Scalable RNA Sequencing on Clusters of Multicore Processors

Size: px
Start display at page:

Download "Scalable RNA Sequencing on Clusters of Multicore Processors"

Transcription

1 JOAQUÍN DOPAZO JOAQUÍN TARRAGA SERGIO BARRACHINA MARÍA ISABEL CASTILLO HÉCTOR MARTÍNEZ ENRIQUE S. QUINTANA ORTÍ IGNACIO MEDINA

2 INTRODUCTION DNA Exon 0 Exon 1 Exon 2 Intron 0 Intron 1 Reads Sequencing RNA Exon 0 Exon 1 Exon 2 Reads Sequencing

3 INTRODUCTION DNA MAPPERS Bowtie Cushaw BWA HPG Aligner DNA DNA TTTCACCAGCCCAT Reference Genome GTCCAAG CCGGTACCTTAG Exon 0 Intron 0 Exon 1 CCGGTACCTTAGGCCATCCCAGGGCTAAAAGGTAAA Read GCCATCCCAGGGCTAAAAGGTAAA RNA MAPPERS Tophat STAR MapSplice HPG Aligner BW RNA TTTCACCAGCCCAT Exon 0 Intron 0 Exon 1 TTTCACCAGCCCAT Reference Genome GTCCAAG CCGGTACCTTAG GCCATCCCAGGGCTAAAAGGTAAA Read GCCATCCCAGGGCTAAAAGGTAAA

4 OUTLINE HPG ALIGNER BW WORK FLOWS METAEXON STRUCTURE MULTI THREADED MPI EXPERIMENTAL RESULTS CONCLUSIONS AND FUTURE WORK

5 WORK FLOWS Speed Multi threaded HPG Aligner BW Work flows with several stages to exploit parallelism SSE instructions Sensitivity Metaexon structure Outperforms TopHat 2+Bowtie 2, Mapsplice & STAR in both throughput and sensitivity "Concurrent and accurate short read mapping on multicore platforms" H. Martínez, J. Tárraga, I. Medina, S. Barrachina, M. Castillo, J. Dopazo, E. S. Quintana Ortí IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015 Speed MPI HPG Aligner BW Improve speed running on several nodes Sensitivity Maintain the sensitivity with merged structures

6 WORK FLOWS 3 Work flows: Work flow 1 : Map reads Work flow 2 : Map single anchors Work flow 3 : Map incomplete mapped reads

7 WORK FLOWS WORK FLOW 1 5 stages, each operating on a collection of read batches : A) Read sequences from FastQ file and generate batches of reads to process B) Map reads using Burrows Wheeler transform C) Seeding unmapped and seek for Candidates Alignment Localization (CALs) D) Apply Smith Waterman to complete mappings, search splice junctions, and write to single anchor and hard clipping files E) Write alignments to BAM file

8 WORK FLOWS WORK FLOW 2 3 Stages: A) Read sequences from a single anchor file and generate batches of reads to process B) Complete mapping with metaexon structure. If no mapping possible, apply seeding, CALs, Smith Waterman and write to hard clipping file C) Write alignments to BAM file WORK FLOW 3 3 Stages: A) Read sequences from a hard clipping file and generate batches of reads to process B) Complete mappings with metaexon structure C) Write alignments to BAM file

9 METAEXON STRUCTURE Structure updated from the mapped reads in each work flow Exon0 Exon1 Exon2 Potential start of splice junction Chromosome vector V 1 Exon Chromosome vector Potential start of splice junction V Potential end of splice junction AVL Search O(log n) Insertion O(log n)

10 MULTI THREADED B16 Reader B13 Read queue B15 B BWT queue B12 B11 B10 B9 CAL queue B7 B6 B5 B3 2 B4 SWA queue B2 4 B8 3 Writer B1 C 3

11 MULTI THREADED B17 Read queue B22 Limit of read queue! B21 B20 B19 B16 1 B18 0 C 1 BWT queue CAL queue B15 B14 B13 B10 B9 B8 B7 2 B12 B6 Now, reader is a worker! SWA queue B5 B4 B3 4 B11 3 Writer B2 C 2

12 MULTI THREADED B19 Reader B19 Read queue B23 B22 B21 B BWT queue B18 B17 B16 B15 CAL queue B13 B12 B10 2 B11 SWA queue SWA queue is empty! 4 B14 3 C 3 B9 C 2 Now, writer is a worker!

13 MULTI THREADED Read file finished! B25 Read queue B30 B29 B28 B27 B26 1 B24 0 C 2 BWT queue CAL queue B23 B22 B21 B18 B17 B16 B15 2 B20 B14 Now, reader is a worker! SWA queue SWA queue is empty! 4 B19 3 C 3 B13 C 1 Now, writer is a worker!

14 MPI FastQ file of reads Slice 0 Slice 1 Slice 2 Slice 3 MPI Rank 0 MPI Rank 1 MPI Rank 2 MPI Rank 3 Slice N 1 Onesliceforeachnode MPI Rank N 1

15 MPI Node 0 splits the input file in slices, and sends the start and end position of its slice to each node Only one thread per MPI rank reads from input file Each MPI worker rank applies HPG Aligner BW to its own slice Each MPI worker rank builds its local metaexon, AVL structure, and buffer of alignments to store the output data MPI Rank r Work flow C 1 Each work flow executes on C threads

16 MPI MPI Rank 0 MPI Rank 1 MPI Rank N Writer MPI writer rank writes in the final file MPI Rank 2 MPI Rank 3 MPI Rank N 1 Alignments are sent to MPI writer rank when the buffer is full

