Gaj (GMU) Tarek El-Ghazawi (GWU) TA: Pawel Chodowiec (GMU) Kris Gaj George

More information

Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware

Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware Master s Thesis Pawel Chodowiec MS CpE Candidate, ECE George Mason University Advisor: Dr. Kris Gaj, ECE George

More information

Fast implementations of secret-key block ciphers using mixed inner- and outer-round pipelining

Fast implementations of secret-key block ciphers using mixed inner- and outer-round pipelining Pawel Chodowiec, Po Khuon, Kris Gaj Electrical and Computer Engineering George Mason University Fast implementations of secret-key block ciphers using mixed inner- and outer-round pipelining http://ece.gmu.edu/crypto-text.htm

More information

SECURE PARTIAL RECONFIGURATION OF FPGAs. Amir S. Zeineddini Kris Gaj

SECURE PARTIAL RECONFIGURATION OF FPGAs. Amir S. Zeineddini Kris Gaj SECURE PARTIAL RECONFIGURATION OF FPGAs Amir S. Zeineddini Kris Gaj Outline FPGAs Security Our scheme Implementation approach Experimental results Conclusions FPGAs SECURITY SRAM FPGA Security Designer/Vendor

More information

FPGA: What? Why? Marco D. Santambrogio

FPGA: What? Why? Marco D. Santambrogio FPGA: What? Why? Marco D. Santambrogio marco.santambrogio@polimi.it 2 Reconfigurable Hardware Reconfigurable computing is intended to fill the gap between hardware and software, achieving potentially much

More information

Hardware Oriented Security

Hardware Oriented Security 1 / 20 Hardware Oriented Security SRC-7 Programming Basics and Pipelining Miaoqing Huang University of Arkansas Fall 2014 2 / 20 Outline Basics of SRC-7 Programming Pipelining 3 / 20 Framework of Program

More information

An FPGA Based Adaptive Viterbi Decoder

An FPGA Based Adaptive Viterbi Decoder An FPGA Based Adaptive Viterbi Decoder Sriram Swaminathan Russell Tessier Department of ECE University of Massachusetts Amherst Overview Introduction Objectives Background Adaptive Viterbi Algorithm Architecture

More information

Hardware Architectures

Hardware Architectures Hardware Architectures Secret-key Cryptography Public-key Cryptography Cryptanalysis AES & AES candidates estream candidates Hash Functions SHA-3 Montgomery Multipliers ECC cryptosystems Pairing-based

More information

End User Update: High-Performance Reconfigurable Computing

End User Update: High-Performance Reconfigurable Computing End User Update: High-Performance Reconfigurable Computing Tarek El-Ghazawi Director, GW Institute for Massively Parallel Applications and Computing Technologies(IMPACT) Co-Director, NSF Center for High-Performance

More information

A Framework to Improve IP Portability on Reconfigurable Computers

A Framework to Improve IP Portability on Reconfigurable Computers A Framework to Improve IP Portability on Reconfigurable Computers Miaoqing Huang, Ivan Gonzalez, Sergio Lopez-Buedo, and Tarek El-Ghazawi NSF Center for High-Performance Reconfigurable Computing (CHREC)

More information

In the past few years, high-performance computing. The Promise of High-Performance Reconfigurable Computing

In the past few years, high-performance computing. The Promise of High-Performance Reconfigurable Computing R E S E A R C H F E A T U R E The Promise of High-Performance Reconfigurable Computing Tarek El-Ghazawi, Esam El-Araby, and Miaoqing Huang, George Washington University Kris Gaj, George Mason University

More information

The Xilinx XC6200 chip, the software tools and the board development tools

The Xilinx XC6200 chip, the software tools and the board development tools The Xilinx XC6200 chip, the software tools and the board development tools What is an FPGA? Field Programmable Gate Array Fully programmable alternative to a customized chip Used to implement functions

More information

FPGAs: High Assurance through Model Based Design

FPGAs: High Assurance through Model Based Design FPGAs: High Assurance through Based Design AADL Workshop 24 January 2007 9:30 10:00 Yves LaCerte Rockwell Collins Advanced Technology Center 400 Collins Road N.E. Cedar Rapids, IA 52498 ylacerte@rockwellcollins.cm

