Lecture Topics ECE 341. Lecture # 10. Register File. Hardware Components of a Processor

Size: px
Start display at page:

Download "Lecture Topics ECE 341. Lecture # 10. Register File. Hardware Components of a Processor"

Transcription

1 EE 1 Lecture # 10 Instructor: Zeshan hishti zeshan@ece.pdx.edu October 29, 201 Portland State University Lecture Topics asic Processing Unit Hardware omponents path Fetch Section Fetch and Execution Steps Encoding Examples Reference: hapter 5: Sections 5. and 5. (Pages of textbook) Hardware omponents of a Processor ontrol ircuitry Processor Interface P General purpose registers are usually implemented as a register file file contains rray of storage elements to hold register contents ccess circuitry to read/write data from/into any register To support two source operands per instruction ccess circuitry able to read 2 registers at same time inputs & select the registers to be read inputs connected to s source register fields contents available at separate outputs To support a destination operand input selects the register to be written isconnected to s destination register field input used to specify the data to be written For example, for instruction add R, R, R5 =, = 5 and = Reg. s contents Input R0 R1 R2... Rn put Reg. s contents

2 (cont.) memory unit with two output ports is said to be dual ported Two ways to implement a dual-ported register file True ports:single set of registers with duplicate data paths and access circuitry that enables two registers to be read at a time Two copies: Use 2 memory blocks each containing one copy of the register file To read two registers, one register can be accessed from each file To write a register, data needs to be written to both the copies of that register Input rithmetic and Logic Unit () performs: rithmetic operations (adition, subtraction, multiplication etc.) Logic operations (bitwise ND, OR, XOR etc.) file and are connected with each other so that Source operands of an instruction, after being read from the register file are directly fed into the Result computed by the can be loaded into the destination register specified by the instruction put + onnection Hardware omponents of a Processor Source register connected to In input of Multiplexer connected to In input of and the immediate value field in sselect input depends on the instruction being executed selects In, for operations that require only register operands selects immediate valuefor operations that require an immediate operand In In Immediate Value ontrol ircuitry P Processor Interface

3 path Recall that instruction processing consists of fetch phase & execution phase Processor hardware divided into two corresponding sections: Front end (fetch section): Includes the fetch and decode stages ack end (execute section): Includes the, ccess and Writeback stages pathis a combination of register read, back-end stages and inter-stage registers Inter-stage s 1 2 Fetch Decode Execute ccess Writeback R, R,, and are inter-stage registers file is in both stage 2 and stage 5, because stage 2 (Decode) reads source registers and stage 5 (Writeback) writes into destination registers 2 In R R In 2 Front End ack End rithmetic/logic s: 1 source register, 1 immediate operand 2 source registers : carries out the desired arithmetic/logic operation on the source operands, result is loaded into :Result computed in stage- moves from to : transferred from into destination 2 In R R In 2 Load s: Load 1 1 :Effective address computed and loaded into : sent from to memory, data returned by memory loaded into : transferred from into destination 2 In R R In 2

4 Store : Store 1 x :Effective address computed and loaded into, data to be stored is moved from R to : sent from to memory, data sent from to memory, write signal asserted :No action 2 In R R In 2 Subroutine all : saves the subroutine return address (current contents of P) in a destination register Subroutine all x 2 :No action : address sent from P to :ontents of sent to the destination register 2 In R R In 2 Hardware omponents of a Processor Fetch Step ontrol ircuitry P ontrol circuitry examines the contents of and generates the signals needed to control all the processor s hardware ontrol ircuitry (via R) (via ) P Processor Interface Immediate Immediate value (extended to 2 bits) MuxM MuxMselects input 1 during instruction fetch

