1. NoCs: What s the point?

Size: px
Start display at page:

Download "1. NoCs: What s the point?"

Transcription

1 1. Nos: What s the point? What is the role of networks-on-chip in future many-core systems? What topologies are most promising for performance? What about for energy scaling? How heavily utilized are Nos in practical applications, and how does that affect your answers? 1

2 21.72mm DDR 3 M DDR 3 M 21.4mm DDR 3 M DDR 3 M On-Die ommunication Power 80 ore TFLOP hip (2006) 12.64mm I/O Area single tile 1.5mm 2.0mm 48 ore Single hip loud (2009) TI LE 26.5mm PLL TI LE JTA G PLL I/O Area TAP lock dist. 11% 8 X 10 Mesh 32 bit links 320 GB/sec bisection 5 GHz Dual FPMAs 36% VR System Interface + I/O 2 ore clusters in 6 X 4 Mesh (why not 6 x 8?) 128 bit links 256 GB/sec bisection 2 GHz M & DDR % ores 70% Router + Links 28% 10-port RF 4% IMEM + DMEM 21% Routers & 2Dmesh 10% Global locking 1% 2

3 Bus The Other Extreme Issues: Slow, < 300MHz Shared, limited scalability? Solutions: Repeaters to increase freq Wide busses for bandwidth Multiple busses for scalability Benefits: Power? Simpler cache coherency Move away from frequency, embrace parallelism 3

4 Mesh Retrospective Bus: Good at board level, does not extend well Transmission line issues: loss and signal integrity, limited frequency Width is limited by pins and board area Broadcast, simple to implement Point to point busses: fast signaling over longer distance Board level, between boards, and racks High frequency, narrow links 1D Ring, 2D Mesh and Torus to reduce latency Higher complexity and latency in each node Hence, emergence of packet switched network But, pt-to-pt packet switched network on a chip? 4

5 Delay (ps) pj/bit Interconnect Delay & Energy u pitch, 0.5V Repeated wire delay Router Delay Wire Delay Length (mm) Wire Energy Router Energy

6 A ircuit Switched Network Routers 8x8 ircuitswitched No Packet-switched Request Plk Src 0 1 n Dest ircuit-switched Acknowledge lk ircuit-switched Data Transmission Routers lk 2mm links ircuit-switched No eliminates intra-route data storage Packet-switching used only for channel requests High bandwidth and energy efficiency (1.6 to 0.6 pj/bit) Anders et al, A 4.1Tb/s Bisection-Bandwidth 560Gb/s/W Streaming ircuit-switched 8 8 Mesh Network-on-hip in 45nm MOS, ISS

7 Hierarchical & Heterogeneous Bus R Bus R Bus Bus to connect over short distances Bus R 2 nd Level Bus Bus R Hierarchy of Busses Or hierarchical circuit and packet switched networks 7

8 Link Width (a.u.) Bytes/Op and Tapered BW Local Regional luster Global Local. Wide Slow 8

9 2. Low-hanging Fruit Asking for both on-chip and chip-to-chip wires, separately: Is there a physical (circuit or logic) technology that, for relatively low investment or cost, can return large dividends in energy and/or performance? Where should we be looking to improve interconnects? Answer: I do not see one today 9

10 3. Bend, but don t break Is there a role for interconnect in overall system resilience? Must interconnects change to maintain or enable large-scale resilience, and if so, how? 10

11 Resiliency Faults Example Permanent faults Stuck-at 0 & 1 Gradual faults Variability Temperature Intermittent faults Soft errors Voltage droops Aging faults Degradation Faults cause errors (data & control) Datapath errors Detected by parity/e Silent data corruption Need HW hooks ontrol errors ontrol lost (Blue screen) Minimal overhead for resiliency Applications System Software Programming system Microcode, Platform Microarchitecture ircuit & Design Error detection Fault isolation Fault confinement Reconfiguration Recovery & Adapt Interconnect plays peripheral role in resiliency 11

12 4. Packaging For chip-to-chip interconnects (or even for on-chip wires), what is the enabling or supporting role played by packaging/packages, and where do we need to make the most direct research investment? Answer: 1. Research investment in 3D design tools and automation (Not in 3D processing and packaging technology) 2. Low cost, low loss, materials, cables etc. 12

13 20MB 3D-Stacked SRAM 80 ores SRAM heat sink heat spreader Polaris die Freya die LGA substrate top metal top metal TSVs 20MB 3D local memory for TFLOP performance BW full core clock (3GHz) ~1TB/s for TFLOP 13

14 3D Memory Architecture On-die Mesh Interconnect Processor Tile Memory Bus 42 Memory Tile Signals and power from package, through memory, to the processor tile TSV Pitch 190mm SRAM die size 275mm 2 SRAM size 256KB per tile, 20MB total SRAM Power 7W SRAM + 2.2W IO Bandwidth 12GB/sec/tile, ~1TB/sec total 14