More information

Version 1.6 Page 2 of 25 SMT351 User Manual

Version 1.6 Page 2 of 25 SMT351 User Manual SMT351 User Manual Version 1.6 Page 2 of 25 SMT351 User Manual Revision History Date Comments Engineer Version 28/07/04 First revision JPA 1.1 16/09/04 Added pin number for JP1 pinout section. Updated

More information

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011 FPGA for Complex System Implementation National Chiao Tung University Chun-Jen Tsai 04/14/2011 About FPGA FPGA was invented by Ross Freeman in 1989 SRAM-based FPGA properties Standard parts Allowing multi-level

More information

AES Core Specification. Author: Homer Hsing

AES Core Specification. Author: Homer Hsing AES Core Specification Author: Homer Hsing homer.hsing@gmail.com Rev. 0.1.1 October 30, 2012 This page has been intentionally left blank. www.opencores.org Rev 0.1.1 ii Revision History Rev. Date Author

More information

FPGA architecture and design technology

FPGA architecture and design technology CE 435 Embedded Systems Spring 2017 FPGA architecture and design technology Nikos Bellas Computer and Communications Engineering Department University of Thessaly 1 FPGA fabric A generic island-style FPGA

More information

An Optimized Hardware Architecture for the Montgomery Multiplication Algorithm

An Optimized Hardware Architecture for the Montgomery Multiplication Algorithm An Optimized Hardware Architecture for the Montgomery Multiplication Algorithm Miaoqing Huang 1, Kris Gaj 2, Soonhak Kwon 3, and Tarek El-Ghazawi 1 1 The George Washington University, Washington, DC 20052,

More information

FPGA Accelerated Tate Pairing Cryptosystems over Binary Fields

FPGA Accelerated Tate Pairing Cryptosystems over Binary Fields FPGA Accelerated ate Pairing Cryptosystems over Binary Fields Chang Shu, Soonhak Kwon, and Kris Gaj Dept. of ECE, George Mason University Fairfax VA, USA Dept. of Mathematics, Sungkyukwan University Suwon,

More information

FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed

FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed Vijaya Kumar. B.1 #1, T. Thammi Reddy.2 #2 #1. Dept of Electronics and Communication, G.P.R.Engineering College,

More information

Mohamed Taher The George Washington University

Mohamed Taher The George Washington University Experience Programming Current HPRCs Mohamed Taher The George Washington University Acknowledgements GWU: Prof.\Tarek El-Ghazawi and Esam El-Araby GMU: Prof.\Kris Gaj ARSC SRC SGI CRAY 2 Outline Introduction

More information

Job Management System Extension To Support SLAAC-1V Reconfigurable Hardware

Job Management System Extension To Support SLAAC-1V Reconfigurable Hardware Job Management System Extension To Support SLAAC-1V Reconfigurable Hardware Mohamed Taher 1, Kris Gaj 2, Tarek El-Ghazawi 1, and Nikitas Alexandridis 1 1 The George Washington University 2 George Mason

More information

AL8253 Core Application Note

AL8253 Core Application Note AL8253 Core Application Note 6-15-2012 Table of Contents General Information... 3 Features... 3 Block Diagram... 3 Contents... 4 Behavioral... 4 Synthesizable... 4 Test Vectors... 4 Interface... 5 Implementation

More information

RC6 Implementation including key scheduling using FPGA

RC6 Implementation including key scheduling using FPGA ECE 646, HI-3 1 RC6 Implementation including key scheduling using FPGA (ECE 646 Project, December 2006) Fouad Ramia, Hunar Qadir, GMU Abstract with today's great demand for secure communications systems,

More information

FT-UNSHADES credits. UNiversity of Sevilla HArdware DEbugging System.