5 Immediate Field Extension Holds P contents for saving return address during subroutine calls For subroutine call/return, MuxPselects input 0, otherwise it selects input 1 P-Temp R MuxP P dder Immediate Value (ranch Offset) MuxIN For branches, MuxINselects input 1, otherwise it selects input 0 Immediate operand needs to be represented as a 2-bit number before being used as s input Immediate block extends the immediatefield in and sends the extended value to For logical instructions (ND, OR etc.) Immediate value is padded with zeroes to extend from 16 to 2 bits For arithmetic instructions (add, mult etc.) and branches Immediate value is sign-extended from 16 to 2 bits ( ) Encoding Encoding (cont.) 1 Rsrc1 Rsrc2 Rdst Rsrc Rdst (a) -operand format Immediate value Immediate operand (b) Immediate-operand format (c) all format OP code OP code OP code Using a few standard instruction formats simplifies the instruction decoding process The OP code field specifies the type of instruction ontrol circuitry examines the op code to decide which control signals to assert in subsequent stages an the reading of source registers proceed, while the control circuitry is yet to decode the instruction op code? YES, because source register addressesare specified using the same bit positions in all instructions (bits 1-27 and bits 26-22) These two fields in ([1-27] and [26-22]) are connected to address inputs and of register file ontents of these two registers are loaded into R and R at the end of stage 2, irrespective of the type of instruction If these contents are not needed, subsequent stages can ignore them If needed, these contents will be available as operands in stage

6 Example 1:dd R, R, R5 1: address [P], Read memory, data, P [P] + 2: Decode instruction, R [R], R [R5] : [R] + [R] : [] : R [] 2 In R R In 2 Example 2: Load R5, X(R7) 1: address [P], Read memory, data, P [P] + 2: Decode instruction, R [R7] : [R] + Immediate value X : address [], Read memory data : R5 [] 2 In R R In 2 Example : Store R6,X(R8) 1: address [P], Read memory, data, P [P] + 2: Decode instruction, R [R8], R [R6] : [R] + Immediate value X [R] : address, data [], Write memory : No action 2 In R R In 2

ECE 341. Lecture # 10

ECE 341. Lecture # 10 EE 341 Lecture # 10 Instructor: Zeshan hishti zeshan@ece.pdx.edu October 29, 2014 Portland State University Lecture Topics Basic Processing Unit Hardware omponents Datapath Instruction Fetch Section Instruction

More information

ECE 341. Lecture # 15

ECE 341. Lecture # 15 ECE 341 Lecture # 15 Instructor: Zeshan Chishti zeshan@ece.pdx.edu November 19, 2014 Portland State University Pipelining Structural Hazards Pipeline Performance Lecture Topics Effects of Stalls and Penalties

More information

Introduction. Chapter 4. Instruction Execution. CPU Overview. University of the District of Columbia 30 September, Chapter 4 The Processor 1

Introduction. Chapter 4. Instruction Execution. CPU Overview. University of the District of Columbia 30 September, Chapter 4 The Processor 1 Chapter 4 The Processor Introduction CPU performance factors Instruction count etermined by IS and compiler CPI and Cycle time etermined by CPU hardware We will examine two MIPS implementations simplified

More information

Learning Outcomes. Spiral 3-3. Sorting: Software Implementation REVIEW

Learning Outcomes. Spiral 3-3. Sorting: Software Implementation REVIEW 3-3. Learning Outcomes 3-3. Spiral 3-3 Single Cycle CPU I understand how the single-cycle CPU datapath supports each type of instruction I understand why each mux is needed to select appropriate inputs

More information

Lecture Topics ECE 341. Lecture # 6. CLA Delay Calculation. CLA Fan-in Limitation

Lecture Topics ECE 341. Lecture # 6. CLA Delay Calculation. CLA Fan-in Limitation EE 34 Lecture # 6 Instructor: Zeshan hishti zeshan@pdx.edu October 5, 24 Lecture Topics Design of Fast dders arry Looakaheaddders (L) Blocked arry-lookahead dders ultiplication of Unsigned Numbers rray

