Processor (multi-cycle)

Size: px
Start display at page:

Download "Processor (multi-cycle)"

Transcription

1 CS359: Computer Architecture Processor (multi-cycle) Yanyan Shen Department of Computer Science and Engineering

2 Five Instruction Steps ) Instruction Fetch ) Instruction Decode and Register Fetch 3) R-type Instruction Execution, /Write Address Computation, Branch Completion, or Jump Completion 4) Access, Write Completion or R-type Instruction Completion 5) Completion (Write Back) INSTRUCTIONS TAKE FROM 3-5 CYCLES!

3 RTL for Instructions Common Steps: Instr fetch IR = [PC]; PC Updating PC = PC + 4; Decode and Register reading A = Reg[IR[5-]]; B = Reg[IR[-6]]; Instruction Dependent operation 3

4 RTL Summary Step R-type Mem Ref Branch Jump Instr fetch Decode Execute Out = A op B; access Writeback IR = [PC]; PC = PC + 4; A = Reg[IR[5-]]; B = Reg[IR[-6]]; Out = PC +(sign-extend(ir[5-])<< ); Reg[IR[5 -]] = Out; Out = A + sign-extend (IR[5-]); MDR = [Out]; or [Out] = B; Reg[IR[-6]] = MDR; if (A==B) PC = Out; PC = PC[3-8] (IR[5- ] << ); 4

5 Step : Instruction Fetch Use PC to get instruction from the memory and put it in the Instruction Register Increment the PC by 4 and put the result back in the PC Can be described succinctly using the RTL "Register- Transfer Language IR = [PC]; PC = PC + 4; Can we figure out the values of the control signals? What is the advantage of updating the PC now? 6

6 Datapath Activity During Instruction Fetch Cond IorD Mem MemWrite MemtoReg IRWrite PCSource Op Control SrcB SrcA RegWrite RegDst PC Address Data (Instr. or Data) IR MDR Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out 7

7 Fetch Control Signals Settings Unless otherwise assigned Start,IRWrite, MemWrite,RegWrite= others=x IorD= Instr Mem;IRWrite Fetch SrcA= srcb= PCSource,Op= 8

8 Step : Instruction Decode and Register Fetch Don t know what the instruction is yet, so can only registers rs and rt in case we need them Compute the branch address in case the instruction is a branch The RTL: A = Reg[IR[5-]]; B = Reg[IR[-6]]; Out = PC+(sign-extend(IR[5-])<< ); Note we aren't setting any control lines based on the instruction (since we don t know what it is (the control logic is busy "decoding" the op code bits)) 9

9 Datapath Activity During Instruction Decode PC Address Data (Instr. or Data) Cond IorD Mem MemWrite MemtoReg IRWrite IR MDR PCSource Op Control SrcB SrcA RegWrite RegDst Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out

10 Decode Control Signals Settings Unless otherwise assigned Start,IRWrite, MemWrite,RegWrite= others=x IorD= Mem;IRWrite SrcA= srcb= PCSource,Op= Instr Fetch Decode SrcA= SrcB= Op= Cond=

11 Step 3 Instruction Dependent Operations is performing one of four functions, based on instruction type reference (lw and sw): Out = A + sign-extend(ir[5-]); R-type: Out = A op B; Branch: if (A==B) PC = Out; Jump: PC = PC[3-8] (IR[5-] << );

12 Datapath Activity During lw & sw Execute Cond IorD Mem MemWrite MemtoReg IRWrite PCSource Op Control SrcB SrcA RegWrite RegDst PC Address Data (Instr. or Data) IR MDR Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out 3

13 Datapath Activity During R-type Execute Cond IorD Mem MemWrite MemtoReg IRWrite PCSource Op Control SrcB SrcA RegWrite RegDst PC Address Data (Instr. or Data) IR MDR Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out 4

14 Datapath Activity During beq Execute Cond IorD Mem MemWrite MemtoReg IRWrite PCSource Op Control SrcB SrcA RegWrite RegDst PC Address Data (Instr. or Data) IR MDR Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out 5

15 Datapath Activity During j Execute Cond IorD Mem MemWrite MemtoReg IRWrite PCSource Op Control SrcB SrcA RegWrite RegDst PC Address Data (Instr. or Data) IR MDR Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out 6

16 Execute Control Signals Settings Unless otherwise assigned Start,IRWrite, MemWrite,RegWrite= others=x IorD= Mem;IRWrite SrcA= srcb= PCSource,Op= Instr Fetch Decode SrcA= SrcB= Op= Cond= SrcA= SrcB= Op= Cond= Execute SrcA= SrcB= Op= Cond= SrcA= SrcB= Op= PCSource= Cond PCSource= 7

