Implementation of BFS on shared memory (CPU / GPU)

Size: px
Start display at page:

Download "Implementation of BFS on shared memory (CPU / GPU)"

Transcription

1 Kolganov A.S., MSU

2 The BFS algorithm Graph500 && GGraph500 Implementation of BFS on shared memory (CPU / GPU) Predicted scalability 2

3 The BFS algorithm Graph500 && GGraph500 Implementation of BFS on shared memory (CPU / GPU) Predicted scalability 3

4 Breadth-first search one of the most important and fundamental processing algorithms in graphs; Алгоритмические трудности BFS: Very few computations; An irregular memory access. 4

5 The BFS algorithm Graph500 && GGraph500 Implementation of BFS on shared memory (CPU / GPU) Predicted scalability 5

6 Using BFS algorithm for ranking supercomputers (TEPS traversed edges per second); Using the MTEPS / WATT metrics for ranking in the GreenGraph500 rating of energy-efficient supercomputers ; The both lists have not yet been filled: Graph500 (201 positions in the list); GreenGraph500 (63 positions in the list). 6

7 Generating of edges; Building a graph from edges (timed, included in the table); Generating of 64 random vertices; For each vertex: Running BFS algorithm; (timed, included in the rating); Checking the result; Printing the resulting information. 7

8 nodes cores scale 8

9 12,6 MW 7,8 MW 3,9 MW nodes cores scale 17,8 MW x2 x2 9

10 Big DATA Small DATA Rank MTEPS/W Machine Scale GTEPS Nodes Cores 1 62,93 GraphCREST (CPU) 30 31, ,48 GraphCREST (CPU) 30 28, ,95 GraphCREST (CPU) 32 59, ,28 GraphCREST (CPU) 30 31, ,42 GraphCREST (CPU) 32 55, Rank MTEPS/W Machine Scale GTEPS Nodes Cores 1 815,68 TitanX (GPU) , ,94 Titan (GPU) , ,92 Colonial (GPU) , ,42 Monty Pi-thon 26 35, ,15 GraphCREST (ARM) 20 1, ,4 GraphCREST (ARM) 20 0, ,38 EBD 21 1,

11 Big DATA: scale up to 30 (256 ГБ for int64 and 128 ГБ for int32) Small DATA Rank MTEPS/W Machine Scale GTEPS Nodes Cores 1 62,93 GraphCREST (CPU) 30 31, ,48 GraphCREST (CPU) 30 28, ,95 GraphCREST (CPU) 32 59, ,28 GraphCREST (CPU) 30 31, ,42 GraphCREST (CPU) 32 55, Rank MTEPS/W Machine Scale GTEPS Nodes Cores 1 815,68 TitanX (GPU) , ,94 Titan (GPU) , ,92 Colonial (GPU) , ,42 Monty Pi-thon 26 35, ,15 GraphCREST (ARM) 20 1, ,4 GraphCREST (ARM) 20 0, ,38 EBD 21 1,

12 Big DATA: scale up to 30 (256 ГБ for int64 and 128 ГБ for int32) Small DATA 12ГБ, Tesla K80 24ГБ; For computing scale 30 needed ~192ГБ; <> x 16 = 192 ГБ 4 kw peak! <Tesla K80> x 8 = 192 ГБ 2.4 kw peak! Rank MTEPS/W Machine Scale GTEPS Nodes Cores 1 815,68 TitanX (GPU) , ,94 Titan (GPU) , ,92 Colonial (GPU) , ,42 Monty Pi-thon 26 35, ,15 GraphCREST (ARM) 20 1, ,4 GraphCREST (ARM) 20 0, ,38 EBD 21 1,

13 The BFS algorithm Graph500 && GGraph500 Implementation of BFS on shared memory (CPU / GPU) Predicted scalability 13

14 Phase 1: reconstruction and transformation of graph; loading to GPU memory; Phase 2: The main cycle of algorithm; Use the hybrid BFS (Top Down + Bottom Up). The main ideas were taken from GraphCREST: «Fast and Energy-efficient Breadth-First Search on a Single NUMA System, 2014» 14

15 Transformation to CSR (compressed sparse rows) COO start vertex.. CSR adj_ptr.. final vertex weights adjacency weights 15

16 Global sorting of vertices by the degree of connectedness 16

17 Local sorting of neighbors by the degree of connectedness V1 V2 V Vn V1 V2 V Vn 17

18 Synchronized on levels Top-Down Current front Level K Next iteration front Level K+1 foreach (i = [0, N]) { foreach (k = =[rind[i], rind[i+1]) { unsigned v = endv[k]; if (levels[v] == 0) { levels[v] = lvl; parents[v] = i; } } } 18

19 Synchronized on levels Bottom-Up Level K Level K+1 foreach (i = [0, N]) { if (levels[i] == 0) { foreach (k=[rind[i], rind[i+1] ]) { unsigned endk = endv[k]; if (levels[endk] == lvl - 1) { parents[i] = endk; levels[i] = lvl; break; } } } } 19