17 MPI MPI Rank 0 MPI Rank 1 MPI Rank N Writer MPI writer rank writes in the final file MPI Rank 2 MPI Rank 3 MPI Rank N 1 In the same node, ONLY one thread calls MPI_Send Alignments are sent to MPI writer rank when the buffer is full

18 MPI When all MPI worker ranks complete the execution of either work flows 1 or 2, the local metaexon structures are merged in node 0 MPI Rank 0 MPI Rank 1 MPI Rank 2 Once the parallel merge is done, the result is broadcast from node 0 MPI Rank 3 MPI Rank N 1

19 MPI MPI Rank 0 Use minimum spanning tree for merge MPI Rank 1 MPI Rank 2 MPI Rank 3 MPI Rank 4 Merge 0 MPI Rank 5 MPI Rank 6 MPI Rank 7

20 MPI MPI Rank 0 Use minimum spanning tree for merge MPI Rank 1 MPI Rank 2 MPI Rank 3 MPI Rank 4 Merge 1 MPI Rank 5 MPI Rank 6 MPI Rank 7

21 MPI MPI Rank 0 Use minimum spanning tree for merge MPI Rank 1 MPI Rank 2 MPI Rank 3 MPI Rank 4 Merge 2 MPI Rank 5 MPI Rank 6 MPI Rank 7

22 MPI MPI Rank 0 MPI Rank 1 MPI Rank 2 MPI Rank 3 MPI Rank 4 Broadcast MPI Rank 5 MPI Rank 6 MPI Rank 7

23 EXPERIMENTAL RESULTS Hardware 12 nodes Two Intel Xeon CPU 2.40GHz (hexa core CPUs) 24GB of DDR3 RAM Connected via Infiniband QDR (Mellanox MTS3600 switch) Data Datasets simulated with Beers Two single end datasets of 80 and 5 million reads of 100 nts Mutation rate 0.1% Indel frequency 0.05%

24 EXPERIMENTAL RESULTS 14 Speed Up with 80 million reads of 100 nts Time (sec.) ,96 7,08 4 6,17 5,24 2 3,63 1 1, #Nodes Speed Up Ideal Speed Up

25 EXPERIMENTAL RESULTS Detailed Execution time (sec.) of the MPI HPG Aligner BW with 80 million reads of 100 nts #Nodes Work flow1 688,05 351,90 3,35 173,98 2,89 117,12 0,76 94,23 3,76 79,81 4,11 66,65 4,28 Merge 1 1,52 2,32 3,06 2,94 3,68 3,54 Work flow2 41,38 20,98 0,24 10,67 0,11 7,28 0,04 5,59 0,10 4,65 0,20 3,83 0,05 Merge 2 1,12 1,64 2,15 2,10 2,58 2,54 Work flow3 3,57 2,01 0,09 1,34 0,21 1,05 0,21 0,83 0,15 0,72 0,15 0,65 0,14 Merge 3 0,57 1,11 1,62 1,59 2,09 2,06

26 EXPERIMENTAL RESULTS Sensitivity of the MPI HPG Aligner BW with 5 million reads of 100 nts #Nodes Exon Reads (%) Configuration ,44 Merge 98,82 98,82 98,82 98,82 98,82 98,82 98,82 Without merge 98,82 98,82 98,82 98,82 98,82 98, ,34 3 2,16 Merge 87,62 88,03 87,67 87,28 87,03 86,75 86,54 Without merge 87,46 86,78 85,97 85,35 84,71 84,12 Merge 68,56 69,78 67,97 66,34 64,91 63,97 63,04 Without merge 68,03 65,79 63,48 61,73 59,92 58,24

27 EXPERIMENTAL RESULTS Sensitivity of the MPI HPG Aligner BW with 5 million reads of 100 nts #Nodes Exon Reads (%) Configuration Merge 45,48 48,12 44,62 40,98 39,19 36,76 35,58 >3 0,06 Without merge 43,23 40,41 37,98 35,16 33,01 32,08 All 100,00 Merge 95,64 95,76 95,63 95,51 95,42 95,34 95,27 Without merge 95,59 95,38 95,15 94,97 94,79 94,62

28 CONCLUSIONS AND FUTURE WORK Conclusions HPC4Genomics High sensitivity and specificity High speed process FUTURE WORK Multi mapper MPI framework CONTACT

29 QUESTIONS?

Concurrent and Accurate RNA Sequencing on Multicore Platforms

Concurrent and Accurate RNA Sequencing on Multicore Platforms Technical Report ICC 2013-03-01 Concurrent and Accurate RNA Sequencing on Multicore Platforms Héctor Martínez *, Joaquín Tárraga, Ignacio Medina, Sergio Barrachina *, Maribel Castillo *, Joaquín Dopazo,

More information

Mapping NGS reads for genomics studies

Mapping NGS reads for genomics studies Mapping NGS reads for genomics studies Valencia, 28-30 Sep 2015 BIER Alejandro Alemán aaleman@cipf.es Genomics Data Analysis CIBERER Where are we? Fastq Sequence preprocessing Fastq Alignment BAM Visualization

More information

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Anas Abu-Doleh 1,2, Erik Saule 1, Kamer Kaya 1 and Ümit V. Çatalyürek 1,2 1 Department of Biomedical Informatics 2 Department of Electrical

More information

Read Mapping. Slides by Carl Kingsford

Read Mapping. Slides by Carl Kingsford Read Mapping Slides by Carl Kingsford Bowtie Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg, Genome Biology

More information

GSNAP: Fast and SNP-tolerant detection of complex variants and splicing in short reads by Thomas D. Wu and Serban Nacu

GSNAP: Fast and SNP-tolerant detection of complex variants and splicing in short reads by Thomas D. Wu and Serban Nacu GSNAP: Fast and SNP-tolerant detection of complex variants and splicing in short reads by Thomas D. Wu and Serban Nacu Matt Huska Freie Universität Berlin Computational Methods for High-Throughput Omics

More information

Accelrys Pipeline Pilot and HP ProLiant servers

Accelrys Pipeline Pilot and HP ProLiant servers Accelrys Pipeline Pilot and HP ProLiant servers A performance overview Technical white paper Table of contents Introduction... 2 Accelrys Pipeline Pilot benchmarks on HP ProLiant servers... 2 NGS Collection

More information

Sequencing. Short Read Alignment. Sequencing. Paired-End Sequencing 6/10/2010. Tobias Rausch 7 th June 2010 WGS. ChIP-Seq. Applied Biosystems.