More information

Lecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture

Lecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture Points ddressed in this Lecture Lecture 6: Signed Numbers rithmetic Circuits Professor Peter Cheung Department of EEE, Imperial College London (Floyd 2.5-2.7, 6.1-6.7) (Tocci 6.1-6.11, 9.1-9.2, 9.4) Representing

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Datapath for a Simplified Processor James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Introduction

More information

CS.17.A.MachineI.Overview

CS.17.A.MachineI.Overview P R T I I : L G O R I T H M S, M H I N E S, a n d T H E O R Y P R T I I : L G O R I T H M S, M H I N E S, a n d T H E O R Y omputer Science 7. omputing Machine omputer Science 7. omputing Machine Overview

More information

ECE 341. Lecture # 19

ECE 341. Lecture # 19 ECE 341 Lecture # 19 Instructor: Zeshan Chishti zeshan@ece.pdx.edu December 3, 2014 Portland State University Announcements Final exam is on Monday, December 8 from 5:30 PM to 7:20 PM Similar format and

More information

Lecture Topics ECE 341. Lecture # 14. Unconditional Branches. Instruction Hazards. Pipelining

Lecture Topics ECE 341. Lecture # 14. Unconditional Branches. Instruction Hazards. Pipelining ECE 341 Lecture # 14 Instructor: Zeshan Chishti zeshan@ece.pdx.edu November 17, 2014 Portland State University Lecture Topics Pipelining Instruction Hazards Branch penalty Branch delay slot optimization

More information

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control,

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control, UNIT - 7 Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Microprogrammed Control Page 178 UNIT - 7 BASIC PROCESSING

More information

Introduction. ENG3380 Computer Organization and Architecture MIPS: Data Path Design Part 3. Topics. References. School of Engineering 1

Introduction. ENG3380 Computer Organization and Architecture MIPS: Data Path Design Part 3. Topics. References. School of Engineering 1 ENG8 Computer Organization and rchitecture MIPS: Data Path Design Part Winter 7 S. reibi School of Engineering University of Guelph Introduction Topics uilding a Complete Data Path for MIPS Multi Cycle

More information

Processor (I) - datapath & control. Hwansoo Han

Processor (I) - datapath & control. Hwansoo Han Processor (I) - datapath & control Hwansoo Han Introduction CPU performance factors Instruction count - Determined by ISA and compiler CPI and Cycle time - Determined by CPU hardware We will examine two

More information

ECE 341. Lecture # 18

ECE 341. Lecture # 18 ECE 341 Lecture # 18 Instructor: Zeshan Chishti zeshan@ece.pdx.edu December 1, 2014 Portland State University Lecture Topics The Memory System Cache Memories Performance Considerations Hit Ratios and Miss

More information

Mark Redekopp and Gandhi Puvvada, All rights reserved. EE 357 Unit 15. Single-Cycle CPU Datapath and Control

Mark Redekopp and Gandhi Puvvada, All rights reserved. EE 357 Unit 15. Single-Cycle CPU Datapath and Control EE 37 Unit Single-Cycle CPU path and Control CPU Organization Scope We will build a CPU to implement our subset of the MIPS ISA Memory Reference Instructions: Load Word (LW) Store Word (SW) Arithmetic

More information

Lecture Topics ECE 341. Lecture # 8. Functional Units. Information Processed by a Computer

Lecture Topics ECE 341. Lecture # 8. Functional Units. Information Processed by a Computer ECE 341 Lecture # 8 Instructor: Zeshan Chishti zeshan@pdx.edu October 22, 2014 Portland State University Lecture Topics Basic Organization and Operation of Computers Functional units of a computer Computer

More information

CISC 662 Graduate Computer Architecture. Classifying ISA. Lecture 3 - ISA Michela Taufer. In a CPU. From Source to Assembly Code

CISC 662 Graduate Computer Architecture. Classifying ISA. Lecture 3 - ISA Michela Taufer. In a CPU. From Source to Assembly Code IS 662 Graduate omputer rchitecture Lecture 3 - IS Michela Taufer lassifying IS Powerpoint Lecture Notes from John Hennessy and David Patterson s: omputer rchitecture, 4th edition ---- dditional teaching