FT-UNSHADES credits. UNiversity of Sevilla HArdware DEbugging System. FT-UNSHADES Microelectronic Presentation Day February, 4th, 2004 J. Tombs & M.A. Aguirre jon@gte.esi.us.es, aguirre@gte.esi.us.es AICIA-GTE of The University of Sevilla (SPAIN) FT-UNSHADES credits UNiversity

More information

AES1. Ultra-Compact Advanced Encryption Standard Core AES1. General Description. Base Core Features. Symbol. Applications

AES1. Ultra-Compact Advanced Encryption Standard Core AES1. General Description. Base Core Features. Symbol. Applications General Description The AES core implements Rijndael encoding and decoding in compliance with the NIST Advanced Encryption Standard. Basic core is very small (less than 3,000 gates). Enhanced versions

More information

ECE 545 Lecture 12. FPGA Resources. George Mason University

ECE 545 Lecture 12. FPGA Resources. George Mason University ECE 545 Lecture 2 FPGA Resources George Mason University Recommended reading 7 Series FPGAs Configurable Logic Block: User Guide Overview Functional Details 2 What is an FPGA? Configurable Logic Blocks

More information

Signal Processing Algorithms into Fixed Point FPGA Hardware Dennis Silage ECE Temple University

Signal Processing Algorithms into Fixed Point FPGA Hardware Dennis Silage ECE Temple University Signal Processing Algorithms into Fixed Point FPGA Hardware Dennis Silage silage@temple.edu ECE Temple University www.temple.edu/scdl Signal Processing Algorithms into Fixed Point FPGA Hardware Motivation

More information

AL8259 Core Application Note

AL8259 Core Application Note AL8259 Core Application Note 10-24-2012 Table of Contents General Information... 3 Features... 3 Block Diagram... 3 Contents... 4 A. Behavioral... 4 B. Synthesizable... 4 C. Test Vectors... 4 Interface...

More information

In the past few years, high-performance computing. The Promise of High-Performance Reconfigurable Computing

In the past few years, high-performance computing. The Promise of High-Performance Reconfigurable Computing R E S E A R C H F E A T U R E The Promise of High-Performance Reconfigurable Computing Tarek El-Ghazawi, Esam El-Araby, and Miaoqing Huang, George Washington University Kris Gaj, George Mason University

More information

Midterm Exam ECE 448 Spring 2019 Wednesday, March 6 15 points

Midterm Exam ECE 448 Spring 2019 Wednesday, March 6 15 points Midterm Exam ECE 448 Spring 2019 Wednesday, March 6 15 points Instructions: Zip all your deliverables into an archive .zip and submit it through Blackboard no later than Wednesday, March 6,

More information

INTRODUCTION TO FPGA ARCHITECTURE

INTRODUCTION TO FPGA ARCHITECTURE 3/3/25 INTRODUCTION TO FPGA ARCHITECTURE DIGITAL LOGIC DESIGN (BASIC TECHNIQUES) a b a y 2input Black Box y b Functional Schematic a b y a b y a b y 2 Truth Table (AND) Truth Table (OR) Truth Table (XOR)

More information

Developing a Data Driven System for Computational Neuroscience

Developing a Data Driven System for Computational Neuroscience Developing a Data Driven System for Computational Neuroscience Ross Snider and Yongming Zhu Montana State University, Bozeman MT 59717, USA Abstract. A data driven system implies the need to integrate

More information

Introduction to Field Programmable Gate Arrays

Introduction to Field Programmable Gate Arrays Introduction to Field Programmable Gate Arrays Lecture 1/3 CERN Accelerator School on Digital Signal Processing Sigtuna, Sweden, 31 May 9 June 2007 Javier Serrano, CERN AB-CO-HT Outline Historical introduction.