20 Hybrid algorithm: Top-Down + Bottom-Up (direction optimization) The graph SCALE 26 V = 2^26 (67,108,864) E = 2^30 (1,073,741,824) Level Top-Down Bottom-Up Hybrid 0 2 2,103,840, ,206 1,766,587,029 66, ,918,235 52,677,691 52,677, ,727,195,615 12,820,854 12,820, ,557, , , ,357 21,467 21, , Total: 2,103,820,036 3,936,072,360 65,689, % 187% 3.12% = 2x E A significant decrease the number of edges viewed

21 Using the CUDA Dynamic Parallelism for balancing load in Top-Down; Using vectorization in each thread; Using the align reordering for better access to memory in Bottom-Up; Using queue in Bottom-Up at the last iterations. 21

22 The first position in GGraph500: Small DATA: 132 GTEPS, 815 MTEPS/W, SCALE:26; The second position in GGraph500: Small DATA: GTX Titan 114 GTEPS, 540 MTEPS/W, SCALE:25; The 15th position in GGraph500: Small DATA: Intel Xeon E GTEPS, 81 MTEPS/W, SCALE:27; Reached memory bandwidth GPU at GB/s (50-60% of peak); Reached energy consumption at 50% of peak. 22

23 The BFS algorithm Graph500 && GGraph500 Implementation of BFS on shared memory (CPU / GPU) Predicted scalability 23

24 The time of BFS on 1GPU SCALE 26 ~ 8.43ms CPU CPU 24

25 The all coping GPU->HOST: ~128 МБ CPU CPU 25

26 The all back coping HOST->GPU: ~2000 МБ CPU CPU 26

27 The time of BFS on 16 GPU SCALE 30 ~ 9 ms The total time of coping SCALE 30 ~ 140 ms CPU CPU 115 GTEPS ~ 100 MTEPS / W (the current 1 st position 62,93 MTEPS / W ) 27

28 The time of BFS on 16 GPU SCALE 30 ~ 9 ms The total time of coping SCALE 30 ~ 30 ms CPU CPU NVlink 440 GTEPS ~ 300 MTEPS / W 28

29 Alexander Kolganov, MSU, 29

Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia

Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia How well do CPU, GPU and Hybrid Graph Processing Frameworks Perform? Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia Networked Systems

More information

Coordinating More Than 3 Million CUDA Threads for Social Network Analysis. Adam McLaughlin

Coordinating More Than 3 Million CUDA Threads for Social Network Analysis. Adam McLaughlin Coordinating More Than 3 Million CUDA Threads for Social Network Analysis Adam McLaughlin Applications of interest Computational biology Social network analysis Urban planning Epidemiology Hardware verification

More information

Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark. by Nkemdirim Dockery

Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark. by Nkemdirim Dockery Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark by Nkemdirim Dockery High Performance Computing Workloads Core-memory sized Floating point intensive Well-structured

More information

High-Performance Graph Primitives on the GPU: Design and Implementation of Gunrock

High-Performance Graph Primitives on the GPU: Design and Implementation of Gunrock High-Performance Graph Primitives on the GPU: Design and Implementation of Gunrock Yangzihao Wang University of California, Davis yzhwang@ucdavis.edu March 24, 2014 Yangzihao Wang (yzhwang@ucdavis.edu)

More information

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology Exploiting GPU Caches in Sparse Matrix Vector Multiplication Yusuke Nagasaka Tokyo Institute of Technology Sparse Matrix Generated by FEM, being as the graph data Often require solving sparse linear equation

More information

Enterprise. Breadth-First Graph Traversal on GPUs. November 19th, 2015

Enterprise. Breadth-First Graph Traversal on GPUs. November 19th, 2015 Enterprise Breadth-First Graph Traversal on GPUs Hang Liu H. Howie Huang November 9th, 5 Graph is Ubiquitous Breadth-First Search (BFS) is Important Wide Range of Applications Single Source Shortest Path

More information

Breadth First Search on Cost efficient Multi GPU Systems

Breadth First Search on Cost efficient Multi GPU Systems Breadth First Search on Cost efficient Multi Systems Takuji Mitsuishi Keio University 3 14 1 Hiyoshi, Yokohama, 223 8522, Japan mits@am.ics.keio.ac.jp Masaki Kan NEC Corporation 1753, Shimonumabe, Nakahara

More information

CuSha: Vertex-Centric Graph Processing on GPUs

CuSha: Vertex-Centric Graph Processing on GPUs CuSha: Vertex-Centric Graph Processing on GPUs Farzad Khorasani, Keval Vora, Rajiv Gupta, Laxmi N. Bhuyan HPDC Vancouver, Canada June, Motivation Graph processing Real world graphs are large & sparse Power

More information

Optimizing Energy Consumption and Parallel Performance for Static and Dynamic Betweenness Centrality using GPUs Adam McLaughlin, Jason Riedy, and

Optimizing Energy Consumption and Parallel Performance for Static and Dynamic Betweenness Centrality using GPUs Adam McLaughlin, Jason Riedy, and Optimizing Energy Consumption and Parallel Performance for Static and Dynamic Betweenness Centrality using GPUs Adam McLaughlin, Jason Riedy, and David A. Bader Motivation Real world graphs are challenging

More information

Scalable GPU Graph Traversal!