17 Step 4 (also instruction dependent) reference: MDR = [Out]; -- lw or [Out] = B; -- sw R-type instruction completion Reg[IR[5-]] = Out; Remember, the register write actually takes place at the end of the cycle on the clock edge 8

18 Datapath Activity During lw Access Cond IorD Mem MemWrite MemtoReg IRWrite PCSource Op Control SrcB SrcA RegWrite RegDst PC Address Data (Instr. or Data) IR MDR Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out 9

19 Datapath Activity During sw Access Cond IorD Mem MemWrite MemtoReg IRWrite PCSource Op Control SrcB SrcA RegWrite RegDst PC Address Data (Instr. or Data) IR MDR Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out

20 Datapath Activity During R-type Completion Cond IorD Mem MemWrite MemtoReg IRWrite PCSource Op Control SrcB SrcA RegWrite RegDst PC Address Data (Instr. or Data) IR MDR Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out

21 Access Control Signals Settings Unless otherwise assigned Start,IRWrite, MemWrite,RegWrite= others=x IorD= Mem;IRWrite SrcA= srcb= PCSource,Op= Instr Fetch Decode SrcA= SrcB= Op= Cond= SrcA= SrcB= Op= Cond= Execute SrcA= SrcB= Op= Cond= SrcA= SrcB= Op= PCSource= Cond PCSource= Mem IorD= Cond= Access MemWrite IorD= Cond= RegDst= RegWrite MemtoReg= Cond=

22 Step 5: Completion (Write Back) All we have left is the write back into the register file the data just read from memory for lw instruction Reg[IR[-6]]= MDR; What about all the other instructions? 3

23 Datapath Activity During lw Write Back Cond IorD Mem MemWrite MemtoReg IRWrite PCSource Op Control SrcB SrcA RegWrite RegDst PC Address Data (Instr. or Data) IR MDR Instr[3-6] Instr[5-] Instr[5-] Addr Register Addr Data File Write Addr Sign Extend 3 Instr[5-] Data left A B 4 3 PC[3-8] left zero control 8 out 4

24 Write Back Control Signals Settings Unless otherwise assigned Start,IRWrite, MemWrite,RegWrite= others=x IorD= Mem;IRWrite Instr Fetch SrcA= srcb= PCSource,Op= Decode SrcA= SrcB= Op= Cond= SrcA= SrcB= Op= Cond= Execute SrcA= SrcB= Op= Cond= SrcA= SrcB= Op= PCSource= Cond PCSource= Mem Access MemWrite IorD= IorD= Cond= Cond= RegDst= RegWrite MemtoReg= Cond= RegDst= RegWrite MemtoReg= Cond= Write Back 5

25 RTL Summary Step R-type Mem Ref Branch Jump Instr fetch Decode Execute Out = A op B; access Writeback IR = [PC]; PC = PC + 4; A = Reg[IR[5-]]; B = Reg[IR[-6]]; Out = PC +(sign-extend(ir[5-])<< ); Reg[IR[5 -]] = Out; Out = A + sign-extend (IR[5-]); MDR = [Out]; or [Out] = B; Reg[IR[-6]] = MDR; if (A==B) PC = Out; PC = PC[3-8] (IR[5- ] << ); 6

26 Example Using the following instruction mix, what is the CPI, assuming that each state in the multicycle CPU requires clock cycle? Load 5% store % branches % jumps % 5% 7

Computer Science 141 Computing Hardware

Computer Science 141 Computing Hardware Computer Science 4 Computing Hardware Fall 6 Harvard University Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu Upcoming topics Mon, Nov th MIPS Basic Architecture (Part ) Wed, Nov th Basic Computer

More information

Multi-cycle Approach. Single cycle CPU. Multi-cycle CPU. Requires state elements to hold intermediate values. one clock cycle or instruction

Multi-cycle Approach. Single cycle CPU. Multi-cycle CPU. Requires state elements to hold intermediate values. one clock cycle or instruction Multi-cycle Approach Single cycle CPU State element Combinational logic State element clock one clock cycle or instruction Multi-cycle CPU Requires state elements to hold intermediate values State Element

More information

Multiple Cycle Data Path

Multiple Cycle Data Path Multiple Cycle Data Path CS 365 Lecture 7 Prof. Yih Huang CS365 1 Multicycle Approach Break up the instructions into steps, each step takes a cycle balance the amount of work to be done restrict each cycle

More information

Processor: Multi- Cycle Datapath & Control

Processor: Multi- Cycle Datapath & Control Processor: Multi- Cycle Datapath & Control (Based on text: David A. Patterson & John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 3 rd Ed., Morgan Kaufmann, 27) COURSE