More information

FPGA Implementation and Validation of the Asynchronous Array of simple Processors

FPGA Implementation and Validation of the Asynchronous Array of simple Processors FPGA Implementation and Validation of the Asynchronous Array of simple Processors Jeremy W. Webb VLSI Computation Laboratory Department of ECE University of California, Davis One Shields Avenue Davis,

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO. Reconfigurable Computing Platform. A thesis submitted in partial satisfaction of the

UNIVERSITY OF CALIFORNIA, SAN DIEGO. Reconfigurable Computing Platform. A thesis submitted in partial satisfaction of the UNIVERSITY OF CALIFORNIA, SAN DIEGO An Overview and Benchmark Study of the Starbridge Reconfigurable Computing Platform A thesis submitted in partial satisfaction of the requirements for the degree Master

More information

L2: FPGA HARDWARE : ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA

L2: FPGA HARDWARE : ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA L2: FPGA HARDWARE 18-545: ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA 18-545: FALL 2014 2 Admin stuff Project Proposals happen on Monday Be prepared to give an in-class presentation Lab 1 is

More information

Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable Gate Arrays

Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable Gate Arrays Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable Gate Arrays Kris Gaj and Pawel Chodowiec George Mason University, Electrical and

More information

New Software-Designed Instruments

New Software-Designed Instruments 1 New Software-Designed Instruments Nicholas Haripersad Field Applications Engineer National Instruments South Africa Agenda What Is a Software-Designed Instrument? Why Software-Designed Instrumentation?

More information

Spiral 2-8. Cell Layout

Spiral 2-8. Cell Layout 2-8.1 Spiral 2-8 Cell Layout 2-8.2 Learning Outcomes I understand how a digital circuit is composed of layers of materials forming transistors and wires I understand how each layer is expressed as geometric

More information

PINE TRAINING ACADEMY

PINE TRAINING ACADEMY PINE TRAINING ACADEMY Course Module A d d r e s s D - 5 5 7, G o v i n d p u r a m, G h a z i a b a d, U. P., 2 0 1 0 1 3, I n d i a Digital Logic System Design using Gates/Verilog or VHDL and Implementation

More information

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner RiceNIC Prototyping Network Interfaces Jeffrey Shafer Scott Rixner RiceNIC Overview Gigabit Ethernet Network Interface Card RiceNIC - Prototyping Network Interfaces 2 RiceNIC Overview Reconfigurable and

More information

Introduction to reconfigurable systems

Introduction to reconfigurable systems Introduction to reconfigurable systems Reconfigurable system (RS)= any system whose sub-system configurations can be changed or modified after fabrication Reconfigurable computing (RC) is commonly used

More information

Parallel Programming of High-Performance Reconfigurable Computing Systems with Unified Parallel C

Parallel Programming of High-Performance Reconfigurable Computing Systems with Unified Parallel C Parallel Programming of High-Performance Reconfigurable Computing Systems with Unified Parallel C Tarek El-Ghazawi, Olivier Serres, Samy Bahra, Miaoqing Huang and Esam El-Araby Department of Electrical

More information

Use of Embedded FPGA Resources in Implementa:ons of 14 Round 2 SHA- 3 Candidates

Use of Embedded FPGA Resources in Implementa:ons of 14 Round 2 SHA- 3 Candidates Use of Embedded FPGA Resources in Implementa:ons of 14 Round 2 SHA- 3 Candidates Kris Gaj, Rabia Shahid, Malik Umar Sharif, and Marcin Rogawski George Mason University U.S.A. Co-Authors Rabia Shahid Malik

More information

DESIGN AND IMPLEMENTATION OF 32-BIT CONTROLLER FOR INTERACTIVE INTERFACING WITH RECONFIGURABLE COMPUTING SYSTEMS

DESIGN AND IMPLEMENTATION OF 32-BIT CONTROLLER FOR INTERACTIVE INTERFACING WITH RECONFIGURABLE COMPUTING SYSTEMS DESIGN AND IMPLEMENTATION OF 32-BIT CONTROLLER FOR INTERACTIVE INTERFACING WITH RECONFIGURABLE COMPUTING SYSTEMS Ashutosh Gupta and Kota Solomon Raju Digital System Group, Central Electronics Engineering

More information

HISTORY OF MICROPROCESSORS

HISTORY OF MICROPROCESSORS HISTORY OF MICROPROCESSORS CONTENTS Introduction 4-Bit Microprocessors 8-Bit Microprocessors 16-Bit Microprocessors 1 32-Bit Microprocessors 64-Bit Microprocessors 2 INTRODUCTION Fairchild Semiconductors