Sequencing. Short Read Alignment. Sequencing. Paired-End Sequencing 6/10/2010. Tobias Rausch 7 th June 2010 WGS. ChIP-Seq. Applied Biosystems. Sequencing Short Alignment Tobias Rausch 7 th June 2010 WGS RNA-Seq Exon Capture ChIP-Seq Sequencing Paired-End Sequencing Target genome Fragments Roche GS FLX Titanium Illumina Applied Biosystems SOLiD

More information

Using MPI One-sided Communication to Accelerate Bioinformatics Applications

Using MPI One-sided Communication to Accelerate Bioinformatics Applications Using MPI One-sided Communication to Accelerate Bioinformatics Applications Hao Wang (hwang121@vt.edu) Department of Computer Science, Virginia Tech Next-Generation Sequencing (NGS) Data Analysis NGS Data

More information

Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014

Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014 Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014 Deciphering the information contained in DNA sequences began decades ago since the time of Sanger sequencing.

More information

Short Read Alignment. Mapping Reads to a Reference

Short Read Alignment. Mapping Reads to a Reference Short Read Alignment Mapping Reads to a Reference Brandi Cantarel, Ph.D. & Daehwan Kim, Ph.D. BICF 05/2018 Introduction to Mapping Short Read Aligners DNA vs RNA Alignment Quality Pitfalls and Improvements

More information

Aligners. J Fass 21 June 2017

Aligners. J Fass 21 June 2017 Aligners J Fass 21 June 2017 Definitions Assembly: I ve found the shredded remains of an important document; put it back together! UC Davis Genome Center Bioinformatics Core J Fass Aligners 2017-06-21

More information

RNA-seq. Manpreet S. Katari

RNA-seq. Manpreet S. Katari RNA-seq Manpreet S. Katari Evolution of Sequence Technology Normalizing the Data RPKM (Reads per Kilobase of exons per million reads) Score = R NT R = # of unique reads for the gene N = Size of the gene

More information

Inexact Sequence Mapping Study Cases: Hybrid GPU Computing and Memory Demanding Indexes

Inexact Sequence Mapping Study Cases: Hybrid GPU Computing and Memory Demanding Indexes Inexact Sequence Mapping Study Cases: Hybrid GPU Computing and Memory Demanding Indexes José Salavert 1, Andrés Tomás 1, Ignacio Medina 2, and Ignacio Blanquer 1 1 GRyCAP department of I3M, Universitat

More information

NGS Analysis Using Galaxy

NGS Analysis Using Galaxy NGS Analysis Using Galaxy Sequences and Alignment Format Galaxy overview and Interface Get;ng Data in Galaxy Analyzing Data in Galaxy Quality Control Mapping Data History and workflow Galaxy Exercises

More information

RNA-seq Data Analysis

RNA-seq Data Analysis Seyed Abolfazl Motahari RNA-seq Data Analysis Basics Next Generation Sequencing Biological Samples Data Cost Data Volume Big Data Analysis in Biology تحلیل داده ها کنترل سیستمهای بیولوژیکی تشخیص بیماریها

More information

all M 2M_gt_15 2M_8_15 2M_1_7 gt_2m TopHat2

all M 2M_gt_15 2M_8_15 2M_1_7 gt_2m TopHat2 Pairs processed per second 6, 4, 2, 6, 4, 2, 6, 4, 2, 6, 4, 2, 6, 4, 2, 6, 4, 2, 72,318 418 1,666 49,495 21,123 69,984 35,694 1,9 71,538 3,5 17,381 61,223 69,39 55 19,579 44,79 65,126 96 5,115 33,6 61,787

More information

Introduction to Read Alignment. UCD Genome Center Bioinformatics Core Tuesday 15 September 2015

Introduction to Read Alignment. UCD Genome Center Bioinformatics Core Tuesday 15 September 2015 Introduction to Read Alignment UCD Genome Center Bioinformatics Core Tuesday 15 September 2015 From reads to molecules Why align? Individual A Individual B ATGATAGCATCGTCGGGTGTCTGCTCAATAATAGTGCCGTATCATGCTGGTGTTATAATCGCCGCATGACATGATCAATGG

More information

Read Mapping and Assembly

Read Mapping and Assembly Statistical Bioinformatics: Read Mapping and Assembly Stefan Seemann seemann@rth.dk University of Copenhagen April 9th 2019 Why sequencing? Why sequencing? Which organism does the sample comes from? Assembling

More information

Identiyfing splice junctions from RNA-Seq data

Identiyfing splice junctions from RNA-Seq data Identiyfing splice junctions from RNA-Seq data Joseph K. Pickrell pickrell@uchicago.edu October 4, 2010 Contents 1 Motivation 2 2 Identification of potential junction-spanning reads 2 3 Calling splice

More information

Long Read RNA-seq Mapper

Long Read RNA-seq Mapper UNIVERSITY OF ZAGREB FACULTY OF ELECTRICAL ENGENEERING AND COMPUTING MASTER THESIS no. 1005 Long Read RNA-seq Mapper Josip Marić Zagreb, February 2015. Table of Contents 1. Introduction... 1 2. RNA Sequencing...