More information

RISC Design: Multi-Cycle Implementation

RISC Design: Multi-Cycle Implementation RISC Design: Multi-Cycle Implementation Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19 CO2-3224 Computer Architecture and Programming Languages CAPL Lecture 8 & 9 Dr. Kinga Lipskoch Fall 27 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be

More information

CSE 2021 COMPUTER ORGANIZATION

CSE 2021 COMPUTER ORGANIZATION CSE 22 COMPUTER ORGANIZATION HUGH CHESSER CHESSER HUGH CSEB 2U 2U CSEB Agenda Topics:. Sample Exam/Quiz Q - Review 2. Multiple cycle implementation Patterson: Section 4.5 Reminder: Quiz #2 Next Wednesday

More information

CPE 335. Basic MIPS Architecture Part II

CPE 335. Basic MIPS Architecture Part II CPE 335 Computer Organization Basic MIPS Architecture Part II Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE232 Basic MIPS Architecture

More information

Points available Your marks Total 100

Points available Your marks Total 100 CSSE 3 Computer Architecture I Rose-Hulman Institute of Technology Computer Science and Software Engineering Department Exam Name: Section: 3 This exam is closed book. You are allowed to use the reference

More information

Lecture 5 and 6. ICS 152 Computer Systems Architecture. Prof. Juan Luis Aragón

Lecture 5 and 6. ICS 152 Computer Systems Architecture. Prof. Juan Luis Aragón ICS 152 Computer Systems Architecture Prof. Juan Luis Aragón Lecture 5 and 6 Multicycle Implementation Introduction to Microprogramming Readings: Sections 5.4 and 5.5 1 Review of Last Lecture We have seen

More information

ECE369. Chapter 5 ECE369

ECE369. Chapter 5 ECE369 Chapter 5 1 State Elements Unclocked vs. Clocked Clocks used in synchronous logic Clocks are needed in sequential logic to decide when an element that contains state should be updated. State element 1

More information

RISC Processor Design

RISC Processor Design RISC Processor Design Single Cycle Implementation - MIPS Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 13 SE-273: Processor Design Feb 07, 2011 SE-273@SERC 1 Courtesy:

More information

ALUOut. Registers A. I + D Memory IR. combinatorial block. combinatorial block. combinatorial block MDR

ALUOut. Registers A. I + D Memory IR. combinatorial block. combinatorial block. combinatorial block MDR Microprogramming Exceptions and interrupts 9 CMPE Fall 26 A. Di Blas Fall 26 CMPE CPU Multicycle From single-cycle to Multicycle CPU with sequential control: Finite State Machine Textbook Edition: 5.4,

More information

CSE 2021 COMPUTER ORGANIZATION

CSE 2021 COMPUTER ORGANIZATION CSE 2021 COMPUTER ORGANIZATION HUGH LAS CHESSER 1012U HUGH CHESSER CSEB 1012U W10-M Agenda Topics: 1. Multiple cycle implementation review 2. State Machine 3. Control Unit implementation for Multi-cycle

More information

Inf2C - Computer Systems Lecture 12 Processor Design Multi-Cycle

Inf2C - Computer Systems Lecture 12 Processor Design Multi-Cycle Inf2C - Computer Systems Lecture 12 Processor Design Multi-Cycle Boris Grot School of Informatics University of Edinburgh Previous lecture: single-cycle processor Inf2C Computer Systems - 2017-2018. Boris

More information

RISC Architecture: Multi-Cycle Implementation

RISC Architecture: Multi-Cycle Implementation RISC Architecture: Multi-Cycle Implementation Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay

More information

EECE 417 Computer Systems Architecture

EECE 417 Computer Systems Architecture EECE 417 Computer Systems Architecture Department of Electrical and Computer Engineering Howard University Charles Kim Spring 2007 1 Computer Organization and Design (3 rd Ed) -The Hardware/Software Interface

More information

LECTURE 6. Multi-Cycle Datapath and Control

LECTURE 6. Multi-Cycle Datapath and Control LECTURE 6 Multi-Cycle Datapath and Control SINGLE-CYCLE IMPLEMENTATION As we ve seen, single-cycle implementation, although easy to implement, could potentially be very inefficient. In single-cycle, we

More information

Multicycle conclusion

Multicycle conclusion Multicycle conclusion The last few lectures covered a lot of material! We introduced a multicycle datapath, where different instructions take different numbers of cycles to execute. A multicycle unit is

More information

Introduction to Pipelined Datapath

Introduction to Pipelined Datapath 14:332:331 Computer Architecture and Assembly Language Week 12 Introduction to Pipelined Datapath [Adapted from Dave Patterson s UCB CS152 slides and Mary Jane Irwin s PSU CSE331 slides] 331 W12.1 Review:

More information

RISC Architecture: Multi-Cycle Implementation

RISC Architecture: Multi-Cycle Implementation RISC Architecture: Multi-Cycle Implementation Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay

More information

Design of the MIPS Processor

Design of the MIPS Processor Design of the MIPS Processor We will study the design of a simple version of MIPS that can support the following instructions: I-type instructions LW, SW R-type instructions, like ADD, SUB Conditional

More information

ECE 313 Computer Organization FINAL EXAM December 11, Multicycle Processor Design 30 Points

ECE 313 Computer Organization FINAL EXAM December 11, Multicycle Processor Design 30 Points This exam is open book and open notes. Credit for problems requiring calculation will be given only if you show your work. 1. Multicycle Processor Design 0 Points In our discussion of exceptions in the

More information

ECS 154B Computer Architecture II Spring 2009

ECS 154B Computer Architecture II Spring 2009 ECS 154B Computer Architecture II Spring 2009 Pipelining Datapath and Control 6.2-6.3 Partially adapted from slides by Mary Jane Irwin, Penn State And Kurtis Kredo, UCD Pipelined CPU Break execution into

More information

Chapter 5 Solutions: For More Practice

Chapter 5 Solutions: For More Practice Chapter 5 Solutions: For More Practice 1 Chapter 5 Solutions: For More Practice 5.4 Fetching, reading registers, and writing the destination register takes a total of 300ps for both floating point add/subtract

More information

Systems Architecture I

Systems Architecture I Systems Architecture I Topics A Simple Implementation of MIPS * A Multicycle Implementation of MIPS ** *This lecture was derived from material in the text (sec. 5.1-5.3). **This lecture was derived from

More information

ﻪﺘﻓﺮﺸﻴﭘ ﺮﺗﻮﻴﭙﻣﺎﻛ يرﺎﻤﻌﻣ MIPS يرﺎﻤﻌﻣ data path and ontrol control

ﻪﺘﻓﺮﺸﻴﭘ ﺮﺗﻮﻴﭙﻣﺎﻛ يرﺎﻤﻌﻣ MIPS يرﺎﻤﻌﻣ data path and ontrol control معماري كامپيوتر پيشرفته معماري MIPS data path and control abbasi@basu.ac.ir Topics Building a datapath support a subset of the MIPS-I instruction-set A single cycle processor datapath all instruction actions

More information

Lecture 8: Control COS / ELE 375. Computer Architecture and Organization. Princeton University Fall Prof. David August

Lecture 8: Control COS / ELE 375. Computer Architecture and Organization. Princeton University Fall Prof. David August Lecture 8: Control COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Datapath and Control Datapath The collection of state elements, computation elements,

More information

Design of the MIPS Processor (contd)

Design of the MIPS Processor (contd) Design of the MIPS Processor (contd) First, revisit the datapath for add, sub, lw, sw. We will augment it to accommodate the beq and j instructions. Execution of branch instructions beq $at, $zero, L add

More information

ECE 313 Computer Organization EXAM 2 November 9, 2001

ECE 313 Computer Organization EXAM 2 November 9, 2001 ECE 33 Computer Organization EA 2 November 9, 2 This exam is open book and open notes. You have 5 minutes. Credit for problems requiring calculation will be given only if you show your work. Choose and

More information

Multicycle Approach. Designing MIPS Processor

Multicycle Approach. Designing MIPS Processor CSE 675.2: Introduction to Computer Architecture Multicycle Approach 8/8/25 Designing MIPS Processor (Multi-Cycle) Presentation H Slides by Gojko Babić and Elsevier Publishing We will be reusing functional

More information

ECE 313 Computer Organization FINAL EXAM December 14, This exam is open book and open notes. You have 2 hours.

ECE 313 Computer Organization FINAL EXAM December 14, This exam is open book and open notes. You have 2 hours. This exam is open book and open notes. You have 2 hours. Problems 1-4 refer to a proposed MIPS instruction lwu (load word - update) which implements update addressing an addressing mode that is used in

More information

CC 311- Computer Architecture. The Processor - Control

CC 311- Computer Architecture. The Processor - Control CC 311- Computer Architecture The Processor - Control Control Unit Functions: Instruction code Control Unit Control Signals Select operations to be performed (ALU, read/write, etc.) Control data flow (multiplexor

More information

CS/COE0447: Computer Organization

CS/COE0447: Computer Organization CS/COE0447: Computer Organization and Assembly Language Datapath and Control Sangyeun Cho Dept. of Computer Science A simple MIPS We will design a simple MIPS processor that supports a small instruction

More information

CS/COE0447: Computer Organization

CS/COE0447: Computer Organization A simple MIPS CS/COE447: Computer Organization and Assembly Language Datapath and Control Sangyeun Cho Dept. of Computer Science We will design a simple MIPS processor that supports a small instruction