More information

Introduction to Partial Reconfiguration Methodology

Introduction to Partial Reconfiguration Methodology Methodology This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Define Partial Reconfiguration technology List common applications

More information

A Hardware / Software Co-Design System using Configurable Computing Technology

A Hardware / Software Co-Design System using Configurable Computing Technology A Hardware / Software Co-Design System using Configurable Computing Technology John Schewel Virtual Computer Corporation 6925 Canby Ave #103 Reseda, California, USA 91335 Abstract Virtual Computer Corporation

More information

Field Programmable Gate Array (FPGA)

Field Programmable Gate Array (FPGA) Field Programmable Gate Array (FPGA) Lecturer: Krébesz, Tamas 1 FPGA in general Reprogrammable Si chip Invented in 1985 by Ross Freeman (Xilinx inc.) Combines the advantages of ASIC and uc-based systems

More information

FlexRIO. FPGAs Bringing Custom Functionality to Instruments. Ravichandran Raghavan Technical Marketing Engineer. ni.com

FlexRIO. FPGAs Bringing Custom Functionality to Instruments. Ravichandran Raghavan Technical Marketing Engineer. ni.com FlexRIO FPGAs Bringing Custom Functionality to Instruments Ravichandran Raghavan Technical Marketing Engineer Electrical Test Today Acquire, Transfer, Post-Process Paradigm Fixed- Functionality Triggers

More information

Efficient Hardware Design and Implementation of AES Cryptosystem

Efficient Hardware Design and Implementation of AES Cryptosystem Efficient Hardware Design and Implementation of AES Cryptosystem PRAVIN B. GHEWARI 1 MRS. JAYMALA K. PATIL 1 AMIT B. CHOUGULE 2 1 Department of Electronics & Telecommunication 2 Department of Computer

More information

SHA3 Core Specification. Author: Homer Hsing

SHA3 Core Specification. Author: Homer Hsing SHA3 Core Specification Author: Homer Hsing homer.hsing@gmail.com Rev. 0.1 January 29, 2013 This page has been intentionally left blank. www.opencores.org Rev 0.1 ii Rev. Date Author Description 0.1 01/29/2013

More information

Implementation and Comparative Analysis of AES as a Stream Cipher

Implementation and Comparative Analysis of AES as a Stream Cipher Implementation and Comparative Analysis of AES as a Stream Cipher Bin ZHOU, Yingning Peng Dept. of Electronic Engineering, Tsinghua University, Beijing, China, 100084 e-mail: zhoubin06@mails.tsinghua.edu.cn

More information

High Capacity and High Performance 20nm FPGAs. Steve Young, Dinesh Gaitonde August Copyright 2014 Xilinx

High Capacity and High Performance 20nm FPGAs. Steve Young, Dinesh Gaitonde August Copyright 2014 Xilinx High Capacity and High Performance 20nm FPGAs Steve Young, Dinesh Gaitonde August 2014 Not a Complete Product Overview Page 2 Outline Page 3 Petabytes per month Increasing Bandwidth Global IP Traffic Growth

More information

FPGA Implementation of High Throughput Circuit for Trial Division by Small Primes

FPGA Implementation of High Throughput Circuit for Trial Division by Small Primes FPGA Implementation of High Throughput Circuit for Trial Division by Small Primes Gabriel Southern, Chris Mason, Lalitha Chikkam, Patrick Baier, and Kris Gaj George Mason University {gsouther, cmason4,

More information

The Use of Runtime Reconfiguration on FPGA Circuits to Increase the Performance of the AES Algorithm Implementation

The Use of Runtime Reconfiguration on FPGA Circuits to Increase the Performance of the AES Algorithm Implementation Journal of Universal Computer Science, vol. 13, no. 3 (2007), 349-362 submitted: 30/11/06, accepted: 16/2/07, appeared: 28/3/07 J.UCS The Use of Runtime Reconfiguration on FPGA Circuits to Increase the

More information

RTL Coding General Concepts

RTL Coding General Concepts RTL Coding General Concepts Typical Digital System 2 Components of a Digital System Printed circuit board (PCB) Embedded d software microprocessor microcontroller digital signal processor (DSP) ASIC Programmable