Scalable GPU Graph Traversal! Scalable GPU Graph Traversal Duane Merrill, Michael Garland, and Andrew Grimshaw PPoPP '12 Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming Benwen Zhang

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

An Energy-Efficient Abstraction for Simultaneous Breadth-First Searches. Adam McLaughlin, Jason Riedy, and David A. Bader

An Energy-Efficient Abstraction for Simultaneous Breadth-First Searches. Adam McLaughlin, Jason Riedy, and David A. Bader An Energy-Efficient Abstraction for Simultaneous Breadth-First Searches Adam McLaughlin, Jason Riedy, and David A. Bader Problem Data is unstructured, heterogeneous, and vast Serious opportunities for

More information

Efficient graph computation on hybrid CPU and GPU systems

Efficient graph computation on hybrid CPU and GPU systems J Supercomput (2015) 71:1563 1586 DOI 10.1007/s11227-015-1378-z Efficient graph computation on hybrid CPU and GPU systems Tao Zhang Jingjie Zhang Wei Shu Min-You Wu Xiaoyao Liang Published online: 21 January

More information

Modern GPUs (Graphics Processing Units)

Modern GPUs (Graphics Processing Units) Modern GPUs (Graphics Processing Units) Powerful data parallel computation platform. High computation density, high memory bandwidth. Relatively low cost. NVIDIA GTX 580 512 cores 1.6 Tera FLOPs 1.5 GB

More information

Accelerating Direction-Optimized Breadth First Search on Hybrid Architectures

Accelerating Direction-Optimized Breadth First Search on Hybrid Architectures Accelerating Direction-Optimized Breadth First Search on Hybrid Architectures Scott Sallinen, Abdullah Gharaibeh, and Matei Ripeanu University of British Columbia {scotts, abdullah, matei}@ece.ubc.ca arxiv:1503.04359v2

More information

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES Cliff Woolley, NVIDIA PREFACE This talk presents a case study of extracting parallelism in the UMT2013 benchmark for 3D unstructured-mesh

More information

Graph Data Management

Graph Data Management Graph Data Management Analysis and Optimization of Graph Data Frameworks presented by Fynn Leitow Overview 1) Introduction a) Motivation b) Application for big data 2) Choice of algorithms 3) Choice of

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

EFFICIENT BREADTH FIRST SEARCH ON MULTI-GPU SYSTEMS USING GPU-CENTRIC OPENSHMEM

EFFICIENT BREADTH FIRST SEARCH ON MULTI-GPU SYSTEMS USING GPU-CENTRIC OPENSHMEM EFFICIENT BREADTH FIRST SEARCH ON MULTI-GPU SYSTEMS USING GPU-CENTRIC OPENSHMEM Sreeram Potluri, Anshuman Goswami NVIDIA Manjunath Gorentla Venkata, Neena Imam - ORNL SCOPE OF THE WORK Reliance on CPU

More information

X10 specific Optimization of CPU GPU Data transfer with Pinned Memory Management

X10 specific Optimization of CPU GPU Data transfer with Pinned Memory Management X10 specific Optimization of CPU GPU Data transfer with Pinned Memory Management Hideyuki Shamoto, Tatsuhiro Chiba, Mikio Takeuchi Tokyo Institute of Technology IBM Research Tokyo Programming for large

More information

GPU Sparse Graph Traversal. Duane Merrill

GPU Sparse Graph Traversal. Duane Merrill GPU Sparse Graph Traversal Duane Merrill Breadth-first search of graphs (BFS) 1. Pick a source node 2. Rank every vertex by the length of shortest path from source Or label every vertex by its predecessor

More information

Lecture 6: Input Compaction and Further Studies

Lecture 6: Input Compaction and Further Studies PASI Summer School Advanced Algorithmic Techniques for GPUs Lecture 6: Input Compaction and Further Studies 1 Objective To learn the key techniques for compacting input data for reduced consumption of

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

Accelerated Load Balancing of Unstructured Meshes

Accelerated Load Balancing of Unstructured Meshes Accelerated Load Balancing of Unstructured Meshes Gerrett Diamond, Lucas Davis, and Cameron W. Smith Abstract Unstructured mesh applications running on large, parallel, distributed memory systems require

More information

Boosting the Performance of FPGA-based Graph Processor using Hybrid Memory Cube: A Case for Breadth First Search