More information

Chapter 5: The Processor: Datapath and Control

Chapter 5: The Processor: Datapath and Control Chapter 5: The Processor: Datapath and Control Overview Logic Design Conventions Building a Datapath and Control Unit Different Implementations of MIPS instruction set A simple implementation of a processor

More information

Topic #6. Processor Design

Topic #6. Processor Design Topic #6 Processor Design Major Goals! To present the single-cycle implementation and to develop the student's understanding of combinational and clocked sequential circuits and the relationship between

More information

Single vs. Multi-cycle Implementation

Single vs. Multi-cycle Implementation Single vs. Multi-cycle Implementation Multicycle: Instructions take several faster cycles For this simple version, the multi-cycle implementation could be as much as 1.27 times faster (for a typical instruction

More information

The Processor: Datapath & Control

The Processor: Datapath & Control Chapter Five 1 The Processor: Datapath & Control We're ready to look at an implementation of the MIPS Simplified to contain only: memory-reference instructions: lw, sw arithmetic-logical instructions:

More information

CPE 335 Computer Organization. Basic MIPS Architecture Part I

CPE 335 Computer Organization. Basic MIPS Architecture Part I CPE 335 Computer Organization Basic MIPS Architecture Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s8/index.html CPE232 Basic MIPS Architecture

More information

Chapter 4 The Processor (Part 2)

Chapter 4 The Processor (Part 2) Department of Electr rical Eng ineering, Chapter 4 The Processor (Part 2) 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Feng-Chia Unive ersity Outline A Multicycle Implementation Mapping Control

More information

Alternative to single cycle. Drawbacks of single cycle implementation. Multiple cycle implementation. Instruction fetch

Alternative to single cycle. Drawbacks of single cycle implementation. Multiple cycle implementation. Instruction fetch Drawbacks of single cycle implementation Alternative to single cycle All instructions take the same time although some instructions are longer than others; e.g. load is longer than add since it has to

More information

EE457. Note: Parts of the solutions are extracted from the solutions manual accompanying the text book.

EE457. Note: Parts of the solutions are extracted from the solutions manual accompanying the text book. EE457 Instructor: G. Puvvada ======================================================================= Homework 5b, Solution ======================================================================= Note:

More information

Lets Build a Processor

Lets Build a Processor Lets Build a Processor Almost ready to move into chapter 5 and start building a processor First, let s review Boolean Logic and build the ALU we ll need (Material from Appendix B) operation a 32 ALU result

More information

ENE 334 Microprocessors

ENE 334 Microprocessors ENE 334 Microprocessors Lecture 6: Datapath and Control : Dejwoot KHAWPARISUTH Adapted from Computer Organization and Design, 3 th & 4 th Edition, Patterson & Hennessy, 2005/2008, Elsevier (MK) http://webstaff.kmutt.ac.th/~dejwoot.kha/

More information

Computer Architecture Chapter 5. Fall 2005 Department of Computer Science Kent State University

Computer Architecture Chapter 5. Fall 2005 Department of Computer Science Kent State University Compter Architectre Chapter 5 Fall 25 Department of Compter Science Kent State University The Processor: Datapath & Control Or implementation of the MIPS is simplified memory-reference instrctions: lw,

More information

CS359: Computer Architecture. The Processor (A) Yanyan Shen Department of Computer Science and Engineering

CS359: Computer Architecture. The Processor (A) Yanyan Shen Department of Computer Science and Engineering CS359: Computer Architecture The Processor (A) Yanyan Shen Department of Computer Science and Engineering Eecuting R-type Instructions 7 Instructions ADD and subtract add rd, rs, rt sub rd, rs, rt OR Immediate:

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control ELEC 52/62 Computer Architecture and Design Spring 217 Lecture 4: Datapath and Control Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

More information

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Computer Organization (COMP 2611) Spring Semester, 2014 Final Examination

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Computer Organization (COMP 2611) Spring Semester, 2014 Final Examination THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Computer Organization (COMP 2611) Spring Semester, 2014 Final Examination May 23, 2014 Name: Email: Student ID: Lab Section Number: Instructions: 1. This

More information

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 4 The Processor: A Based on P&H Introduction We will examine two MIPS implementations A simplified version A more realistic pipelined

More information

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W10-M

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W10-M CSE 22 Computer Organization Hugh Chesser, CSEB 2U Agenda Topics:. ultiple cycle implementation - complete Patterson: Appendix C, D 2 Breaking the Execution into Clock Cycles Execution of each instruction

More information

CSE 2021: Computer Organization Fall 2010 Solution to Assignment # 3: Multicycle Implementation