More information

FABRICATION TECHNOLOGIES

FABRICATION TECHNOLOGIES FABRICATION TECHNOLOGIES DSP Processor Design Approaches Full custom Standard cell** higher performance lower energy (power) lower per-part cost Gate array* FPGA* Programmable DSP Programmable general

More information

A hardware evaluation of π-cipher

A hardware evaluation of π-cipher FPGA Results (by Mohamed El Haddedy) A hardware evaluation of π-cipher Table 1: FPGA results for all variants of π-cipher (Spartan-6 (xc6slx16csg324-3)) /Area Encryption 1298 125 1753 9.13 7.20 1259 126

More information

Implementing Photoshop Filters in Virtex

Implementing Photoshop Filters in Virtex Implementing Photoshop Filters in Virtex S. Ludwig, R. Slous and S. Singh Springer-Verlag Berlin Heildelberg 1999. This paper was first published in Field-Programmable Logic and Applications, Proceedings

More information

Hardware Modelling. Design Flow Overview. ECS Group, TU Wien

Hardware Modelling. Design Flow Overview. ECS Group, TU Wien Hardware Modelling Design Flow Overview ECS Group, TU Wien 1 Outline Difference: Hardware vs. Software Design Flow Steps Specification Realisation Verification FPGA Design Flow 2 Hardware vs. Software:

More information

Xilinx(Ultrascale) Vs. Altera(ARRIA 10) Test Bench

Xilinx(Ultrascale) Vs. Altera(ARRIA 10) Test Bench Xilinx(Ultrascale) Vs. Altera(ARRIA 10) Test Bench By Roy Messinger www.hwdebugger.com roy.messinger@hwdebugger.com 1 1 GENERAL In the following document I will show a thorough comparison I've conducted

More information

Multi MicroBlaze System for Parallel Computing

Multi MicroBlaze System for Parallel Computing Multi MicroBlaze System for Parallel Computing P.HUERTA, J.CASTILLO, J.I.MÁRTINEZ, V.LÓPEZ HW/SW Codesign Group Universidad Rey Juan Carlos 28933 Móstoles, Madrid SPAIN Abstract: - Embedded systems need

More information

Magdy Saeb, Samy Salamah Arab Academy for Science, Technology & Maritime Transport School of Engineering, Computer Department Alexandria, Egypt

Magdy Saeb, Samy Salamah Arab Academy for Science, Technology & Maritime Transport School of Engineering, Computer Department Alexandria, Egypt AN IMPLEMENTATION OF A PIPELINED ENCRYPTION MULTI-PROCESSING UNIT UTILIZING VHDL AND FIELD PROGRAMMABLE GATE ARRAYS Magdy Saeb, Samy Salamah Arab Academy for Science, Technology & Maritime Transport School

More information

IMPLICIT+EXPLICIT Architecture

IMPLICIT+EXPLICIT Architecture IMPLICIT+EXPLICIT Architecture Fortran Carte Programming Environment C Implicitly Controlled Device Dense logic device Typically fixed logic µp, DSP, ASIC, etc. Implicit Device Explicit Device Explicitly

More information

CprE 583 Reconfigurable Computing

CprE 583 Reconfigurable Computing CprE / ComS 583 Reconfigurable Computing Prof. Joseph Zambreno Department of Electrical and Computer Engineering Iowa State University Lecture #9 Logic Emulation Technology Recap FPGA-Based Router (FPX)

More information

Computer Maintenance. Unit Subtitle: Motherboards. Copyright Texas Education Agency, All rights reserved. 1

Computer Maintenance. Unit Subtitle: Motherboards. Copyright Texas Education Agency, All rights reserved. 1 Computer Maintenance Unit Subtitle: Motherboards 1 Lesson Objectives Describe the function of the motherboard. Identify the different types of motherboards and their characteristics. Identify the main