More information

Read mapping with BWA and BOWTIE

Read mapping with BWA and BOWTIE Read mapping with BWA and BOWTIE Before We Start In order to save a lot of typing, and to allow us some flexibility in designing these courses, we will establish a UNIX shell variable BASE to point to

More information

Bioinformatics in next generation sequencing projects

Bioinformatics in next generation sequencing projects Bioinformatics in next generation sequencing projects Rickard Sandberg Assistant Professor Department of Cell and Molecular Biology Karolinska Institutet March 2011 Once sequenced the problem becomes computational

More information

Under the Hood of Alignment Algorithms for NGS Researchers

Under the Hood of Alignment Algorithms for NGS Researchers Under the Hood of Alignment Algorithms for NGS Researchers April 16, 2014 Gabe Rudy VP of Product Development Golden Helix Questions during the presentation Use the Questions pane in your GoToWebinar window

More information

GPUBwa -Parallelization of Burrows Wheeler Aligner using Graphical Processing Units

GPUBwa -Parallelization of Burrows Wheeler Aligner using Graphical Processing Units GPUBwa -Parallelization of Burrows Wheeler Aligner using Graphical Processing Units Abstract A very popular discipline in bioinformatics is Next-Generation Sequencing (NGS) or DNA sequencing. It specifies

More information

Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA Alignment Algorithm

Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA Alignment Algorithm Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA Alignment Algorithm Nauman Ahmed, Vlad-Mihai Sima, Ernst Houtgast, Koen Bertels and Zaid Al-Ars Computer Engineering Lab, Delft University

More information

Galaxy Platform For NGS Data Analyses

Galaxy Platform For NGS Data Analyses Galaxy Platform For NGS Data Analyses Weihong Yan wyan@chem.ucla.edu Collaboratory Web Site http://qcb.ucla.edu/collaboratory Collaboratory Workshops Workshop Outline ü Day 1 UCLA galaxy and user account

More information

Multithreaded FPGA Acceleration of DNA Sequence Mapping

Multithreaded FPGA Acceleration of DNA Sequence Mapping Multithreaded FPGA Acceleration of DNA Sequence Mapping Edward B. Fernandez, Walid A. Najjar, Stefano Lonardi University of California Riverside Riverside, USA {efernand,najjar,lonardi}@cs.ucr.edu Jason

More information

INTRODUCING NVBIO: HIGH PERFORMANCE PRIMITIVES FOR COMPUTATIONAL GENOMICS. Jonathan Cohen, NVIDIA Nuno Subtil, NVIDIA Jacopo Pantaleoni, NVIDIA

INTRODUCING NVBIO: HIGH PERFORMANCE PRIMITIVES FOR COMPUTATIONAL GENOMICS. Jonathan Cohen, NVIDIA Nuno Subtil, NVIDIA Jacopo Pantaleoni, NVIDIA INTRODUCING NVBIO: HIGH PERFORMANCE PRIMITIVES FOR COMPUTATIONAL GENOMICS Jonathan Cohen, NVIDIA Nuno Subtil, NVIDIA Jacopo Pantaleoni, NVIDIA SEQUENCING AND MOORE S LAW Slide courtesy Illumina DRAM I/F

More information

Illumina Next Generation Sequencing Data analysis

Illumina Next Generation Sequencing Data analysis Illumina Next Generation Sequencing Data analysis Chiara Dal Fiume Sr Field Application Scientist Italy 2010 Illumina, Inc. All rights reserved. Illumina, illuminadx, Solexa, Making Sense Out of Life,

More information

Bioinformatics Framework

Bioinformatics Framework Persona: A High-Performance Bioinformatics Framework Stuart Byma 1, Sam Whitlock 1, Laura Flueratoru 2, Ethan Tseng 3, Christos Kozyrakis 4, Edouard Bugnion 1, James Larus 1 EPFL 1, U. Polytehnica of Bucharest

More information

Sequence mapping and assembly. Alistair Ward - Boston College

Sequence mapping and assembly. Alistair Ward - Boston College Sequence mapping and assembly Alistair Ward - Boston College Sequenced a genome? Fragmented a genome -> DNA library PCR amplification Sequence reads (ends of DNA fragment for mate pairs) We no longer have

More information

Exploiting Task-Parallelism on GPU Clusters via OmpSs and rcuda Virtualization

Exploiting Task-Parallelism on GPU Clusters via OmpSs and rcuda Virtualization Exploiting Task-Parallelism on Clusters via Adrián Castelló, Rafael Mayo, Judit Planas, Enrique S. Quintana-Ortí RePara 2015, August Helsinki, Finland Exploiting Task-Parallelism on Clusters via Power/energy/utilization

More information

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg High-throughput sequencing: Alignment and related topic Simon Anders EMBL Heidelberg Established platforms HTS Platforms Illumina HiSeq, ABI SOLiD, Roche 454 Newcomers: Benchtop machines: Illumina MiSeq,

More information

A Fast Read Alignment Method based on Seed-and-Vote For Next GenerationSequencing

A Fast Read Alignment Method based on Seed-and-Vote For Next GenerationSequencing A Fast Read Alignment Method based on Seed-and-Vote For Next GenerationSequencing Song Liu 1,2, Yi Wang 3, Fei Wang 1,2 * 1 Shanghai Key Lab of Intelligent Information Processing, Shanghai, China. 2 School

More information

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg High-throughput sequencing: Alignment and related topic Simon Anders EMBL Heidelberg Established platforms HTS Platforms Illumina HiSeq, ABI SOLiD, Roche 454 Newcomers: Benchtop machines 454 GS Junior,