CSE 2021: Computer Organization Fall 2010 Solution to Assignment # 3: Multicycle Implementation CSE 2021: Computer Organization Fall 2010 Solution to Assignment # 3: Multicycle Implementation Note that these questions are taken from the previous final exmas of CSE2021 and should serve as practice

More information

COMP303 Computer Architecture Lecture 9. Single Cycle Control

COMP303 Computer Architecture Lecture 9. Single Cycle Control COMP33 Computer Architecture Lecture 9 Single Cycle Control A Single Cycle Datapath We have everything except control signals (underlined) RegDst busw Today s lecture will look at how to generate the control

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Single Cycle MIPS Processor Stephen. Edwards Columbia University Summer 26 Illustrations Copyright 27 Elsevier The path The lw The sw R-Type s The beq The Controller Encoding

More information

EEM 486: Computer Architecture. Lecture 3. Designing Single Cycle Control

EEM 486: Computer Architecture. Lecture 3. Designing Single Cycle Control EEM 48: Computer Architecture Lecture 3 Designing Single Cycle The Big Picture: Where are We Now? Processor Input path Output Lec 3.2 An Abstract View of the Implementation Ideal Address Net Address PC

More information

Processor (I) - datapath & control. Hwansoo Han

Processor (I) - datapath & control. Hwansoo Han Processor (I) - datapath & control Hwansoo Han Introduction CPU performance factors Instruction count - Determined by ISA and compiler CPI and Cycle time - Determined by CPU hardware We will examine two

More information

ENGN1640: Design of Computing Systems Topic 04: Single-Cycle Processor Design

ENGN1640: Design of Computing Systems Topic 04: Single-Cycle Processor Design ENGN64: Design of Computing Systems Topic 4: Single-Cycle Processor Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

Midterm. Sticker winners: if you got >= 50 / 67

Midterm. Sticker winners: if you got >= 50 / 67 CSC258 Week 8 Midterm Class average: 4.2 / 67 (6%) Highest mark: 64.5 / 67 Tests will be return in office hours. Make sure your midterm mark is correct on MarkUs Solution posted on the course website.

More information

CS232 Final Exam May 5, 2001

CS232 Final Exam May 5, 2001 CS232 Final Exam May 5, 2 Name: This exam has 4 pages, including this cover. There are six questions, worth a total of 5 points. You have 3 hours. Budget your time! Write clearly and show your work. State

More information

Single Cycle CPU Design. Mehran Rezaei

Single Cycle CPU Design. Mehran Rezaei Single Cycle CPU Design Mehran Rezaei What does it mean? Instruction Fetch Instruction Memory clk pc 32 32 address add $t,$t,$t2 instruction Next Logic to generate the address of next instruction The Branch

More information

Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007

Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007 Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007 Final Exam This is a closed-book take-home exam. You are permitted a calculator and two 8.5x sheets of paper with notes. The exam

More information

EECS150 - Digital Design Lecture 10- CPU Microarchitecture. Processor Microarchitecture Introduction

EECS150 - Digital Design Lecture 10- CPU Microarchitecture. Processor Microarchitecture Introduction EECS150 - Digital Design Lecture 10- CPU Microarchitecture Feb 18, 2010 John Wawrzynek Spring 2010 EECS150 - Lec10-cpu Page 1 Processor Microarchitecture Introduction Microarchitecture: how to implement

More information

Using a Hardware Description Language to Design and Simulate a Processor 5.8

Using a Hardware Description Language to Design and Simulate a Processor 5.8 5.8 Using a Hardware Description Language to Design and Simulate a Processor 5.8 As mentioned in Appix B, Verilog can describe processors for simulation or with the intention that the Verilog specification

More information

Major CPU Design Steps

Major CPU Design Steps Datapath Major CPU Design Steps. Analyze instruction set operations using independent RTN ISA => RTN => datapath requirements. This provides the the required datapath components and how they are connected

More information

Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu (Guest starring: Frank K. Gürkaynak and Aanjhan Ranganathan)

Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu (Guest starring: Frank K. Gürkaynak and Aanjhan Ranganathan) Microarchitecture Design of Digital Circuits 27 Srdjan Capkun Onur Mutlu (Guest starring: Frank K. Gürkaynak and Aanjhan Ranganathan) http://www.syssec.ethz.ch/education/digitaltechnik_7 Adapted from Digital

More information

Mapping Control to Hardware

Mapping Control to Hardware C A P P E N D I X A custom format such as this is slave to the architecture of the hardware and the instruction set it serves. The format must strike a proper compromise between ROM size, ROM-output decoding,

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

Pipelined Processor Design

Pipelined Processor Design Pipelined Processor Design Pipelined Implementation: MIPS Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 20 SE-273: Processor Design Courtesy: Prof. Vishwani Agrawal

More information

Control & Execution. Finite State Machines for Control. MIPS Execution. Comp 411. L14 Control & Execution 1