Boosting the Performance of FPGA-based Graph Processor using Hybrid Memory Cube: A Case for Breadth First Search Boosting the Performance of FPGA-based Graph Processor using Hybrid Memory Cube: A Case for Breadth First Search Jialiang Zhang, Soroosh Khoram and Jing Li 1 Outline Background Big graph analytics Hybrid

More information

Sparse Matrix-Matrix Multiplication on the GPU. Julien Demouth, NVIDIA

Sparse Matrix-Matrix Multiplication on the GPU. Julien Demouth, NVIDIA Sparse Matrix-Matrix Multiplication on the GPU Julien Demouth, NVIDIA Introduction: Problem Two sparse matrices A and B, compute: Sparse matrix: Many zeroes C = AB x Non-zero Zero Only non-zero elements

More information

NUMA-aware Graph-structured Analytics

NUMA-aware Graph-structured Analytics NUMA-aware Graph-structured Analytics Kaiyuan Zhang, Rong Chen, Haibo Chen Institute of Parallel and Distributed Systems Shanghai Jiao Tong University, China Big Data Everywhere 00 Million Tweets/day 1.11

More information

Locality-Aware Software Throttling for Sparse Matrix Operation on GPUs

Locality-Aware Software Throttling for Sparse Matrix Operation on GPUs Locality-Aware Software Throttling for Sparse Matrix Operation on GPUs Yanhao Chen 1, Ari B. Hayes 1, Chi Zhang 2, Timothy Salmon 1, Eddy Z. Zhang 1 1. Rutgers University 2. University of Pittsburgh Sparse

More information

Towards Performance and Scalability Analysis of Distributed Memory Programs on Large-Scale Clusters

Towards Performance and Scalability Analysis of Distributed Memory Programs on Large-Scale Clusters Towards Performance and Scalability Analysis of Distributed Memory Programs on Large-Scale Clusters 1 University of California, Santa Barbara, 2 Hewlett Packard Labs, and 3 Hewlett Packard Enterprise 1

More information

GPU-Based Acceleration for CT Image Reconstruction

GPU-Based Acceleration for CT Image Reconstruction GPU-Based Acceleration for CT Image Reconstruction Xiaodong Yu Advisor: Wu-chun Feng Collaborators: Guohua Cao, Hao Gong Outline Introduction and Motivation Background Knowledge Challenges and Proposed

More information

TR An Overview of NVIDIA Tegra K1 Architecture. Ang Li, Radu Serban, Dan Negrut

TR An Overview of NVIDIA Tegra K1 Architecture. Ang Li, Radu Serban, Dan Negrut TR-2014-17 An Overview of NVIDIA Tegra K1 Architecture Ang Li, Radu Serban, Dan Negrut November 20, 2014 Abstract This paperwork gives an overview of NVIDIA s Jetson TK1 Development Kit and its Tegra K1

More information

Parallel Architectures

Parallel Architectures Parallel Architectures Part 1: The rise of parallel machines Intel Core i7 4 CPU cores 2 hardware thread per core (8 cores ) Lab Cluster Intel Xeon 4/10/16/18 CPU cores 2 hardware thread per core (8/20/32/36

More information

GPU Sparse Graph Traversal

GPU Sparse Graph Traversal GPU Sparse Graph Traversal Duane Merrill (NVIDIA) Michael Garland (NVIDIA) Andrew Grimshaw (Univ. of Virginia) UNIVERSITY of VIRGINIA Breadth-first search (BFS) 1. Pick a source node 2. Rank every vertex

More information

A Framework for Processing Large Graphs in Shared Memory

A Framework for Processing Large Graphs in Shared Memory A Framework for Processing Large Graphs in Shared Memory Julian Shun Based on joint work with Guy Blelloch and Laxman Dhulipala (Work done at Carnegie Mellon University) 2 What are graphs? Vertex Edge

More information

Current and Future Challenges of the Tofu Interconnect for Emerging Applications

Current and Future Challenges of the Tofu Interconnect for Emerging Applications Current and Future Challenges of the Tofu Interconnect for Emerging Applications Yuichiro Ajima Senior Architect Next Generation Technical Computing Unit Fujitsu Limited June 22, 2017, ExaComm 2017 Workshop

More information

NVGRAPH,FIREHOSE,PAGERANK GPU ACCELERATED ANALYTICS NOV Joe Eaton Ph.D.