More information

Atmel AT94K FPSLIC Architecture Field Programmable Gate Array

Atmel AT94K FPSLIC Architecture Field Programmable Gate Array Embedded Processor Based Built-In Self-Test and Diagnosis of FPGA Core in FPSLIC John Sunwoo (Logic BIST) Srinivas Garimella (RAM BIST) Sudheer Vemula (I/O Cell BIST) Chuck Stroud (Routing BIST) Jonathan

More information

New Successes for Parameterized Run-time Reconfiguration

New Successes for Parameterized Run-time Reconfiguration New Successes for Parameterized Run-time Reconfiguration (or: use the FPGA to its true capabilities) Prof. Dirk Stroobandt Ghent University, Belgium Hardware and Embedded Systems group Universiteit Gent

More information

Learning Outcomes. Spiral 3 1. Digital Design Targets ASICS & FPGAS REVIEW. Hardware/Software Interfacing

Learning Outcomes. Spiral 3 1. Digital Design Targets ASICS & FPGAS REVIEW. Hardware/Software Interfacing 3-. 3-.2 Learning Outcomes Spiral 3 Hardware/Software Interfacing I understand the PicoBlaze bus interface signals: PORT_ID, IN_PORT, OUT_PORT, WRITE_STROBE I understand how a memory map provides the agreement

More information

I 2 C Bus Interface - Slave ver 3.08

I 2 C Bus Interface - Slave ver 3.08 DI2CS I 2 C Bus Interface - Slave ver 3.08 OVERVIEW I 2 C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data transmission over a short distance between many devices.

More information

RUN-TIME PARTIAL RECONFIGURATION SPEED INVESTIGATION AND ARCHITECTURAL DESIGN SPACE EXPLORATION

RUN-TIME PARTIAL RECONFIGURATION SPEED INVESTIGATION AND ARCHITECTURAL DESIGN SPACE EXPLORATION RUN-TIME PARTIAL RECONFIGURATION SPEED INVESTIGATION AND ARCHITECTURAL DESIGN SPACE EXPLORATION Ming Liu, Wolfgang Kuehn, Zhonghai Lu, Axel Jantsch II. Physics Institute Dept. of Electronic, Computer and

More information

Outline of Presentation

Outline of Presentation Built-In Self-Test for Programmable I/O Buffers in FPGAs and SoCs Sudheer Vemula and Charles Stroud Electrical and Computer Engineering Auburn University presented at 2006 IEEE Southeastern Symp. On System

More information

XPU A Programmable FPGA Accelerator for Diverse Workloads

XPU A Programmable FPGA Accelerator for Diverse Workloads XPU A Programmable FPGA Accelerator for Diverse Workloads Jian Ouyang, 1 (ouyangjian@baidu.com) Ephrem Wu, 2 Jing Wang, 1 Yupeng Li, 1 Hanlin Xie 1 1 Baidu, Inc. 2 Xilinx Outlines Background - FPGA for

More information

Reconfigurable Computing - (RC)

Reconfigurable Computing - (RC) Reconfigurable Computing - (RC) Yogindra S Abhyankar Hardware Technology Development Group, C-DAC Outline Motivation Architecture Applications Performance Summary HPC Fastest Growing Sector HPC, the massive

More information

Lab 3 Sequential Logic for Synthesis. FPGA Design Flow.

Lab 3 Sequential Logic for Synthesis. FPGA Design Flow. Lab 3 Sequential Logic for Synthesis. FPGA Design Flow. Task 1 Part 1 Develop a VHDL description of a Debouncer specified below. The following diagram shows the interface of the Debouncer. The following

More information

A ONE CHIP HARDENED SOLUTION FOR HIGH SPEED SPACEWIRE SYSTEM IMPLEMENTATIONS

A ONE CHIP HARDENED SOLUTION FOR HIGH SPEED SPACEWIRE SYSTEM IMPLEMENTATIONS A ONE CHIP HARDENED SOLUTION FOR HIGH SPEED SPACEWIRE SYSTEM IMPLEMENTATIONS Joseph R. Marshall, Richard W. Berger, Glenn P. Rakow Conference Contents Standards & Topology ASIC Program History ASIC Features