15 Other Potential Applications Network on a chip IO Hub High Performance Technology (expensive) Small number of high speed IO High Performance PU Heat-sink Lower Performance Technology (inexpensive) Large number of low speed IO IO Hub PU IO Hub Package No fabricated on a separate die with metal system optimized for the interconnect stack IO hub fabricated on older technology with high voltage and legacy support 15

16 Relative 5. Worries What, if anything, keeps you up at night regarding interconnect scalability? Is cost (NRE, complexity, design time) a factor? On-die I energy/mm Off-die I ompute Energy Interconnect Energy 1.6X 6X Technology (nm) Energy, pj/bit Data Rate Gb/s Research Technology (nm) 16

Future of Interconnect Fabric A Contrarian View. Shekhar Borkar June 13, 2010 Intel Corp. 1

Future of Interconnect Fabric A Contrarian View. Shekhar Borkar June 13, 2010 Intel Corp. 1 Future of Interconnect Fabric A ontrarian View Shekhar Borkar June 13, 2010 Intel orp. 1 Outline Evolution of interconnect fabric On die network challenges Some simple contrarian proposals Evaluation and

More information

Networks for Multi-core Chips A A Contrarian View. Shekhar Borkar Aug 27, 2007 Intel Corp.

Networks for Multi-core Chips A A Contrarian View. Shekhar Borkar Aug 27, 2007 Intel Corp. Networks for Multi-core hips A A ontrarian View Shekhar Borkar Aug 27, 2007 Intel orp. 1 Outline Multi-core system outlook On die network challenges A simple contrarian proposal Benefits Summary 2 A Sample

More information

Exascale Computing a fact or a fiction?

Exascale Computing a fact or a fiction? Exascale Computing a fact or a fiction? IPDPS 2013 Shekhar Borkar Intel Corp. May 21, 2013 This research was, in part, funded by the U.S. Government, DOE and DARPA. The views and conclusions contained

More information

Interconnect Challenges in a Many Core Compute Environment. Jerry Bautista, PhD Gen Mgr, New Business Initiatives Intel, Tech and Manuf Grp

Interconnect Challenges in a Many Core Compute Environment. Jerry Bautista, PhD Gen Mgr, New Business Initiatives Intel, Tech and Manuf Grp Interconnect Challenges in a Many Core Compute Environment Jerry Bautista, PhD Gen Mgr, New Business Initiatives Intel, Tech and Manuf Grp Agenda Microprocessor general trends Implications Tradeoffs Summary

More information

Brief Background in Fiber Optics

Brief Background in Fiber Optics The Future of Photonics in Upcoming Processors ECE 4750 Fall 08 Brief Background in Fiber Optics Light can travel down an optical fiber if it is completely confined Determined by Snells Law Various modes

More information

An Evaluation of an Energy Efficient Many-Core SoC with Parallelized Face Detection

An Evaluation of an Energy Efficient Many-Core SoC with Parallelized Face Detection An Evaluation of an Energy Efficient Many-Core SoC with Parallelized Face Detection Hiroyuki Usui, Jun Tanabe, Toru Sano, Hui Xu, and Takashi Miyamori Toshiba Corporation, Kawasaki, Japan Copyright 2013,

More information

4. Networks. in parallel computers. Advances in Computer Architecture

4. Networks. in parallel computers. Advances in Computer Architecture 4. Networks in parallel computers Advances in Computer Architecture System architectures for parallel computers Control organization Single Instruction stream Multiple Data stream (SIMD) All processors

More information

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Aim High Intel Technical Update Teratec 07 Symposium June 20, 2007 Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Risk Factors Today s s presentations contain forward-looking statements.

More information

Challenges for Future Interconnection Networks Hot Interconnects Panel August 24, Dennis Abts Sr. Principal Engineer

Challenges for Future Interconnection Networks Hot Interconnects Panel August 24, Dennis Abts Sr. Principal Engineer Challenges for Future Interconnection Networks Hot Interconnects Panel August 24, 2006 Sr. Principal Engineer Panel Questions How do we build scalable networks that balance power, reliability and performance

More information

Overcoming the Memory System Challenge in Dataflow Processing. Darren Jones, Wave Computing Drew Wingard, Sonics

Overcoming the Memory System Challenge in Dataflow Processing. Darren Jones, Wave Computing Drew Wingard, Sonics Overcoming the Memory System Challenge in Dataflow Processing Darren Jones, Wave Computing Drew Wingard, Sonics Current Technology Limits Deep Learning Performance Deep Learning Dataflow Graph Existing

More information

Different network topologies

Different network topologies Network Topology Network topology is the arrangement of the various elements of a communication network. It is the topological structure of a network and may be depicted physically or logically. Physical

More information

Buses. Disks PCI RDRAM RDRAM LAN. Some slides adapted from lecture by David Culler. Pentium 4 Processor. Memory Controller Hub.