More information

SpliceTAPyR - An efficient method for transcriptome alignment

SpliceTAPyR - An efficient method for transcriptome alignment International Journal of Foundations of Computer Science c World Scientific Publishing Company SpliceTAPyR - An efficient method for transcriptome alignment Andreia Sofia Teixeira IDSS Lab, INESC-ID /

More information

Aligners. J Fass 23 August 2017

Aligners. J Fass 23 August 2017 Aligners J Fass 23 August 2017 Definitions Assembly: I ve found the shredded remains of an important document; put it back together! UC Davis Genome Center Bioinformatics Core J Fass Aligners 2017-08-23

More information

High-throughout sequencing and using short-read aligners. Simon Anders

High-throughout sequencing and using short-read aligners. Simon Anders High-throughout sequencing and using short-read aligners Simon Anders High-throughput sequencing (HTS) Sequencing millions of short DNA fragments in parallel. a.k.a.: next-generation sequencing (NGS) massively-parallel

More information

Short Read Alignment Algorithms

Short Read Alignment Algorithms Short Read Alignment Algorithms Raluca Gordân Department of Biostatistics and Bioinformatics Department of Computer Science Department of Molecular Genetics and Microbiology Center for Genomic and Computational

More information

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Matthew Koop, Wei Huang, Ahbinav Vishnu, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of

More information

NEXT Generation sequencers have a very high demand

NEXT Generation sequencers have a very high demand 1358 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016 Hardware-Acceleration of Short-Read Alignment Based on the Burrows-Wheeler Transform Hasitha Muthumala Waidyasooriya,

More information

Resolving Load Balancing Issues in BWA on NUMA Multicore Architectures

Resolving Load Balancing Issues in BWA on NUMA Multicore Architectures Resolving Load Balancing Issues in BWA on NUMA Multicore Architectures Charlotte Herzeel 1,4, Thomas J. Ashby 1,4 Pascal Costanza 3,4, and Wolfgang De Meuter 2 1 imec, Kapeldreef 75, B-3001 Leuven, Belgium,

More information

Halvade: scalable sequence analysis with MapReduce

Halvade: scalable sequence analysis with MapReduce Bioinformatics Advance Access published March 26, 2015 Halvade: scalable sequence analysis with MapReduce Dries Decap 1,5, Joke Reumers 2,5, Charlotte Herzeel 3,5, Pascal Costanza, 4,5 and Jan Fostier

More information

Ensembl RNASeq Practical. Overview

Ensembl RNASeq Practical. Overview Ensembl RNASeq Practical The aim of this practical session is to use BWA to align 2 lanes of Zebrafish paired end Illumina RNASeq reads to chromosome 12 of the zebrafish ZV9 assembly. We have restricted

More information

Circ-Seq User Guide. A comprehensive bioinformatics workflow for circular RNA detection from transcriptome sequencing data

Circ-Seq User Guide. A comprehensive bioinformatics workflow for circular RNA detection from transcriptome sequencing data Circ-Seq User Guide A comprehensive bioinformatics workflow for circular RNA detection from transcriptome sequencing data 02/03/2016 Table of Contents Introduction... 2 Local Installation to your system...

More information

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Matthew Koop 1 Miao Luo D. K. Panda matthew.koop@nasa.gov {luom, panda}@cse.ohio-state.edu 1 NASA Center for Computational

More information

Super-Fast Genome BWA-Bam-Sort on GLAD

Super-Fast Genome BWA-Bam-Sort on GLAD 1 Hututa Technologies Limited Super-Fast Genome BWA-Bam-Sort on GLAD Zhiqiang Ma, Wangjun Lv and Lin Gu May 2016 1 2 Executive Summary Aligning the sequenced reads in FASTQ files and converting the resulted

More information

Lecture 12. Short read aligners

Lecture 12. Short read aligners Lecture 12 Short read aligners Ebola reference genome We will align ebola sequencing data against the 1976 Mayinga reference genome. We will hold the reference gnome and all indices: mkdir -p ~/reference/ebola

More information

BGGN-213: FOUNDATIONS OF BIOINFORMATICS (Lecture 14)

BGGN-213: FOUNDATIONS OF BIOINFORMATICS (Lecture 14) BGGN-213: FOUNDATIONS OF BIOINFORMATICS (Lecture 14) Genome Informatics (Part 1) https://bioboot.github.io/bggn213_f17/lectures/#14 Dr. Barry Grant Nov 2017 Overview: The purpose of this lab session is

More information

High-performance short sequence alignment with GPU acceleration

High-performance short sequence alignment with GPU acceleration Distrib Parallel Databases (2012) 30:385 399 DOI 10.1007/s10619-012-7099-x High-performance short sequence alignment with GPU acceleration Mian Lu Yuwei Tan Ge Bai Qiong Luo Published online: 10 August

More information

Welcome to MAPHiTS (Mapping Analysis Pipeline for High-Throughput Sequences) tutorial page.