NVGRAPH,FIREHOSE,PAGERANK GPU ACCELERATED ANALYTICS NOV Joe Eaton Ph.D. NVGRAPH,FIREHOSE,PAGERANK GPU ACCELERATED ANALYTICS NOV 2016 Joe Eaton Ph.D. Agenda Accelerated Computing nvgraph New Features Coming Soon Dynamic Graphs GraphBLAS 2 ACCELERATED COMPUTING 10x Performance

More information

Parallel graph traversal for FPGA

Parallel graph traversal for FPGA LETTER IEICE Electronics Express, Vol.11, No.7, 1 6 Parallel graph traversal for FPGA Shice Ni a), Yong Dou, Dan Zou, Rongchun Li, and Qiang Wang National Laboratory for Parallel and Distributed Processing,

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang University of Massachusetts Amherst Introduction Singular Value Decomposition (SVD) A: m n matrix (m n) U, V: orthogonal

More information

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters IEEE CLUSTER 2015 Chicago, IL, USA Luis Sant Ana 1, Daniel Cordeiro 2, Raphael Camargo 1 1 Federal University of ABC,

More information

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA Particle-in-Cell Simulations on Modern Computing Platforms Viktor K. Decyk and Tajendra V. Singh UCLA Outline of Presentation Abstraction of future computer hardware PIC on GPUs OpenCL and Cuda Fortran

More information

Flexible Batched Sparse Matrix-Vector Product on GPUs

Flexible Batched Sparse Matrix-Vector Product on GPUs ScalA'17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems November 13, 217 Flexible Batched Sparse Matrix-Vector Product on GPUs Hartwig Anzt, Gary Collins, Jack Dongarra,

More information

GPU COMPUTING AND THE FUTURE OF HPC. Timothy Lanfear, NVIDIA

GPU COMPUTING AND THE FUTURE OF HPC. Timothy Lanfear, NVIDIA GPU COMPUTING AND THE FUTURE OF HPC Timothy Lanfear, NVIDIA ~1 W ~3 W ~100 W ~30 W 1 kw 100 kw 20 MW Power-constrained Computers 2 EXASCALE COMPUTING WILL ENABLE TRANSFORMATIONAL SCIENCE RESULTS First-principles

More information

Optimization solutions for the segmented sum algorithmic function

Optimization solutions for the segmented sum algorithmic function Optimization solutions for the segmented sum algorithmic function ALEXANDRU PÎRJAN Department of Informatics, Statistics and Mathematics Romanian-American University 1B, Expozitiei Blvd., district 1, code

More information

Performance analysis of -stepping algorithm on CPU and GPU

Performance analysis of -stepping algorithm on CPU and GPU Performance analysis of -stepping algorithm on CPU and GPU Dmitry Lesnikov 1 dslesnikov@gmail.com Mikhail Chernoskutov 1,2 mach@imm.uran.ru 1 Ural Federal University (Yekaterinburg, Russia) 2 Krasovskii

More information

NEW ADVANCES IN GPU LINEAR ALGEBRA

NEW ADVANCES IN GPU LINEAR ALGEBRA GTC 2012: NEW ADVANCES IN GPU LINEAR ALGEBRA Kyle Spagnoli EM Photonics 5/16/2012 QUICK ABOUT US» HPC/GPU Consulting Firm» Specializations in:» Electromagnetics» Image Processing» Fluid Dynamics» Linear

More information

Cameron W. Smith, Gerrett Diamond, George M. Slota, Mark S. Shephard. Scientific Computation Research Center Rensselaer Polytechnic Institute

Cameron W. Smith, Gerrett Diamond, George M. Slota, Mark S. Shephard. Scientific Computation Research Center Rensselaer Polytechnic Institute MS46 Architecture-Aware Graph Analytics Part II of II: Dynamic Load Balancing of Massively Parallel Graphs for Scientific Computing on Many Core and Accelerator Based Systems Cameron W. Smith, Gerrett

More information

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication Steve Rennich Nvidia Developer Technology - Compute Block Sparse Matrix Vector Multiplication Sparse Matrix-Vector Multiplication

More information

GPU Programming. Lecture 1: Introduction. Miaoqing Huang University of Arkansas 1 / 27

GPU Programming. Lecture 1: Introduction. Miaoqing Huang University of Arkansas 1 / 27 1 / 27 GPU Programming Lecture 1: Introduction Miaoqing Huang University of Arkansas 2 / 27 Outline Course Introduction GPUs as Parallel Computers Trend and Design Philosophies Programming and Execution

More information

GraFBoost: Using accelerated flash storage for external graph analytics

GraFBoost: Using accelerated flash storage for external graph analytics GraFBoost: Using accelerated flash storage for external graph analytics Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu and Arvind MIT CSAIL Funded by: 1 Large Graphs are Found Everywhere in Nature

More information

TSUBAME-KFC : Ultra Green Supercomputing Testbed

TSUBAME-KFC : Ultra Green Supercomputing Testbed TSUBAME-KFC : Ultra Green Supercomputing Testbed Toshio Endo,Akira Nukada, Satoshi Matsuoka TSUBAME-KFC is developed by GSIC, Tokyo Institute of Technology NEC, NVIDIA, Green Revolution Cooling, SUPERMICRO,

More information

Carlos Reaño, Javier Prades and Federico Silla Technical University of Valencia (Spain)