Buses. Disks PCI RDRAM RDRAM LAN. Some slides adapted from lecture by David Culler. Pentium 4 Processor. Memory Controller Hub. es > 100 MB/sec Pentium 4 Processor L1 and L2 caches Some slides adapted from lecture by David Culler 3.2 GB/sec Display Memory Controller Hub RDRAM RDRAM Dual Ultra ATA/100 24 Mbit/sec Disks LAN I/O Controller

More information

BREAKING THE MEMORY WALL

BREAKING THE MEMORY WALL BREAKING THE MEMORY WALL CS433 Fall 2015 Dimitrios Skarlatos OUTLINE Introduction Current Trends in Computer Architecture 3D Die Stacking The memory Wall Conclusion INTRODUCTION Ideal Scaling of power

More information

Interconnection Networks

Interconnection Networks Lecture 17: Interconnection Networks Parallel Computer Architecture and Programming A comment on web site comments It is okay to make a comment on a slide/topic that has already been commented on. In fact

More information

Chapter 9 Multiprocessors

Chapter 9 Multiprocessors ECE200 Computer Organization Chapter 9 Multiprocessors David H. lbonesi and the University of Rochester Henk Corporaal, TU Eindhoven, Netherlands Jari Nurmi, Tampere University of Technology, Finland University

More information

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems.

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. Cluster Networks Introduction Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. As usual, the driver is performance

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Edgar Gabriel Fall 2015 Flynn s Taxonomy

More information

A 1.5GHz Third Generation Itanium Processor

A 1.5GHz Third Generation Itanium Processor A 1.5GHz Third Generation Itanium Processor Jason Stinson, Stefan Rusu Intel Corporation, Santa Clara, CA 1 Outline Processor highlights Process technology details Itanium processor evolution Block diagram

More information

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 26: Interconnects James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L26 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Housekeeping Your goal today get an overview of parallel

More information

Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP

Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP Presenter: Course: EEC 289Q: Reconfigurable Computing Course Instructor: Professor Soheil Ghiasi Outline Overview of M.I.T. Raw processor

More information

TDT Appendix E Interconnection Networks

TDT Appendix E Interconnection Networks TDT 4260 Appendix E Interconnection Networks Review Advantages of a snooping coherency protocol? Disadvantages of a snooping coherency protocol? Advantages of a directory coherency protocol? Disadvantages

More information

NETWORK TOPOLOGIES. Application Notes. Keywords Topology, P2P, Bus, Ring, Star, Mesh, Tree, PON, Ethernet. Author John Peter & Timo Perttunen

NETWORK TOPOLOGIES. Application Notes. Keywords Topology, P2P, Bus, Ring, Star, Mesh, Tree, PON, Ethernet. Author John Peter & Timo Perttunen Application Notes NETWORK TOPOLOGIES Author John Peter & Timo Perttunen Issued June 2014 Abstract Network topology is the way various components of a network (like nodes, links, peripherals, etc) are arranged.

More information

Network on Chip Architecture: An Overview

Network on Chip Architecture: An Overview Network on Chip Architecture: An Overview Md Shahriar Shamim & Naseef Mansoor 12/5/2014 1 Overview Introduction Multi core chip Challenges Network on Chip Architecture Regular Topology Irregular Topology

More information

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico February 29, 2016 CPD

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Spring 2010 Flynn s Taxonomy SISD:

More information

Lecture: Memory, Multiprocessors. Topics: wrap-up of memory systems, intro to multiprocessors and multi-threaded programming models

Lecture: Memory, Multiprocessors. Topics: wrap-up of memory systems, intro to multiprocessors and multi-threaded programming models Lecture: Memory, Multiprocessors Topics: wrap-up of memory systems, intro to multiprocessors and multi-threaded programming models 1 Refresh Every DRAM cell must be refreshed within a 64 ms window A row

More information

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico September 26, 2011 CPD

More information

KiloCore: A 32 nm 1000-Processor Array

KiloCore: A 32 nm 1000-Processor Array KiloCore: A 32 nm 1000-Processor Array Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas, Bin Liu, Anh Tran, Emmanuel Adeagbo, Bevan Baas University of California, Davis VLSI Computation

More information

BlueGene/L. Computer Science, University of Warwick. Source: IBM

BlueGene/L. Computer Science, University of Warwick. Source: IBM BlueGene/L Source: IBM 1 BlueGene/L networking BlueGene system employs various network types. Central is the torus interconnection network: 3D torus with wrap-around. Each node connects to six neighbours

More information

Part 1 of 3 -Understand the hardware components of computer systems

Part 1 of 3 -Understand the hardware components of computer systems Part 1 of 3 -Understand the hardware components of computer systems The main circuit board, the motherboard provides the base to which a number of other hardware devices are connected. Devices that connect

More information

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle M7: Next Generation SPARC Hotchips 26 August 12, 2014 Stephen Phillips Senior Director, SPARC Architecture Oracle Safe Harbor Statement The following is intended to outline our general product direction.