More information

Advanced FPGA Design Methodologies with Xilinx Vivado

Advanced FPGA Design Methodologies with Xilinx Vivado Advanced FPGA Design Methodologies with Xilinx Vivado Lecturer: Alexander Jäger Course of studies: Technische Informatik Student number: 3158849 Date: 30.01.2015 30/01/15 Advanced FPGA Design Methodologies

More information

Bus Matrix Synthesis Based On Steiner Graphs for Power Efficient System on Chip Communications

Bus Matrix Synthesis Based On Steiner Graphs for Power Efficient System on Chip Communications Bus Matrix Synthesis Based On Steiner Graphs for Power Efficient System on Chip Communications M.Jasmin Assistant Professor, Department Of ECE, Bharath University, Chennai,India ABSTRACT: Power consumption

More information

Outline of Presentation Field Programmable Gate Arrays (FPGAs(

Outline of Presentation Field Programmable Gate Arrays (FPGAs( FPGA Architectures and Operation for Tolerating SEUs Chuck Stroud Electrical and Computer Engineering Auburn University Outline of Presentation Field Programmable Gate Arrays (FPGAs( FPGAs) How Programmable

More information

Improving Reconfiguration Speed for Dynamic Circuit Specialization using Placement Constraints

Improving Reconfiguration Speed for Dynamic Circuit Specialization using Placement Constraints Improving Reconfiguration Speed for Dynamic Circuit Specialization using Placement Constraints Amit Kulkarni, Tom Davidson, Karel Heyse, and Dirk Stroobandt ELIS department, Computer Systems Lab, Ghent

More information

FPGA. Agenda 11/05/2016. Scheduling tasks on Reconfigurable FPGA architectures. Definition. Overview. Characteristics of the CLB.

FPGA. Agenda 11/05/2016. Scheduling tasks on Reconfigurable FPGA architectures. Definition. Overview. Characteristics of the CLB. Agenda The topics that will be addressed are: Scheduling tasks on Reconfigurable FPGA architectures Mauro Marinoni ReTiS Lab, TeCIP Institute Scuola superiore Sant Anna - Pisa Overview on basic characteristics

More information

A software platform to support dynamically reconfigurable Systems-on-Chip under the GNU/Linux operating system

A software platform to support dynamically reconfigurable Systems-on-Chip under the GNU/Linux operating system A software platform to support dynamically reconfigurable Systems-on-Chip under the GNU/Linux operating system 26th July 2005 Alberto Donato donato@elet.polimi.it Relatore: Prof. Fabrizio Ferrandi Correlatore:

More information

Field Programmable Gate Array

Field Programmable Gate Array Field Programmable Gate Array System Arch 27 (Fire Tom Wada) What is FPGA? System Arch 27 (Fire Tom Wada) 2 FPGA Programmable (= reconfigurable) Digital System Component Basic components Combinational

More information

Dynamically Reconfigurable Coprocessors in FPGA-based Embedded Systems

Dynamically Reconfigurable Coprocessors in FPGA-based Embedded Systems Dynamically Reconfigurable Coprocessors in PGA-based Embedded Systems Ph.D. Thesis March, 2006 Student: Ivan Gonzalez Director: ranciso J. Gomez Ivan.Gonzalez@uam.es 1 Agenda Motivation and Thesis Goal

More information

Experimental Testing of the Gigabit IPSec-Compliant Implementations of Rijndael and Triple DES Using SLAAC-1V FPGA Accelerator Board

Experimental Testing of the Gigabit IPSec-Compliant Implementations of Rijndael and Triple DES Using SLAAC-1V FPGA Accelerator Board Experimental Testing of the Gigabit IPSec-Compliant Implementations of Rijndael and Triple DES Using SLAAC-1V FPGA Accelerator Board Pawel Chodowiec 1, Kris Gaj 1, Peter Bellows 2, and Brian Schott 2 1

More information

Hardware Design with VHDL PLDs IV ECE 443

Hardware Design with VHDL PLDs IV ECE 443 Embedded Processor Cores (Hard and Soft) Electronic design can be realized in hardware (logic gates/registers) or software (instructions executed on a microprocessor). The trade-off is determined by how

More information