More information

Computer Architecture (part 2)

Computer Architecture (part 2) Computer Architecture (part 2) Topics: Machine Organization Machine Cycle Program Execution Machine Language Types of Memory & Access 2 Chapter 5 The Von Neumann Architecture 1 Arithmetic Logic Unit (ALU)

More information

ECE 341. Lecture # 7

ECE 341. Lecture # 7 ECE 34 Lecture # 7 Instructor: Zeshan Chishti zeshan@pdx.edu October 2, 24 Portland State University Lecture Topics Multiplication of Unsigned Numbers Sequential Circuit Multiplier Multiplication of Signed

More information

Inf2C - Computer Systems Lecture Processor Design Single Cycle

Inf2C - Computer Systems Lecture Processor Design Single Cycle Inf2C - Computer Systems Lecture 10-11 Processor Design Single Cycle Boris Grot School of Informatics University of Edinburgh Previous lectures Combinational circuits Combinations of gates (INV, AND, OR,

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Chapter 9 Computer Design Basics

Chapter 9 Computer Design Basics Logic and Computer Design Fundamentals Chapter 9 Computer Design asics Part 2 A Simple Computer Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

CISC Processor Design

CISC Processor Design CISC Processor Design Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 3 SE-273: Processor Design Processor Architecture Processor Architecture CISC RISC Jan 21, 2008

More information

ECE 486/586. Computer Architecture. Lecture # 7

ECE 486/586. Computer Architecture. Lecture # 7 ECE 486/586 Computer Architecture Lecture # 7 Spring 2015 Portland State University Lecture Topics Instruction Set Principles Instruction Encoding Role of Compilers The MIPS Architecture Reference: Appendix

More information

SISTEMI EMBEDDED. Computer Organization Central Processing Unit (CPU) Federico Baronti Last version:

SISTEMI EMBEDDED. Computer Organization Central Processing Unit (CPU) Federico Baronti Last version: SISTEMI EMBEDDED Computer Organization Central Processing Unit (CPU) Federico Baronti Last version: 20170516 Processing Unit A processor reads program instructions from the computer s memory and executes

More information

CS 24: INTRODUCTION TO. Spring 2018 Lecture 3 COMPUTING SYSTEMS

CS 24: INTRODUCTION TO. Spring 2018 Lecture 3 COMPUTING SYSTEMS CS 24: INTRODUCTION TO Spring 2018 Lecture 3 COMPUTING SYSTEMS LAST TIME Basic components of processors: Buses, multiplexers, demultiplexers Arithmetic/Logic Unit (ALU) Addressable memory Assembled components

More information

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining EE 341 Lectue # 12 Instucto: Zeshan hishti zeshan@ece.pdx.edu Novembe 10, 2014 Potland State Univesity asic Pocessing Unit ontol Signals Hadwied ontol Datapath contol signals Dealing with memoy delay Pipelining

More information

Systems Architecture

Systems Architecture Systems Architecture Lecture 15: A Simple Implementation of MIPS Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all figures from Computer Organization and Design: The Hardware/Software

More information

The Manual Processor. Lecture 17. Registers: The Multiplexers: The Arithmetic and Logic Unit. The Shifter (This is just a special multiplexer)

The Manual Processor. Lecture 17. Registers: The Multiplexers: The Arithmetic and Logic Unit. The Shifter (This is just a special multiplexer) The Manual Processor Lecture 7 In 7 LK Designing a entral Processor Unit: 7 6 5 4 3 2 Part : rchitecture and Instructions LK LK Res LU RES Out LKRES Y-out Y-in LK arry Out omputer Hardware Lecture 7 Slide

More information

Chap. 9 Pipeline and Vector Processing

Chap. 9 Pipeline and Vector Processing 9-1 Parallel Processing = Simultaneous data processing tasks for the purpose of increasing the computational speed Perform concurrent data processing to achieve faster execution time Multiple Functional