More information

Lecture 8: Virtual Memory. Today: DRAM innovations, virtual memory (Sections )

Lecture 8: Virtual Memory. Today: DRAM innovations, virtual memory (Sections ) Lecture 8: Virtual Memory Today: DRAM innovations, virtual memory (Sections 5.3-5.4) 1 DRAM Technology Trends Improvements in technology (smaller devices) DRAM capacities double every two years, but latency

More information

The Processor That Don't Cost a Thing

The Processor That Don't Cost a Thing The Processor That Don't Cost a Thing Peter Hsu, Ph.D. Peter Hsu Consulting, Inc. http://cs.wisc.edu/~peterhsu DRAM+Processor Commercial demand Heat stiffling industry's growth Heat density limits small

More information

Embedded Systems: Hardware Components (part II) Todor Stefanov

Embedded Systems: Hardware Components (part II) Todor Stefanov Embedded Systems: Hardware Components (part II) Todor Stefanov Leiden Embedded Research Center, Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded

More information

Interconnection Networks

Interconnection Networks Lecture 18: Interconnection Networks Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Credit: many of these slides were created by Michael Papamichael This lecture is partially

More information

SoC Communication Complexity Problem

SoC Communication Complexity Problem When is the use of a Most Effective and Why MPSoC, June 2007 K. Charles Janac, Chairman, President and CEO SoC Communication Complexity Problem Arbitration problem in an SoC with 30 initiators: Hierarchical

More information

SOFTWARE-DEFINED MEMORY HIERARCHIES: SCALABILITY AND QOS IN THOUSAND-CORE SYSTEMS

SOFTWARE-DEFINED MEMORY HIERARCHIES: SCALABILITY AND QOS IN THOUSAND-CORE SYSTEMS SOFTWARE-DEFINED MEMORY HIERARCHIES: SCALABILITY AND QOS IN THOUSAND-CORE SYSTEMS DANIEL SANCHEZ MIT CSAIL IAP MEETING MAY 21, 2013 Research Agenda Lack of technology progress Moore s Law still alive Power

More information

Gigascale Integration Design Challenges & Opportunities. Shekhar Borkar Circuit Research, Intel Labs October 24, 2004

Gigascale Integration Design Challenges & Opportunities. Shekhar Borkar Circuit Research, Intel Labs October 24, 2004 Gigascale Integration Design Challenges & Opportunities Shekhar Borkar Circuit Research, Intel Labs October 24, 2004 Outline CMOS technology challenges Technology, circuit and μarchitecture solutions Integration

More information

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Parallel and Distributed Computing MSc in Information Systems and Computer Engineering DEA in Computational Engineering Department of Computer

More information

Interconnection Networks

Interconnection Networks Lecture 15: Interconnection Networks Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2016 Credit: some slides created by Michael Papamichael, others based on slides from Onur Mutlu

More information

Fault Tolerant and Secure Architectures for On Chip Networks With Emerging Interconnect Technologies. Mohsin Y Ahmed Conlan Wesson

Fault Tolerant and Secure Architectures for On Chip Networks With Emerging Interconnect Technologies. Mohsin Y Ahmed Conlan Wesson Fault Tolerant and Secure Architectures for On Chip Networks With Emerging Interconnect Technologies Mohsin Y Ahmed Conlan Wesson Overview NoC: Future generation of many core processor on a single chip

More information

Lecture 20: Distributed Memory Parallelism. William Gropp

Lecture 20: Distributed Memory Parallelism. William Gropp Lecture 20: Distributed Parallelism William Gropp www.cs.illinois.edu/~wgropp A Very Short, Very Introductory Introduction We start with a short introduction to parallel computing from scratch in order

More information

Outline Computer Networking. Circuit Switching. Circuit Switching

Outline Computer Networking. Circuit Switching. Circuit Switching line 5-5- omputer Networking 5-6 Lecture : Virtual ircuits Peter Steenkiste ircuit switching refresher Virtual ircuits - general Why virtual circuits? How virtual circuits? -- tag switching! Two modern

More information

HyperTransport. Dennis Vega Ryan Rawlins

HyperTransport. Dennis Vega Ryan Rawlins HyperTransport Dennis Vega Ryan Rawlins What is HyperTransport (HT)? A point to point interconnect technology that links processors to other processors, coprocessors, I/O controllers, and peripheral controllers.