Carlos Reaño, Javier Prades and Federico Silla Technical University of Valencia (Spain) Carlos Reaño, Javier Prades and Federico Silla Technical University of Valencia (Spain) 4th IEEE International Workshop of High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB

More information

Efficient AMG on Hybrid GPU Clusters. ScicomP Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann. Fraunhofer SCAI

Efficient AMG on Hybrid GPU Clusters. ScicomP Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann. Fraunhofer SCAI Efficient AMG on Hybrid GPU Clusters ScicomP 2012 Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann Fraunhofer SCAI Illustration: Darin McInnis Motivation Sparse iterative solvers benefit from

More information

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Patterns: Graph Search

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Patterns: Graph Search CSE 599 I Accelerated Computing - Programming GPUS Parallel Patterns: Graph Search Objective Study graph search as a prototypical graph-based algorithm Learn techniques to mitigate the memory-bandwidth-centric

More information

Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine

Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine Samuel Cremer 1,2, Michel Bagein 1, Saïd Mahmoudi 1, Pierre Manneback 1 1 UMONS, University of Mons Computer Science

More information

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar CRAY XK6 REDEFINING SUPERCOMPUTING - Sanjana Rakhecha - Nishad Nerurkar CONTENTS Introduction History Specifications Cray XK6 Architecture Performance Industry acceptance and applications Summary INTRODUCTION

More information

Scalable and High Performance Betweenness Centrality on the GPU

Scalable and High Performance Betweenness Centrality on the GPU Scalable and High Performance Betweenness Centrality on the GPU Adam McLaughlin School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia 30332 0250 Adam27X@gatech.edu

More information

Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations

Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations George M. Slota 1 Sivasankaran Rajamanickam 2 Kamesh Madduri 3 1 Rensselaer Polytechnic Institute, 2 Sandia National

More information

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA STATE OF THE ART 2012 18,688 Tesla K20X GPUs 27 PetaFLOPS FLAGSHIP SCIENTIFIC APPLICATIONS

More information

GPU > CPU. FOR HIGH PERFORMANCE COMPUTING PRESENTATION BY - SADIQ PASHA CHETHANA DILIP

GPU > CPU. FOR HIGH PERFORMANCE COMPUTING PRESENTATION BY - SADIQ PASHA CHETHANA DILIP GPU > CPU. FOR HIGH PERFORMANCE COMPUTING PRESENTATION BY - SADIQ PASHA CHETHANA DILIP INTRODUCTION or With the exponential increase in computational power of todays hardware, the complexity of the problem

More information

Efficient Graph Computation on Hybrid CPU and GPU Systems

Efficient Graph Computation on Hybrid CPU and GPU Systems Noname manuscript No. (will be inserted by the editor) Efficient Graph Computation on Hybrid CPU and GPU Systems Tao Zhang Jingjie Zhang Wei Shu Min-You Wu Xiaoyao Liang* Received: date / Accepted: date

More information

LECTURE 17 GRAPH TRAVERSALS

LECTURE 17 GRAPH TRAVERSALS DATA STRUCTURES AND ALGORITHMS LECTURE 17 GRAPH TRAVERSALS IMRAN IHSAN ASSISTANT PROFESSOR AIR UNIVERSITY, ISLAMABAD STRATEGIES Traversals of graphs are also called searches We can use either breadth-first

More information

BREADTH-FIRST SEARCH FOR SOCIAL NETWORK GRAPHS ON HETEROGENOUS PLATFORMS LUIS CARLOS MARIA REMIS THESIS

BREADTH-FIRST SEARCH FOR SOCIAL NETWORK GRAPHS ON HETEROGENOUS PLATFORMS LUIS CARLOS MARIA REMIS THESIS BREADTH-FIRST SEARCH FOR SOCIAL NETWORK GRAPHS ON HETEROGENOUS PLATFORMS BY LUIS CARLOS MARIA REMIS THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer

More information

New Approach for Graph Algorithms on GPU using CUDA

New Approach for Graph Algorithms on GPU using CUDA New Approach for Graph Algorithms on GPU using CUDA 1 Gunjan Singla, 2 Amrita Tiwari, 3 Dhirendra Pratap Singh Department of Computer Science and Engineering Maulana Azad National Institute of Technology

More information

Mapping MPI+X Applications to Multi-GPU Architectures

Mapping MPI+X Applications to Multi-GPU Architectures Mapping MPI+X Applications to Multi-GPU Architectures A Performance-Portable Approach Edgar A. León Computer Scientist San Jose, CA March 28, 2018 GPU Technology Conference This work was performed under

More information

Multi-Processors and GPU

Multi-Processors and GPU Multi-Processors and GPU Philipp Koehn 7 December 2016 Predicted CPU Clock Speed 1 Clock speed 1971: 740 khz, 2016: 28.7 GHz Source: Horowitz "The Singularity is Near" (2005) Actual CPU Clock Speed 2 Clock

More information

A New Parallel Algorithm for Connected Components in Dynamic Graphs. Robert McColl Oded Green David Bader

A New Parallel Algorithm for Connected Components in Dynamic Graphs. Robert McColl Oded Green David Bader A New Parallel Algorithm for Connected Components in Dynamic Graphs Robert McColl Oded Green David Bader Overview The Problem Target Datasets Prior Work Parent-Neighbor Subgraph Results Conclusions Problem

More information

Parallel Methods for Verifying the Consistency of Weakly-Ordered Architectures. Adam McLaughlin, Duane Merrill, Michael Garland, and David A.