Control & Execution. Finite State Machines for Control. MIPS Execution. Comp 411. L14 Control & Execution 1 Control & Execution Finite State Machines for Control MIPS Execution L14 Control & Execution 1 Synchronous Systems data Latch Combinational logic Latch Clock leading edge trailing edge On the leading edge

More information

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath The Big Picture: Where are We Now? EEM 486: Computer Architecture Lecture 3 The Five Classic Components of a Computer Processor Input Control Memory Designing a Single Cycle path path Output Today s Topic:

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Data Paths and Microprogramming

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Data Paths and Microprogramming Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: Data Paths and Microprogramming We have spent time looking at the MIPS instruction set architecture and building

More information

361 control.1. EECS 361 Computer Architecture Lecture 9: Designing Single Cycle Control

361 control.1. EECS 361 Computer Architecture Lecture 9: Designing Single Cycle Control 36 control. EECS 36 Computer Architecture Lecture 9: Designing Single Cycle Control Recap: The MIPS Subset ADD and subtract add rd, rs, rt sub rd, rs, rt OR Imm: ori rt, rs, imm6 3 3 26 2 6 op rs rt rd

More information

Laboratory 5 Processor Datapath

Laboratory 5 Processor Datapath Laboratory 5 Processor Datapath Description of HW Instruction Set Architecture 16 bit data bus 8 bit address bus Starting address of every program = 0 (PC initialized to 0 by a reset to begin execution)

More information

Systems Architecture

Systems Architecture Systems Architecture Lecture 15: A Simple Implementation of MIPS Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all figures from Computer Organization and Design: The Hardware/Software

More information

MIPS-Lite Single-Cycle Control

MIPS-Lite Single-Cycle Control MIPS-Lite Single-Cycle Control COE68: Computer Organization and Architecture Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University Overview Single cycle

More information

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations ECE7 Computer Architecture Single Cycle Control Review: 3a: Overview of the Fetch Unit The common operations Fetch the : mem[] Update the program counter: Sequential Code: < + Branch and Jump: < something

More information

COMP2611: Computer Organization. The Pipelined Processor

COMP2611: Computer Organization. The Pipelined Processor COMP2611: Computer Organization The 1 2 Background 2 High-Performance Processors 3 Two techniques for designing high-performance processors by exploiting parallelism: Multiprocessing: parallelism among

More information

How to design a controller to produce signals to control the datapath

How to design a controller to produce signals to control the datapath ECE48 Computer Organization and Architecture Designing Single Cycle How to design a controller to produce signals to control the datapath ECE48. 2--7 Recap: The MIPS Formats All MIPS instructions are bits

More information

Control Unit for Multiple Cycle Implementation

Control Unit for Multiple Cycle Implementation Control Unit for Multiple Cycle Implementation Control is more complex than in single cycle since: Need to define control signals for each step Need to know which step we are on Two methods for designing

More information

EECS150 - Digital Design Lecture 9- CPU Microarchitecture. Watson: Jeopardy-playing Computer

EECS150 - Digital Design Lecture 9- CPU Microarchitecture. Watson: Jeopardy-playing Computer EECS150 - Digital Design Lecture 9- CPU Microarchitecture Feb 15, 2011 John Wawrzynek Spring 2011 EECS150 - Lec09-cpu Page 1 Watson: Jeopardy-playing Computer Watson is made up of a cluster of ninety IBM

More information

Processor Implementation in VHDL. University of Ulster at Jordanstown University of Applied Sciences, Augsburg

Processor Implementation in VHDL. University of Ulster at Jordanstown University of Applied Sciences, Augsburg University of Ulster at Jordanstown University of Applied Sciences, Augsburg Master of Engineering VLSI Design Project Report Processor Implementation in VHDL According to Computer Organisation & Design

More information

Beyond Pipelining. CP-226: Computer Architecture. Lecture 23 (19 April 2013) CADSL

Beyond Pipelining. CP-226: Computer Architecture. Lecture 23 (19 April 2013) CADSL Beyond Pipelining Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

More information

ECE 3056: Architecture, Concurrency and Energy of Computation. Single and Multi-Cycle Datapaths: Practice Problems

ECE 3056: Architecture, Concurrency and Energy of Computation. Single and Multi-Cycle Datapaths: Practice Problems ECE 3056: Architecture, Concurrency and Energy of Computation Single and Multi-Cycle Datapaths: Practice Problems 1. Consider the single cycle SPIM datapath. a. Specify the values of the control signals

More information

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds?