More information

Transputers. The Lost Architecture. Bryan T. Meyers. December 8, Bryan T. Meyers Transputers December 8, / 27

Transputers. The Lost Architecture. Bryan T. Meyers. December 8, Bryan T. Meyers Transputers December 8, / 27 Transputers The Lost Architecture Bryan T. Meyers December 8, 2014 Bryan T. Meyers Transputers December 8, 2014 1 / 27 Table of Contents 1 What is a Transputer? History Architecture 2 Examples and Uses

More information

Hybrid On-chip Data Networks. Gilbert Hendry Keren Bergman. Lightwave Research Lab. Columbia University

Hybrid On-chip Data Networks. Gilbert Hendry Keren Bergman. Lightwave Research Lab. Columbia University Hybrid On-chip Data Networks Gilbert Hendry Keren Bergman Lightwave Research Lab Columbia University Chip-Scale Interconnection Networks Chip multi-processors create need for high performance interconnects

More information

Lecture 15: DRAM Main Memory Systems. Today: DRAM basics and innovations (Section 2.3)

Lecture 15: DRAM Main Memory Systems. Today: DRAM basics and innovations (Section 2.3) Lecture 15: DRAM Main Memory Systems Today: DRAM basics and innovations (Section 2.3) 1 Memory Architecture Processor Memory Controller Address/Cmd Bank Row Buffer DIMM Data DIMM: a PCB with DRAM chips

More information

Projects on the Intel Single-chip Cloud Computer (SCC)

Projects on the Intel Single-chip Cloud Computer (SCC) Projects on the Intel Single-chip Cloud Computer (SCC) Jan-Arne Sobania Dr. Peter Tröger Prof. Dr. Andreas Polze Operating Systems and Middleware Group Hasso Plattner Institute for Software Systems Engineering

More information

Platforms Design Challenges with many cores

Platforms Design Challenges with many cores latforms Design hallenges with many cores Raj Yavatkar, Intel Fellow Director, Systems Technology Lab orporate Technology Group 1 Environmental Trends: ell 2 *Other names and brands may be claimed as the

More information

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy Chapter 5B Large and Fast: Exploiting Memory Hierarchy One Transistor Dynamic RAM 1-T DRAM Cell word access transistor V REF TiN top electrode (V REF ) Ta 2 O 5 dielectric bit Storage capacitor (FET gate,

More information

Chapter 4 NETWORK HARDWARE

Chapter 4 NETWORK HARDWARE Chapter 4 NETWORK HARDWARE 1 Network Devices As Organizations grow, so do their networks Growth in number of users Geographical Growth Network Devices : Are products used to expand or connect networks.

More information

PC I/O. May 7, Howard Huang 1

PC I/O. May 7, Howard Huang 1 PC I/O Today wraps up the I/O material with a little bit about PC I/O systems. Internal buses like PCI and ISA are critical. External buses like USB and Firewire are becoming more important. Today also

More information

Lecture: Interconnection Networks

Lecture: Interconnection Networks Lecture: Interconnection Networks Topics: Router microarchitecture, topologies Final exam next Tuesday: same rules as the first midterm 1 Packets/Flits A message is broken into multiple packets (each packet

More information

Maximizing heterogeneous system performance with ARM interconnect and CCIX

Maximizing heterogeneous system performance with ARM interconnect and CCIX Maximizing heterogeneous system performance with ARM interconnect and CCIX Neil Parris, Director of product marketing Systems and software group, ARM Teratec June 2017 Intelligent flexible cloud to enable

More information

A Dual-Core Multi-Threaded Xeon Processor with 16MB L3 Cache

A Dual-Core Multi-Threaded Xeon Processor with 16MB L3 Cache A Dual-Core Multi-Threaded Xeon Processor with 16MB L3 Cache Stefan Rusu Intel Corporation Santa Clara, CA Intel and the Intel logo are registered trademarks of Intel Corporation or its subsidiaries in

More information

Lecture 18: DRAM Technologies

Lecture 18: DRAM Technologies Lecture 18: DRAM Technologies Last Time: Cache and Virtual Memory Review Today DRAM organization or, why is DRAM so slow??? Lecture 18 1 Main Memory = DRAM Lecture 18 2 Basic DRAM Architecture Lecture

More information

L évolution des architectures et des technologies d intégration des circuits intégrés dans les Data centers

L évolution des architectures et des technologies d intégration des circuits intégrés dans les Data centers I N S T I T U T D E R E C H E R C H E T E C H N O L O G I Q U E L évolution des architectures et des technologies d intégration des circuits intégrés dans les Data centers 10/04/2017 Les Rendez-vous de