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 14: One Cycle MIPs Datapath Adapted from Computer Organization and Design, Patterson & Hennessy, UCB R-Format Instructions Read two register operands Perform

More information

16.1. Unit 16. Computer Organization Design of a Simple Processor

16.1. Unit 16. Computer Organization Design of a Simple Processor 6. Unit 6 Computer Organization Design of a Simple Processor HW SW 6.2 You Can Do That Cloud & Distributed Computing (CyberPhysical, Databases, Data Mining,etc.) Applications (AI, Robotics, Graphics, Mobile)

More information

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA.

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA. Today s topics CS/COE1541: Introduction to Computer Architecture MIPS operations and operands MIPS registers Memory view Instruction encoding A Review of MIPS ISA Sangyeun Cho Arithmetic operations Logic

More information

Review: Abstract Implementation View

Review: Abstract Implementation View Review: Abstract Implementation View Split memory (Harvard) model - single cycle operation Simplified to contain only the instructions: memory-reference instructions: lw, sw arithmetic-logical instructions:

More information

ENGN1640: Design of Computing Systems Topic 04: Single-Cycle Processor Design

ENGN1640: Design of Computing Systems Topic 04: Single-Cycle Processor Design ENGN6: Design of Computing Systems Topic : Single-Cycle Processor Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN ARM COMPUTER ORGANIZATION AND DESIGN Edition The Hardware/Software Interface Chapter 4 The Processor Modified and extended by R.J. Leduc - 2016 To understand this chapter, you will need to understand some

More information

Computer Architecture 2/26/01 Lecture #

Computer Architecture 2/26/01 Lecture # Computer Architecture 2/26/01 Lecture #9 16.070 On a previous lecture, we discussed the software development process and in particular, the development of a software architecture Recall the output of the

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

The Processor (1) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

The Processor (1) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University The Processor (1) Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering MIPS Instruction Set James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy MIPS Registers MIPS

More information

CS 31: Intro to Systems Digital Logic

CS 31: Intro to Systems Digital Logic CS 3: Intro to Systems Digital Logic Martin Gagné Swarthmore College January 3, 27 You re going to want scratch papr today borrow some if needed. Quick nnouncements Late Policy Reminder 3 late days total

More information

CS Spring Combinational Examples - 1

CS Spring Combinational Examples - 1 S 5 - Spring 2 - ombinational Examples - ombinational Logic esign ase Studies General esign Procedure for ombinational Logic General design procedure Examples alendar subsstem to 7-segment displa controller

More information

Single Cycle Datapath

Single Cycle Datapath Single Cycle atapath Lecture notes from MKP, H. H. Lee and S. Yalamanchili Section 4.-4.4 Appendices B.7, B.8, B.,.2 Practice Problems:, 4, 6, 9 ing (2) Introduction We will examine two MIPS implementations

More information

Machine Language and Assembly Language

Machine Language and Assembly Language Machine Language and Assembly Language In the following lectures, we will learn: How instructions are represented and decoded Introduction to different types of Addressing Modes Most commonly used assembly

More information

CISC 662 Graduate Computer Architecture Lecture 5 - Pipeline. Pipelining. Pipelining the Idea. Similar to assembly line in a factory:

CISC 662 Graduate Computer Architecture Lecture 5 - Pipeline. Pipelining. Pipelining the Idea. Similar to assembly line in a factory: CISC 662 Graduate Computer rchitecture Lecture 5 - Pipeline ichela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer rchitecture,

More information

Single Cycle Data Path

Single Cycle Data Path Single ycle ata Path S 365 Lecture 6 Prof. Yih Huang S365 1 MIPS Lite We're ready to look at an implementation of the MIPS Simplified to support only: memory-reference instructions: lw, sw arithmetic-logical

More information

Data paths for MIPS instructions

Data paths for MIPS instructions You are familiar with how MIPS programs step from one instruction to the next, and how branches can occur conditionally or unconditionally. We next examine the machine level representation of how MIPS