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds? Chapter 4: Assessing and Understanding Performance 1. Define response (execution) time. 2. Define throughput. 3. Describe why using the clock rate of a processor is a bad way to measure performance. Provide

More information

Initial Representation Finite State Diagram. Logic Representation Logic Equations

Initial Representation Finite State Diagram. Logic Representation Logic Equations Control Implementation Alternatives Control may be designed using one of several initial representations. The choice of sequence control, and how logic is represented, can then be determined independently;

More information

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu CENG 342 Computer Organization and Design Lecture 6: MIPS Processor - I Bei Yu CEG342 L6. Spring 26 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified

More information

CS3350B Computer Architecture Quiz 3 March 15, 2018

CS3350B Computer Architecture Quiz 3 March 15, 2018 CS3350B Computer Architecture Quiz 3 March 15, 2018 Student ID number: Student Last Name: Question 1.1 1.2 1.3 2.1 2.2 2.3 Total Marks The quiz consists of two exercises. The expected duration is 30 minutes.

More information

Lecture 10 Multi-Cycle Implementation

Lecture 10 Multi-Cycle Implementation Lecture 10 ulti-cycle Implementation 1 Today s enu ulti-cycle machines Why multi-cycle? Comparative performance Physical and Logical Design of Datapath and Control icroprogramming 2 ulti-cycle Solution

More information

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements CSE 4 Computer Architecture Spring 25 Lectures Exceptions and Introduction to Pipelining May 4, 25 Announcements Reading Assignment Sections 5.6, 5.9 The Processor Datapath and Control Section 6., Enhancing

More information

CSSE232 Computer Architecture I. Mul5cycle Datapath

CSSE232 Computer Architecture I. Mul5cycle Datapath CSSE232 Compter Architectre I Ml5cycle Datapath Class Stats Next 3 days : Ml5cycle datapath ing Ml5cycle datapath is not in the book! How long do instrc5ons take? ALU 2ns Mem 2ns Reg File 1ns Everything

More information

ECE Exam I - Solutions February 19 th, :00 pm 4:25pm

ECE Exam I - Solutions February 19 th, :00 pm 4:25pm ECE 3056 Exam I - Solutions February 19 th, 2015 3:00 pm 4:25pm 1. (35 pts) Consider the following block of SPIM code. The text segment starts at 0x00400000 and the data segment starts at 0x10010000..data

More information

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W9-W

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W9-W CSE 22 Computer Organization Hugh Chesser, CSEB 2U Agenda Topics:. Single Cycle Review (Sample Exam/Quiz Q) 2. ultiple cycle implementation Patterson: Section 4.5 Reminder: Quiz #2 Next Wednesday (November

More information

CSEN 601: Computer System Architecture Summer 2014

CSEN 601: Computer System Architecture Summer 2014 CSEN 601: Computer System Architecture Summer 2014 Practice Assignment 5 Solutions Exercise 5-1: (Midterm Spring 2013) a. What are the values of the control signals (except ALUOp) for each of the following

More information

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath COMP33 - Computer Architecture Lecture 8 Designing a Single Cycle Datapath The Big Picture The Five Classic Components of a Computer Processor Input Control Memory Datapath Output The Big Picture: The

More information

CSE Computer Architecture I Fall 2009 Lecture 13 In Class Notes and Problems October 6, 2009

CSE Computer Architecture I Fall 2009 Lecture 13 In Class Notes and Problems October 6, 2009 CSE 30321 Computer Architecture I Fall 2009 Lecture 13 In Class Notes and Problems October 6, 2009 Question 1: First, we briefly review the notion of a clock cycle (CC). Generally speaking a CC is the

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

Microprogramming. Microprogramming

Microprogramming. Microprogramming Microprogramming Alternative way of specifying control FSM State -- bubble control signals in bubble next state given by signals on arc not a great language to specify when things are complex Treat as

More information

Note- E~ S. \3 \S U\e. ~ ~s ~. 4. \\ o~ (fw' \i<.t. (~e., 3\0)

Note- E~ S. \3 \S U\e. ~ ~s ~. 4. \\ o~ (fw' \i<.t. (~e., 3\0) 5.4 A Multicycle Implementation 377 Similarly, if we had a machine with more powerful operations and addressing modes, instructions could vary from three or four functional unit delays to tens or even

More information

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions COP33 - Computer Architecture Lecture ulti-cycle Design & Exceptions Single Cycle Datapath We designed a processor that requires one cycle per instruction RegDst busw 32 Clk RegWr Rd ux imm6 Rt 5 5 Rs

More information

Initial Representation Finite State Diagram Microprogram. Sequencing Control Explicit Next State Microprogram counter

Initial Representation Finite State Diagram Microprogram. Sequencing Control Explicit Next State Microprogram counter Control Implementation Alternatives Control may be designed using one of several initial representations. The choice of sequence control, and how logic is represented, can then be determined independently;

More information