More information

Joint consideration of performance, reliability and fault tolerance in regular Networks-on-Chip via multiple spatially-independent interface terminals

Joint consideration of performance, reliability and fault tolerance in regular Networks-on-Chip via multiple spatially-independent interface terminals Joint consideration of performance, reliability and fault tolerance in regular Networks-on-Chip via multiple spatially-independent interface terminals Philipp Gorski, Tim Wegner, Dirk Timmermann University

More information

THE PATH TO EXASCALE COMPUTING. Bill Dally Chief Scientist and Senior Vice President of Research

THE PATH TO EXASCALE COMPUTING. Bill Dally Chief Scientist and Senior Vice President of Research THE PATH TO EXASCALE COMPUTING Bill Dally Chief Scientist and Senior Vice President of Research The Goal: Sustained ExaFLOPs on problems of interest 2 Exascale Challenges Energy efficiency Programmability

More information

ECE/CS 757: Advanced Computer Architecture II Interconnects

ECE/CS 757: Advanced Computer Architecture II Interconnects ECE/CS 757: Advanced Computer Architecture II Interconnects Instructor:Mikko H Lipasti Spring 2017 University of Wisconsin-Madison Lecture notes created by Natalie Enright Jerger Lecture Outline Introduction

More information

Physical Organization of Parallel Platforms. Alexandre David

Physical Organization of Parallel Platforms. Alexandre David Physical Organization of Parallel Platforms Alexandre David 1.2.05 1 Static vs. Dynamic Networks 13-02-2008 Alexandre David, MVP'08 2 Interconnection networks built using links and switches. How to connect:

More information

Lecture 2 Parallel Programming Platforms

Lecture 2 Parallel Programming Platforms Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple

More information

udirec: Unified Diagnosis and Reconfiguration for Frugal Bypass of NoC Faults

udirec: Unified Diagnosis and Reconfiguration for Frugal Bypass of NoC Faults 1/45 1/22 MICRO-46, 9 th December- 213 Davis, California udirec: Unified Diagnosis and Reconfiguration for Frugal Bypass of NoC Faults Ritesh Parikh and Valeria Bertacco Electrical Engineering & Computer

More information

The Road from Peta to ExaFlop

The Road from Peta to ExaFlop The Road from Peta to ExaFlop Andreas Bechtolsheim June 23, 2009 HPC Driving the Computer Business Server Unit Mix (IDC 2008) Enterprise HPC Web 100 75 50 25 0 2003 2008 2013 HPC grew from 13% of units

More information

EECS 598: Integrating Emerging Technologies with Computer Architecture. Lecture 12: On-Chip Interconnects

EECS 598: Integrating Emerging Technologies with Computer Architecture. Lecture 12: On-Chip Interconnects 1 EECS 598: Integrating Emerging Technologies with Computer Architecture Lecture 12: On-Chip Interconnects Instructor: Ron Dreslinski Winter 216 1 1 Announcements Upcoming lecture schedule Today: On-chip

More information

Intel QuickPath Interconnect Electrical Architecture Overview

Intel QuickPath Interconnect Electrical Architecture Overview Chapter 1 Intel QuickPath Interconnect Electrical Architecture Overview The art of progress is to preserve order amid change and to preserve change amid order Alfred North Whitehead The goal of this chapter

More information

What is a Network? A connection of two or more computers so that they can share resources.

What is a Network? A connection of two or more computers so that they can share resources. NETWORKS What is a Network? A connection of two or more computers so that they can share resources. Network Benefits Remote access Sharing files & resources Communication Cost Maintenance Communication

More information

Concepts for Robust NoC Communication

Concepts for Robust NoC Communication oncepts for Robust o ommunication Martin Radetzki Department of mbedded ystems ngineering Institute of omputer Architecture and omputer ngineering Universität tuttgart www.iti.uni-stuttgart.de/ese.phtml

More information

High-Speed NAND Flash

High-Speed NAND Flash High-Speed NAND Flash Design Considerations to Maximize Performance Presented by: Robert Pierce Sr. Director, NAND Flash Denali Software, Inc. History of NAND Bandwidth Trend MB/s 20 60 80 100 200 The

More information

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E)

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Lecture 12: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) 1 Topologies Internet topologies are not very regular they grew

More information

Parallel Architectures

Parallel Architectures Parallel Architectures Part 1: The rise of parallel machines Intel Core i7 4 CPU cores 2 hardware thread per core (8 cores ) Lab Cluster Intel Xeon 4/10/16/18 CPU cores 2 hardware thread per core (8/20/32/36

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 7: Memory Organization Part II

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 7: Memory Organization Part II ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 7: Organization Part II Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn,

More information

Ting Wu, Chi-Ying Tsui, Mounir Hamdi Hong Kong University of Science & Technology Hong Kong SAR, China