Welcome to MAPHiTS (Mapping Analysis Pipeline for High-Throughput Sequences) tutorial page. Welcome to MAPHiTS (Mapping Analysis Pipeline for High-Throughput Sequences) tutorial page. In this page you will learn to use the tools of the MAPHiTS suite. A little advice before starting : rename your

More information

Dr. Gabriela Salinas Dr. Orr Shomroni Kaamini Rhaithata

Dr. Gabriela Salinas Dr. Orr Shomroni Kaamini Rhaithata Analysis of RNA sequencing data sets using the Galaxy environment Dr. Gabriela Salinas Dr. Orr Shomroni Kaamini Rhaithata Microarray and Deep-sequencing core facility 30.10.2017 RNA-seq workflow I Hypothesis

More information

Rsubread package: high-performance read alignment, quantification and mutation discovery

Rsubread package: high-performance read alignment, quantification and mutation discovery Rsubread package: high-performance read alignment, quantification and mutation discovery Wei Shi 14 September 2015 1 Introduction This vignette provides a brief description to the Rsubread package. For

More information

SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching

SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching Ilya Y. Zhbannikov 1, Samuel S. Hunter 1,2, Matthew L. Settles 1,2, and James

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

A GPU Algorithm for Comparing Nucleotide Histograms

A GPU Algorithm for Comparing Nucleotide Histograms A GPU Algorithm for Comparing Nucleotide Histograms Adrienne Breland Harpreet Singh Omid Tutakhil Mike Needham Dickson Luong Grant Hennig Roger Hoang Torborn Loken Sergiu M. Dascalu Frederick C. Harris,

More information

Aligning reads: tools and theory

Aligning reads: tools and theory Aligning reads: tools and theory Genome Sequence read :LM-Mel-14neg :LM-Mel-42neg :LM-Mel-14neg :LM-Mel-14pos :LM-Mel-42neg :LM-Mel-14neg :LM-Mel-42neg :LM-Mel-14neg chrx: 152139280 152139290 152139300

More information

Genomic Files. University of Massachusetts Medical School. October, 2015

Genomic Files. University of Massachusetts Medical School. October, 2015 .. Genomic Files University of Massachusetts Medical School October, 2015 2 / 55. A Typical Deep-Sequencing Workflow Samples Fastq Files Fastq Files Sam / Bam Files Various files Deep Sequencing Further

More information

Supplementary Information. Detecting and annotating genetic variations using the HugeSeq pipeline

Supplementary Information. Detecting and annotating genetic variations using the HugeSeq pipeline Supplementary Information Detecting and annotating genetic variations using the HugeSeq pipeline Hugo Y. K. Lam 1,#, Cuiping Pan 1, Michael J. Clark 1, Phil Lacroute 1, Rui Chen 1, Rajini Haraksingh 1,

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

RNA-Seq in Galaxy: Tuxedo protocol. Igor Makunin, UQ RCC, QCIF

RNA-Seq in Galaxy: Tuxedo protocol. Igor Makunin, UQ RCC, QCIF RNA-Seq in Galaxy: Tuxedo protocol Igor Makunin, UQ RCC, QCIF Acknowledgments Genomics Virtual Lab: gvl.org.au Galaxy for tutorials: galaxy-tut.genome.edu.au Galaxy Australia: galaxy-aust.genome.edu.au

More information

ELPREP PERFORMANCE ACROSS PROGRAMMING LANGUAGES PASCAL COSTANZA CHARLOTTE HERZEEL FOSDEM, BRUSSELS, BELGIUM, FEBRUARY 3, 2018

ELPREP PERFORMANCE ACROSS PROGRAMMING LANGUAGES PASCAL COSTANZA CHARLOTTE HERZEEL FOSDEM, BRUSSELS, BELGIUM, FEBRUARY 3, 2018 ELPREP PERFORMANCE ACROSS PROGRAMMING LANGUAGES PASCAL COSTANZA CHARLOTTE HERZEEL FOSDEM, BRUSSELS, BELGIUM, FEBRUARY 3, 2018 USA SAN FRANCISCO USA ORLANDO BELGIUM - HQ LEUVEN THE NETHERLANDS EINDHOVEN

More information

Read Naming Format Specification

Read Naming Format Specification Read Naming Format Specification Karel Břinda Valentina Boeva Gregory Kucherov Version 0.1.3 (4 August 2015) Abstract This document provides a standard for naming simulated Next-Generation Sequencing (Ngs)

More information

GPU Accelerated API for Alignment of Genomics Sequencing Data

GPU Accelerated API for Alignment of Genomics Sequencing Data GPU Accelerated API for Alignment of Genomics Sequencing Data Nauman Ahmed, Hamid Mushtaq, Koen Bertels and Zaid Al-Ars Computer Engineering Laboratory, Delft University of Technology, Delft, The Netherlands

More information

FPGA Acceleration of Short Read Alignment

FPGA Acceleration of Short Read Alignment TECHNICAL REPORT 1 FPGA Acceleration of Short Read Alignment Nathaniel McVicar, Akina Hoshino, Anna La Torre, Thomas A. Reh, Walter L. Ruzzo and Scott Hauck Abstract Aligning millions of short DNA or RNA

More information

Genomic Files. University of Massachusetts Medical School. October, 2014

Genomic Files. University of Massachusetts Medical School. October, 2014 .. Genomic Files University of Massachusetts Medical School October, 2014 2 / 39. A Typical Deep-Sequencing Workflow Samples Fastq Files Fastq Files Sam / Bam Files Various files Deep Sequencing Further

More information

Achieving High Throughput Sequencing with Graphics Processing Units

Achieving High Throughput Sequencing with Graphics Processing Units Achieving High Throughput Sequencing with Graphics Processing Units Su Chen 1, Chaochao Zhang 1, Feng Shen 1, Ling Bai 1, Hai Jiang 1, and Damir Herman 2 1 Department of Computer Science, Arkansas State

More information

Sequence Analysis Pipeline

Sequence Analysis Pipeline Sequence Analysis Pipeline Transcript fragments 1. PREPROCESSING 2. ASSEMBLY (today) Removal of contaminants, vector, adaptors, etc Put overlapping sequence together and calculate bigger sequences 3. Analysis/Annotation

More information

Efficient Alignment of Next Generation Sequencing Data Using MapReduce on the Cloud