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering MIPS Instruction Set James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy MIPS Registers MIPS

More information

UNIT 3 - Basic Processing Unit

UNIT 3 - Basic Processing Unit UNIT 3 - Basic Processing Unit Overview Instruction Set Processor (ISP) Central Processing Unit (CPU) A typical computing task consists of a series of steps specified by a sequence of machine instructions

More information

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu CENG 342 Computer Organization and Design Lecture 6: MIPS Processor - I Bei Yu CEG342 L6. Spring 26 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified

More information

Lecture 11: Control Unit and Instruction Encoding

Lecture 11: Control Unit and Instruction Encoding CSCI25 Computer Organization Lecture : Control Unit and Instruction Encoding Ming-Chang YANG mcyang@cse.cuhk.edu.hk Reading: Chap. 7.4~7.5 (5 th Ed.) Recall: Components of a Processor Register file: a

More information

ECE 341. Lecture # 6

ECE 341. Lecture # 6 ECE 34 Lecture # 6 Instructor: Zeshan Chishti zeshan@pdx.edu October 5, 24 Portland State University Lecture Topics Design of Fast Adders Carry Looakahead Adders (CLA) Blocked Carry-Lookahead Adders Multiplication

More information

Module 5 - CPU Design

Module 5 - CPU Design Module 5 - CPU Design Lecture 1 - Introduction to CPU The operation or task that must perform by CPU is: Fetch Instruction: The CPU reads an instruction from memory. Interpret Instruction: The instruction

More information

Introduction to Computers & Programming

Introduction to Computers & Programming 16.070 Introduction to Computers & Programming Computer Architecture, Machine Language, Program Execution Prof. Kristina Lundqvist Dept. of Aero/Astro, MIT Chapter Summary This chapter introduces the activities

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

The Processor: Datapath and Control. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

The Processor: Datapath and Control. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University The Processor: Datapath and Control Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Introduction CPU performance factors Instruction count Determined

More information

CPE 335 Computer Organization. Basic MIPS Architecture Part I

CPE 335 Computer Organization. Basic MIPS Architecture Part I CPE 335 Computer Organization Basic MIPS Architecture Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s8/index.html CPE232 Basic MIPS Architecture

More information

Data Manipulation. Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan

Data Manipulation. Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan Data Manipulation Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan Outline Computer Architecture Machine Language Program Execution Arithmetic/Logic

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

LECTURE 6. Multi-Cycle Datapath and Control

LECTURE 6. Multi-Cycle Datapath and Control LECTURE 6 Multi-Cycle Datapath and Control SINGLE-CYCLE IMPLEMENTATION As we ve seen, single-cycle implementation, although easy to implement, could potentially be very inefficient. In single-cycle, we

More information

Introduction. Datapath Basics

Introduction. Datapath Basics Introduction CPU performance factors - Instruction count; determined by ISA and compiler - CPI and Cycle time; determined by CPU hardware 1 We will examine a simplified MIPS implementation in this course

More information

Parallel logic circuits

Parallel logic circuits Computer Mathematics Week 9 Parallel logic circuits College of Information cience and Engineering Ritsumeikan University last week the mathematics of logic circuits the foundation of all digital design

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware 4.1 Introduction We will examine two MIPS implementations

More information

What is Pipelining? Time per instruction on unpipelined machine Number of pipe stages

What is Pipelining? Time per instruction on unpipelined machine Number of pipe stages What is Pipelining? Is a key implementation techniques used to make fast CPUs Is an implementation techniques whereby multiple instructions are overlapped in execution It takes advantage of parallelism

More information

Chapter 2 Data Manipulation

Chapter 2 Data Manipulation Chapter 2 Data Manipulation Dr. Farzana Rahman Assistant Professor Department of Computer Science James Madison University 1 What the chapter is about? 2.1 Computer Architecture 2.2 Machine Language 2.3