Ting Wu, Chi-Ying Tsui, Mounir Hamdi Hong Kong University of Science & Technology Hong Kong SAR, China CMOS Crossbar Ting Wu, Chi-Ying Tsui, Mounir Hamdi Hong Kong University of Science & Technology Hong Kong SAR, China OUTLINE Motivations Problems of Designing Large Crossbar Our Approach - Pipelined MUX

More information

The Memory Hierarchy 1

The Memory Hierarchy 1 The Memory Hierarchy 1 What is a cache? 2 What problem do caches solve? 3 Memory CPU Abstraction: Big array of bytes Memory memory 4 Performance vs 1980 Processor vs Memory Performance Memory is very slow

More information

Introduction Electrical Considerations Data Transfer Synchronization Bus Arbitration VME Bus Local Buses PCI Bus PCI Bus Variants Serial Buses

Introduction Electrical Considerations Data Transfer Synchronization Bus Arbitration VME Bus Local Buses PCI Bus PCI Bus Variants Serial Buses Introduction Electrical Considerations Data Transfer Synchronization Bus Arbitration VME Bus Local Buses PCI Bus PCI Bus Variants Serial Buses 1 Most of the integrated I/O subsystems are connected to the

More information

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013 NetSpeed ORION: A New Approach to Design On-chip Interconnects August 26 th, 2013 INTERCONNECTS BECOMING INCREASINGLY IMPORTANT Growing number of IP cores Average SoCs today have 100+ IPs Mixing and matching

More information

Memory Systems IRAM. Principle of IRAM

Memory Systems IRAM. Principle of IRAM Memory Systems 165 other devices of the module will be in the Standby state (which is the primary state of all RDRAM devices) or another state with low-power consumption. The RDRAM devices provide several

More information

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 1 Multilevel Memories Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Based on the material prepared by Krste Asanovic and Arvind CPU-Memory Bottleneck 6.823

More information

Intel Enterprise Processors Technology

Intel Enterprise Processors Technology Enterprise Processors Technology Kosuke Hirano Enterprise Platforms Group March 20, 2002 1 Agenda Architecture in Enterprise Xeon Processor MP Next Generation Itanium Processor Interconnect Technology

More information

EEM 486: Computer Architecture. Lecture 9. Memory

EEM 486: Computer Architecture. Lecture 9. Memory EEM 486: Computer Architecture Lecture 9 Memory The Big Picture Designing a Multiple Clock Cycle Datapath Processor Control Memory Input Datapath Output The following slides belong to Prof. Onur Mutlu

More information

Tile Processor (TILEPro64)

Tile Processor (TILEPro64) Tile Processor Case Study of Contemporary Multicore Fall 2010 Agarwal 6.173 1 Tile Processor (TILEPro64) Performance # of cores On-chip cache (MB) Cache coherency Operations (16/32-bit BOPS) On chip bandwidth

More information

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc Scaling to Petaflop Ola Torudbakken Distinguished Engineer Sun Microsystems, Inc HPC Market growth is strong CAGR increased from 9.2% (2006) to 15.5% (2007) Market in 2007 doubled from 2003 (Source: IDC

More information

DRAM Main Memory. Dual Inline Memory Module (DIMM)

DRAM Main Memory. Dual Inline Memory Module (DIMM) DRAM Main Memory Dual Inline Memory Module (DIMM) Memory Technology Main memory serves as input and output to I/O interfaces and the processor. DRAMs for main memory, SRAM for caches Metrics: Latency,

More information

Vector Engine Processor of SX-Aurora TSUBASA

Vector Engine Processor of SX-Aurora TSUBASA Vector Engine Processor of SX-Aurora TSUBASA Shintaro Momose, Ph.D., NEC Deutschland GmbH 9 th October, 2018 WSSP 1 NEC Corporation 2018 Contents 1) Introduction 2) VE Processor Architecture 3) Performance

More information

POWER7: IBM's Next Generation Server Processor

POWER7: IBM's Next Generation Server Processor POWER7: IBM's Next Generation Server Processor Acknowledgment: This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002 Outline

More information

Module 16: Distributed System Structures

Module 16: Distributed System Structures Chapter 16: Distributed System Structures Module 16: Distributed System Structures Motivation Types of Network-Based Operating Systems Network Structure Network Topology Communication Structure Communication

More information

The Design of the KiloCore Chip

The Design of the KiloCore Chip The Design of the KiloCore Chip Aaron Stillmaker*, Brent Bohnenstiehl, Bevan Baas DAC 2017: Design Challenges of New Processor Architectures University of California, Davis VLSI Computation Laboratory

More information

Storage Systems. Storage Systems

Storage Systems. Storage Systems Storage Systems Storage Systems We already know about four levels of storage: Registers Cache Memory Disk But we've been a little vague on how these devices are interconnected In this unit, we study Input/output