Efficient Alignment of Next Generation Sequencing Data Using MapReduce on the Cloud 212 Cairo International Biomedical Engineering Conference (CIBEC) Cairo, Egypt, December 2-21, 212 Efficient Alignment of Next Generation Sequencing Data Using MapReduce on the Cloud Rawan AlSaad and Qutaibah

More information

Using the Galaxy Local Bioinformatics Cloud at CARC

Using the Galaxy Local Bioinformatics Cloud at CARC Using the Galaxy Local Bioinformatics Cloud at CARC Lijing Bu Sr. Research Scientist Bioinformatics Specialist Center for Evolutionary and Theoretical Immunology (CETI) Department of Biology, University

More information

Rsubread package: high-performance read alignment, quantification and mutation discovery

Rsubread package: high-performance read alignment, quantification and mutation discovery Rsubread package: high-performance read alignment, quantification and mutation discovery Wei Shi 14 September 2015 1 Introduction This vignette provides a brief description to the Rsubread package. For

More information

TP RNA-seq : Differential expression analysis

TP RNA-seq : Differential expression analysis TP RNA-seq : Differential expression analysis Overview of RNA-seq analysis Fusion transcripts detection Differential expresssion Gene level RNA-seq Transcript level Transcripts and isoforms detection 2

More information

Benchmarking of RNA-seq aligners

Benchmarking of RNA-seq aligners Lecture 17 RNA-seq Alignment STAR Benchmarking of RNA-seq aligners Benchmarking of RNA-seq aligners Benchmarking of RNA-seq aligners Benchmarking of RNA-seq aligners Based on this analysis the most reliable

More information

Package Rsubread. July 21, 2013

Package Rsubread. July 21, 2013 Package Rsubread July 21, 2013 Type Package Title Rsubread: an R package for the alignment, summarization and analyses of next-generation sequencing data Version 1.10.5 Author Wei Shi and Yang Liao with

More information

Mapping Reads to Reference Genome

Mapping Reads to Reference Genome Mapping Reads to Reference Genome DNA carries genetic information DNA is a double helix of two complementary strands formed by four nucleotides (bases): Adenine, Cytosine, Guanine and Thymine 2 of 31 Gene

More information

Easy visualization of the read coverage using the CoverageView package

Easy visualization of the read coverage using the CoverageView package Easy visualization of the read coverage using the CoverageView package Ernesto Lowy European Bioinformatics Institute EMBL June 13, 2018 > options(width=40) > library(coverageview) 1 Introduction This

More information

MICA: A fast short-read aligner that takes full advantage of Many Integrated Core Architecture (MIC)

MICA: A fast short-read aligner that takes full advantage of Many Integrated Core Architecture (MIC) RESEARCH Open Access MICA: A fast short-read aligner that takes full advantage of Many Integrated Core Architecture (MIC) Ruibang Luo 1, Jeanno Cheung 1, Edward Wu 1, Heng Wang 1,2, Sze-Hang Chan 1, Wai-Chun

More information

Taller práctico sobre uso, manejo y gestión de recursos genómicos de abril de 2013 Assembling long-read Transcriptomics

Taller práctico sobre uso, manejo y gestión de recursos genómicos de abril de 2013 Assembling long-read Transcriptomics Taller práctico sobre uso, manejo y gestión de recursos genómicos 22-24 de abril de 2013 Assembling long-read Transcriptomics Rocío Bautista Outline Introduction How assembly Tools assembling long-read

More information

Kart: a divide-and-conquer algorithm for NGS read alignment

Kart: a divide-and-conquer algorithm for NGS read alignment Bioinformatics, 33(15), 2017, 2281 2287 doi: 10.1093/bioinformatics/btx189 Advance Access Publication Date: 4 April 2017 Original Paper Sequence analysis Kart: a divide-and-conquer algorithm for NGS read

More information

Speeding up the execution of numerical computations and simulations with rcuda José Duato

Speeding up the execution of numerical computations and simulations with rcuda José Duato Speeding up the execution of numerical computations and simulations with rcuda José Duato Universidad Politécnica de Valencia Spain Outline 1. Introduction to GPU computing 2. What is remote GPU virtualization?

More information

Our typical RNA quantification pipeline

Our typical RNA quantification pipeline RNA-Seq primer Our typical RNA quantification pipeline Upload your sequence data (fastq) Align to the ribosome (Bow>e) Align remaining reads to genome (TopHat) or transcriptome (RSEM) Make report of quality

More information

Next generation sequencing: assembly by mapping reads. Laurent Falquet, Vital-IT Helsinki, June 3, 2010

Next generation sequencing: assembly by mapping reads. Laurent Falquet, Vital-IT Helsinki, June 3, 2010 Next generation sequencing: assembly by mapping reads Laurent Falquet, Vital-IT Helsinki, June 3, 2010 Overview What is assembly by mapping? Methods BWT File formats Tools Issues Visualization Discussion

More information

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work Using Non-blocking Operations in HPC to Reduce Execution Times David Buettner, Julian Kunkel, Thomas Ludwig Euro PVM/MPI September 8th, 2009 Outline 1 Motivation 2 Theory of a non-blocking benchmark 3

More information

Hardware Acceleration of Genetic Sequence Alignment

Hardware Acceleration of Genetic Sequence Alignment Hardware Acceleration of Genetic Sequence Alignment J. Arram 1,K.H.Tsoi 1, Wayne Luk 1,andP.Jiang 2 1 Department of Computing, Imperial College London, United Kingdom 2 Department of Chemical Pathology,

More information

Package Rbowtie. January 21, 2019

Package Rbowtie. January 21, 2019 Type Package Title R bowtie wrapper Version 1.23.1 Date 2019-01-17 Package Rbowtie January 21, 2019 Author Florian Hahne, Anita Lerch, Michael B Stadler Maintainer Michael Stadler