More information

CISC 662 Graduate Computer Architecture Lecture 5 - Pipeline Pipelining

CISC 662 Graduate Computer Architecture Lecture 5 - Pipeline Pipelining CISC 662 Graduate Computer rchitecture Lecture 5 - Pipeline Pipelining ichela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: The MIPS ISA (P&H ) Consulting hours. Milestone #1 (due 1/26)

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: The MIPS ISA (P&H ) Consulting hours. Milestone #1 (due 1/26) Lecture Topics Today: Integer Arithmetic (P&H 3.1-3.4) Next: The MIPS ISA (P&H 2.1-2.14) 1 Announcements Consulting hours Milestone #1 (due 1/26) Milestone #2 (due 2/2) 2 1 Review: Integer Operations Internal

More information

The von Neumann Architecture. IT 3123 Hardware and Software Concepts. The Instruction Cycle. Registers. LMC Executes a Store.

The von Neumann Architecture. IT 3123 Hardware and Software Concepts. The Instruction Cycle. Registers. LMC Executes a Store. IT 3123 Hardware and Software Concepts February 11 and Memory II Copyright 2005 by Bob Brown The von Neumann Architecture 00 01 02 03 PC IR Control Unit Command Memory ALU 96 97 98 99 Notice: This session

More information

Single Cycle Datapath

Single Cycle Datapath Single Cycle atapath Lecture notes from MKP, H. H. Lee and S. Yalamanchili Section 4.1-4.4 Appendices B.3, B.7, B.8, B.11,.2 ing Note: Appendices A-E in the hardcopy text correspond to chapters 7-11 in

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19 CO2-3224 Computer Architecture and Programming Languages CAPL Lecture 8 & 9 Dr. Kinga Lipskoch Fall 27 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atanasoff in 1939?) Hard-wired program --

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 61C L path (1) insteecsberkeleyedu/~cs61c/su6 CS61C : Machine Structures Lecture # path natomy: 5 components of any Computer Personal Computer -7-25 This week Computer Processor ( brain ) path ( brawn

More information

A Review of Chapter 5 and. CSc 2010 Spring 2012 Instructor: Qian Hu

A Review of Chapter 5 and. CSc 2010 Spring 2012 Instructor: Qian Hu A Review of Chapter 5 and Chapter 6 Chapter 5 Computer Systems Organization Von Neumann Architecture 4 Components Memory Input/output ALU Control Unit Two major features Stored program concept Sequential

More information

MC9211Computer Organization. Unit 4 Lesson 1 Processor Design

MC9211Computer Organization. Unit 4 Lesson 1 Processor Design MC92Computer Organization Unit 4 Lesson Processor Design Basic Processing Unit Connection Between the Processor and the Memory Memory MAR PC MDR R Control IR R Processo ALU R n- n general purpose registers

More information

EECE.2160: ECE Application Programming

EECE.2160: ECE Application Programming Spring 2018 Programming Assignment #10: Instruction Decoding and File I/O Due Wednesday, 5/9/18, 11:59:59 PM (Extra credit ( 4 pts on final average), no late submissions or resubmissions) 1. Introduction

More information

This Set. Scheduling and Dynamic Execution Definitions From various parts of Chapter 4. Description of Three Dynamic Scheduling Methods

This Set. Scheduling and Dynamic Execution Definitions From various parts of Chapter 4. Description of Three Dynamic Scheduling Methods 10-1 Dynamic Scheduling 10-1 This Set Scheduling and Dynamic Execution Definitions From various parts of Chapter 4. Description of Three Dynamic Scheduling Methods Not yet complete. (Material below may

More information

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 4 The Processor: A Based on P&H Introduction We will examine two MIPS implementations A simplified version A more realistic pipelined

More information

PROBLEMS. 7.1 Why is the Wait-for-Memory-Function-Completed step needed when reading from or writing to the main memory?