More information

edram to the Rescue Why edram 1/3 Area 1/5 Power SER 2-3 Fit/Mbit vs 2k-5k for SRAM Smaller is faster What s Next?

edram to the Rescue Why edram 1/3 Area 1/5 Power SER 2-3 Fit/Mbit vs 2k-5k for SRAM Smaller is faster What s Next? edram to the Rescue Why edram 1/3 Area 1/5 Power SER 2-3 Fit/Mbit vs 2k-5k for SRAM Smaller is faster What s Next? 1 Integrating DRAM and Logic Integrate with Logic without impacting logic Performance,

More information

Sophon SC1 White Paper

Sophon SC1 White Paper Sophon SC1 White Paper V10 Copyright 2017 BITMAIN TECHNOLOGIES LIMITED All rights reserved Version Update Content Release Date V10-2017/10/25 Copyright 2017 BITMAIN TECHNOLOGIES LIMITED All rights reserved

More information

The Tofu Interconnect D

The Tofu Interconnect D The Tofu Interconnect D 11 September 2018 Yuichiro Ajima, Takahiro Kawashima, Takayuki Okamoto, Naoyuki Shida, Kouichi Hirai, Toshiyuki Shimizu, Shinya Hiramoto, Yoshiro Ikeda, Takahide Yoshikawa, Kenji

More information

FCUDA-NoC: A Scalable and Efficient Network-on-Chip Implementation for the CUDA-to-FPGA Flow

FCUDA-NoC: A Scalable and Efficient Network-on-Chip Implementation for the CUDA-to-FPGA Flow FCUDA-NoC: A Scalable and Efficient Network-on-Chip Implementation for the CUDA-to-FPGA Flow Abstract: High-level synthesis (HLS) of data-parallel input languages, such as the Compute Unified Device Architecture

More information

CSC630/CSC730: Parallel Computing

CSC630/CSC730: Parallel Computing CSC630/CSC730: Parallel Computing Parallel Computing Platforms Chapter 2 (2.4.1 2.4.4) Dr. Joe Zhang PDC-4: Topology 1 Content Parallel computing platforms Logical organization (a programmer s view) Control

More information

Hardware Evolution in Data Centers

Hardware Evolution in Data Centers Hardware Evolution in Data Centers 2004 2008 2011 2000 2013 2014 Trend towards customization Increase work done per dollar (CapEx + OpEx) Paolo Costa Rethinking the Network Stack for Rack-scale Computers

More information

The Impact of Optics on HPC System Interconnects

The Impact of Optics on HPC System Interconnects The Impact of Optics on HPC System Interconnects Mike Parker and Steve Scott Hot Interconnects 2009 Manhattan, NYC Will cost-effective optics fundamentally change the landscape of networking? Yes. Changes

More information

1 Copyright 2013 Oracle and/or its affiliates. All rights reserved.

1 Copyright 2013 Oracle and/or its affiliates. All rights reserved. 1 Copyright 2013 Oracle and/or its affiliates. All rights reserved. Bixby: the Scalability and Coherence Directory ASIC in Oracle's Highly Scalable Enterprise Systems Thomas Wicki and Jürgen Schulz Senior

More information

Lecture 25: Busses. A Typical Computer Organization

Lecture 25: Busses. A Typical Computer Organization S 09 L25-1 18-447 Lecture 25: Busses James C. Hoe Dept of ECE, CMU April 27, 2009 Announcements: Project 4 due this week (no late check off) HW 4 due today Handouts: Practice Final Solutions A Typical

More information

Intel: Driving the Future of IT Technologies. Kevin C. Kahn Senior Fellow, Intel Labs Intel Corporation

Intel: Driving the Future of IT Technologies. Kevin C. Kahn Senior Fellow, Intel Labs Intel Corporation Research @ Intel: Driving the Future of IT Technologies Kevin C. Kahn Senior Fellow, Intel Labs Intel Corporation kp Intel Labs Mission To fuel Intel s growth, we deliver breakthrough technologies that

More information

MIMD Overview. Intel Paragon XP/S Overview. XP/S Usage. XP/S Nodes and Interconnection. ! Distributed-memory MIMD multicomputer

MIMD Overview. Intel Paragon XP/S Overview. XP/S Usage. XP/S Nodes and Interconnection. ! Distributed-memory MIMD multicomputer MIMD Overview Intel Paragon XP/S Overview! MIMDs in the 1980s and 1990s! Distributed-memory multicomputers! Intel Paragon XP/S! Thinking Machines CM-5! IBM SP2! Distributed-memory multicomputers with hardware

More information

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance Lecture 13: Interconnection Networks Topics: lots of background, recent innovations for power and performance 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees,

More information