Parallel Methods for Verifying the Consistency of Weakly-Ordered Architectures. Adam McLaughlin, Duane Merrill, Michael Garland, and David A. Parallel Methods for Verifying the Consistency of Weakly-Ordered Architectures Adam McLaughlin, Duane Merrill, Michael Garland, and David A. Bader Challenges of Design Verification Contemporary hardware

More information

Tools and Primitives for High Performance Graph Computation

Tools and Primitives for High Performance Graph Computation Tools and Primitives for High Performance Graph Computation John R. Gilbert University of California, Santa Barbara Aydin Buluç (LBNL) Adam Lugowski (UCSB) SIAM Minisymposium on Analyzing Massive Real-World

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information

Graphs & Digraphs Tuesday, November 06, 2007

Graphs & Digraphs Tuesday, November 06, 2007 Graphs & Digraphs Tuesday, November 06, 2007 10:34 PM 16.1 Directed Graphs (digraphs) like a tree but w/ no root node & no guarantee of paths between nodes consists of: nodes/vertices - a set of elements

More information

CUB. collective software primitives. Duane Merrill. NVIDIA Research

CUB. collective software primitives. Duane Merrill. NVIDIA Research CUB collective software primitives Duane Merrill NVIDIA Research What is CUB?. A design model for collective primitives How to make reusable SIMT software constructs. A library of collective primitives

More information

Graph traversal and BFS

Graph traversal and BFS Graph traversal and BFS Fundamental building block Graph traversal is part of many important tasks Connected components Tree/Cycle detection Articulation vertex finding Real-world applications Peer-to-peer

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

COMPUTING ELEMENT EVOLUTION AND ITS IMPACT ON SIMULATION CODES

COMPUTING ELEMENT EVOLUTION AND ITS IMPACT ON SIMULATION CODES COMPUTING ELEMENT EVOLUTION AND ITS IMPACT ON SIMULATION CODES P(ND) 2-2 2014 Guillaume Colin de Verdière OCTOBER 14TH, 2014 P(ND)^2-2 PAGE 1 CEA, DAM, DIF, F-91297 Arpajon, France October 14th, 2014 Abstract:

More information

Graph Partitioning for Scalable Distributed Graph Computations

Graph Partitioning for Scalable Distributed Graph Computations Graph Partitioning for Scalable Distributed Graph Computations Aydın Buluç ABuluc@lbl.gov Kamesh Madduri madduri@cse.psu.edu 10 th DIMACS Implementation Challenge, Graph Partitioning and Graph Clustering

More information

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Jonas Hahnfeld 1, Christian Terboven 1, James Price 2, Hans Joachim Pflug 1, Matthias S. Müller

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms http://sudalab.is.s.u-tokyo.ac.jp/~reiji/pna16/ [ 9 ] Shared Memory Performance Parallel Numerical Algorithms / IST / UTokyo 1 PNA16 Lecture Plan General Topics 1. Architecture

More information

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 13: Memory Consistency + a Course-So-Far Review Parallel Computer Architecture and Programming Today: what you should know Understand the motivation for relaxed consistency models Understand the

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Last time Network topologies Intro to MPI Matrix-matrix multiplication Today MPI I/O Randomized Algorithms Parallel k-select Graph coloring Assignment 2 Parallel I/O Goal of Parallel

More information

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography 1 A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography He Huang, Liqiang Wang, Po Chen(University of Wyoming) John Dennis (NCAR) 2 LSQR in Seismic Tomography

More information

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA 3D ADI Method for Fluid Simulation on Multiple GPUs Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA Introduction Fluid simulation using direct numerical methods Gives the most accurate result Requires

More information

Parallel Combinatorial BLAS and Applications in Graph Computations

Parallel Combinatorial BLAS and Applications in Graph Computations Parallel Combinatorial BLAS and Applications in Graph Computations Aydın Buluç John R. Gilbert University of California, Santa Barbara SIAM ANNUAL MEETING 2009 July 8, 2009 1 Primitives for Graph Computations

More information

Extreme-scale Graph Analysis on Blue Waters

Extreme-scale Graph Analysis on Blue Waters Extreme-scale Graph Analysis on Blue Waters 2016 Blue Waters Symposium George M. Slota 1,2, Siva Rajamanickam 1, Kamesh Madduri 2, Karen Devine 1 1 Sandia National Laboratories a 2 The Pennsylvania State