PROBLEMS. 7.1 Why is the Wait-for-Memory-Function-Completed step needed when reading from or writing to the main memory? 446 CHAPTER 7 BASIC PROCESSING UNIT (Corrisponde al cap. 10 - Struttura del processore) PROBLEMS 7.1 Why is the Wait-for-Memory-Function-Completed step needed when reading from or writing to the main memory?

More information

ALU Design. 1-bit Full Adder 4-bit Arithmetic circuits. Arithmetic and Logic Unit Flags. Add/Subtract/Increament/Decrement Circuit

ALU Design. 1-bit Full Adder 4-bit Arithmetic circuits. Arithmetic and Logic Unit Flags. Add/Subtract/Increament/Decrement Circuit LU Design -bit Full dder 4-bit rithmetic circuits dd/subtract/increament/decrement Circuit rithmetic and Logic Unit Flags Carry-Out, Sign, Zero, Overflow Shift and Rotate t Operations COE2 (Fall27) LU

More information

ECE251: Tuesday Aug. 29

ECE251: Tuesday Aug. 29 ECE251: Tuesday Aug. 29 ARM Cortex Architecture: Data Movement Loading memory data into registers Storing register data into memory Indexed Addressing Reading: Chapters 1 and 5 Labs: #1 due this week at

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed Lecture 3: General Purpose Processor Design CSCE 665 Advanced VLSI Systems Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, tet etc included in slides are borrowed from various books, websites,

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers Chapter 4 The Von Neumann Model Original slides from Gregory Byrd, North Carolina State University Modified slides by C. Wilcox, S. Rajopadhye, Colorado State University Computing Layers Problems Algorithms

More information

Block diagram view. Datapath = functional units + registers

Block diagram view. Datapath = functional units + registers Computer design an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + datapath Control = finite state machine inputs = machine instruction,

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 15 April 1, 2009 martha@cs.columbia.edu and the rest of the semester Source code (e.g., *.java, *.c) (software) Compiler MIPS instruction set architecture

More information

Chapter 2: Data Manipulation

Chapter 2: Data Manipulation Chapter 2: Data Manipulation Computer Science: An Overview Eleventh Edition by J. Glenn Brookshear Copyright 2012 Pearson Education, Inc. Chapter 2: Data Manipulation 2.1 Computer Architecture 2.2 Machine

More information

What is Pipelining? RISC remainder (our assumptions)

What is Pipelining? RISC remainder (our assumptions) What is Pipelining? Is a key implementation techniques used to make fast CPUs Is an implementation techniques whereby multiple instructions are overlapped in execution It takes advantage of parallelism

More information

Chapter 2: Data Manipulation

Chapter 2: Data Manipulation Chapter 2: Data Manipulation Computer Science: An Overview Eleventh Edition by J. Glenn Brookshear Copyright 2012 Pearson Education, Inc. Chapter 2: Data Manipulation 2.1 Computer Architecture 2.2 Machine

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 4: Logic Operations and Introduction to Conditionals Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Previously examined

More information

Design of Digital Circuits ( L) ETH Zürich, Spring 2017

Design of Digital Circuits ( L) ETH Zürich, Spring 2017 Name: Student ID: Final Examination Design of Digital Circuits (252-0028-00L) ETH Zürich, Spring 2017 Professors Onur Mutlu and Srdjan Capkun Problem 1 (70 Points): Problem 2 (50 Points): Problem 3 (40

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

ECE 341. Lecture # 16

ECE 341. Lecture # 16 ECE 341 Lecture # 16 Instructor: Zeshan Chishti zeshan@ece.pdx.edu November 24, 2014 Portland State University Lecture Topics The Memory System Basic Concepts Semiconductor RAM Memories Organization of

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atanasoff in 1939?) Hard-wired program --

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

More information

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2 Class Notes CS400 Part VI Dr.C.N.Zhang Department of Computer Science University of Regina Regina, SK, Canada, S4S 0A2 C. N. Zhang, CS400 83 VI. CENTRAL PROCESSING UNIT 1 Set 1.1 Addressing Modes and Formats

More information