More information

Parallel Mapping Approaches for GNUMAP

Parallel Mapping Approaches for GNUMAP 2011 IEEE International Parallel & Distributed Processing Symposium Parallel Mapping Approaches for GNUMAP Nathan L. Clement, Mark J. Clement, Quinn Snell and W. Evan Johnson Department of Computer Science

More information

Tiling Assembly for Annotation-independent Novel Gene Discovery

Tiling Assembly for Annotation-independent Novel Gene Discovery Tiling Assembly for Annotation-independent Novel Gene Discovery By Jennifer Lopez and Kenneth Watanabe Last edited on September 7, 2015 by Kenneth Watanabe The following procedure explains how to run the

More information

JULIA ENABLED COMPUTATION OF MOLECULAR LIBRARY COMPLEXITY IN DNA SEQUENCING

JULIA ENABLED COMPUTATION OF MOLECULAR LIBRARY COMPLEXITY IN DNA SEQUENCING JULIA ENABLED COMPUTATION OF MOLECULAR LIBRARY COMPLEXITY IN DNA SEQUENCING Larson Hogstrom, Mukarram Tahir, Andres Hasfura Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 18.337/6.338

More information

Latency Masking Threads on FPGAs

Latency Masking Threads on FPGAs Latency Masking Threads on FPGAs Walid Najjar UC Riverside & Jacquard Computing Inc. Credits } Edward B. Fernandez (UCR) } Dr. Jason Villarreal (Jacquard Computing) } Adrian Park (Jacquard Computing) }

More information

IMOS: improved Meta-aligner and Minimap2 On Spark

IMOS: improved Meta-aligner and Minimap2 On Spark Hadadian Nejad Yousefi et al. BMC Bioinformatics (2019) 20:51 https://doi.org/10.1186/s12859-018-2592-5 SOFTWARE Open Access IMOS: improved Meta-aligner and Minimap2 On Spark Mostafa Hadadian Nejad Yousefi,

More information

Indexing Graphs for Path Queries with Applications in Genome Research

Indexing Graphs for Path Queries with Applications in Genome Research IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1 Indexing Graphs for Path Queries with Applications in Genome Research Jouni Sirén, Niko Välimäki, Veli Mäkinen Abstract We propose a

More information

LS-DYNA Performance Benchmark and Profiling. October 2017

LS-DYNA Performance Benchmark and Profiling. October 2017 LS-DYNA Performance Benchmark and Profiling October 2017 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: LSTC, Huawei, Mellanox Compute resource

More information

Supplementary Figure 1. Fast read-mapping algorithm of BrowserGenome.

Supplementary Figure 1. Fast read-mapping algorithm of BrowserGenome. Supplementary Figure 1 Fast read-mapping algorithm of BrowserGenome. (a) Indexing strategy: The genome sequence of interest is divided into non-overlapping 12-mers. A Hook table is generated that contains

More information

Solving Dense Linear Systems on Graphics Processors

Solving Dense Linear Systems on Graphics Processors Solving Dense Linear Systems on Graphics Processors Sergio Barrachina Maribel Castillo Francisco Igual Rafael Mayo Enrique S. Quintana-Ortí High Performance Computing & Architectures Group Universidad

More information

Data Preprocessing. Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis

Data Preprocessing. Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis Data Preprocessing Next Generation Sequencing analysis DTU Bioinformatics Generalized NGS analysis Data size Application Assembly: Compare Raw Pre- specific: Question Alignment / samples / Answer? reads

More information

The Burrows-Wheeler Transform and Bioinformatics. J. Matthew Holt April 1st, 2015

The Burrows-Wheeler Transform and Bioinformatics. J. Matthew Holt April 1st, 2015 The Burrows-Wheeler Transform and Bioinformatics J. Matthew Holt April 1st, 2015 Outline Recall Suffix Arrays The Burrows-Wheeler Transform The FM-index Pattern Matching Multi-string BWTs Merge Algorithms

More information

Subread/Rsubread Users Guide

Subread/Rsubread Users Guide Subread/Rsubread Users Guide Rsubread v1.32.3/subread v1.6.3 25 February 2019 Wei Shi and Yang Liao Bioinformatics Division The Walter and Eliza Hall Institute of Medical Research The University of Melbourne

More information

Colorado State University Bioinformatics Algorithms Assignment 6: Analysis of High- Throughput Biological Data Hamidreza Chitsaz, Ali Sharifi- Zarchi

Colorado State University Bioinformatics Algorithms Assignment 6: Analysis of High- Throughput Biological Data Hamidreza Chitsaz, Ali Sharifi- Zarchi Colorado State University Bioinformatics Algorithms Assignment 6: Analysis of High- Throughput Biological Data Hamidreza Chitsaz, Ali Sharifi- Zarchi Although a little- bit long, this is an easy exercise

More information

Resequencing and Mapping. Andreas Gisel Inernational Institute of Tropical Agriculture (IITA) Ibadan, Nigeria

Resequencing and Mapping. Andreas Gisel Inernational Institute of Tropical Agriculture (IITA) Ibadan, Nigeria Resequencing and Mapping Andreas Gisel Inernational Institute of Tropical Agriculture (IITA) Ibadan, Nigeria The Principle of Mapping reads good, ood_, d_mo, morn, orni, ning, ing_, g_be, beau, auti, utif,

More information

UMass High Performance Computing Center

UMass High Performance Computing Center UMass High Performance Computing Center University of Massachusetts Medical School February, 2019 Challenges of Genomic Data 2 / 93 It is getting easier and cheaper to produce bigger genomic data every

More information