More information

Goverlan Reach Server Hardware & Operating System Guidelines

Goverlan Reach Server Hardware & Operating System Guidelines www.goverlan.com Goverlan Reach Server Hardware & Operating System Guidelines System Requirements General Guidelines The system requirement for a Goverlan Reach Server is calculated based on its potential

More information

Fast BVH Construction on GPUs

Fast BVH Construction on GPUs Fast BVH Construction on GPUs Published in EUROGRAGHICS, (2009) C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha University of North Carolina at Chapel Hill NVIDIA University of California

More information

Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra

Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra Dominik Grewe Anton Lokhmotov Media Processing Division ARM School of Informatics University of Edinburgh December 13, 2010 Introduction

More information

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1 Introduction to parallel computers and parallel programming Introduction to parallel computersand parallel programming p. 1 Content A quick overview of morden parallel hardware Parallelism within a chip

More information

swsptrsv: a Fast Sparse Triangular Solve with Sparse Level Tile Layout on Sunway Architecture Xinliang Wang, Weifeng Liu, Wei Xue, Li Wu

swsptrsv: a Fast Sparse Triangular Solve with Sparse Level Tile Layout on Sunway Architecture Xinliang Wang, Weifeng Liu, Wei Xue, Li Wu swsptrsv: a Fast Sparse Triangular Solve with Sparse Level Tile Layout on Sunway Architecture 1,3 2 1,3 1,3 Xinliang Wang, Weifeng Liu, Wei Xue, Li Wu 1 2 3 Outline 1. Background 2. Sunway architecture

More information

Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink

Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink Rajesh Bordawekar IBM T. J. Watson Research Center bordaw@us.ibm.com Pidad D Souza IBM Systems pidsouza@in.ibm.com 1 Outline

More information

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Juan C. Pichel Centro de Investigación en Tecnoloxías da Información (CITIUS) Universidade de Santiago de Compostela, Spain

More information

Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations

Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations D. Zheltkov, N. Zamarashkin INM RAS September 24, 2018 Scalability of Lanczos method Notations Matrix order

More information

STUDYING OPENMP WITH VAMPIR

STUDYING OPENMP WITH VAMPIR STUDYING OPENMP WITH VAMPIR Case Studies Sparse Matrix Vector Multiplication Load Imbalances November 15, 2017 Studying OpenMP with Vampir 2 Sparse Matrix Vector Multiplication y 1 a 11 a n1 x 1 = y m

More information

8. Hardware-Aware Numerics. Approaching supercomputing...

8. Hardware-Aware Numerics. Approaching supercomputing... Approaching supercomputing... Numerisches Programmieren, Hans-Joachim Bungartz page 1 of 48 8.1. Hardware-Awareness Introduction Since numerical algorithms are ubiquitous, they have to run on a broad spectrum

More information

8. Hardware-Aware Numerics. Approaching supercomputing...

8. Hardware-Aware Numerics. Approaching supercomputing... Approaching supercomputing... Numerisches Programmieren, Hans-Joachim Bungartz page 1 of 22 8.1. Hardware-Awareness Introduction Since numerical algorithms are ubiquitous, they have to run on a broad spectrum

More information

CUDA OPTIMIZATION WITH NVIDIA NSIGHT ECLIPSE EDITION. Julien Demouth, NVIDIA Cliff Woolley, NVIDIA

CUDA OPTIMIZATION WITH NVIDIA NSIGHT ECLIPSE EDITION. Julien Demouth, NVIDIA Cliff Woolley, NVIDIA CUDA OPTIMIZATION WITH NVIDIA NSIGHT ECLIPSE EDITION Julien Demouth, NVIDIA Cliff Woolley, NVIDIA WHAT WILL YOU LEARN? An iterative method to optimize your GPU code A way to conduct that method with NVIDIA

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

GPU for HPC. October 2010

GPU for HPC. October 2010 GPU for HPC Simone Melchionna Jonas Latt Francis Lapique October 2010 EPFL/ EDMX EPFL/EDMX EPFL/DIT simone.melchionna@epfl.ch jonas.latt@epfl.ch francis.lapique@epfl.ch 1 Moore s law: in the old days,

More information

Recent Advances in Heterogeneous Computing using Charm++

Recent Advances in Heterogeneous Computing using Charm++ Recent Advances in Heterogeneous Computing using Charm++ Jaemin Choi, Michael Robson Parallel Programming Laboratory University of Illinois Urbana-Champaign April 12, 2018 1 / 24 Heterogeneous Computing

More information

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization Duksu Kim Assistant professor, KORATEHC Education Ph.D. Computer Science, KAIST Parallel Proximity Computation on Heterogeneous Computing Systems for Graphics Applications Professional Experience Senior

More information