Representations of Terms Representations of Boolean Networks

Size: px
Start display at page:

Download "Representations of Terms Representations of Boolean Networks"

Transcription

1 Representations of Terms Representations of Boolean Networks Logic Circuits Design Seminars WS2010/2011, Lecture 4 Ing. Petr Fišer, Ph.D. Department of Digital Design Faculty of Information Technology Czech Technical University in Prague Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

2 Outline Combinational circuits are assumed 2-level representations (SOP, CNF, ) Truth table Ternary tree (trie) Multi-level network representations General network AIG PI-SCN-4, ČVUT FIT, Petr Fišer,

3 Function Representations Zoo Sum-of-Products (SOP) E.g. ab + bc + cd Product-of-Sums (POS, CNF) E.g. (a + b ).(b + c ).(c + d) Disjoint Sum-of-Products (DSOP) E.g. ab + bc + bcd + a b cd SOP terms are mutually disjoint (any two terms have empty intersection) EXOR Sum-of-Products (ESOP) E.g. ab cd bc XOR instead of OR Also called Reed-Muller expressions Sum of Pseudoproducts (SPP) E.g. (a d)(b c) + a(b d ) Sum of products of XORs 3-level PI-SCN-4, ČVUT FIT, Petr Fišer,

4 Truth Table (SOP, POS, ESOP, ) Possible term encodings: 1. One char for one literal ( 1, 0, X ) + Fast random access - Big memory wasting (3 out of 256 symbols used = 1.17% efficiency) 2. Bit-parallel representation Minterms: 32 (64) variables per machine word More-dimensional terms: 32 (64) variables per 2 words Example: f(a, b, c) = a b = (01X) = (010), (001) + Much less memory wasting (3 out of 4 symbols) + Parallel execution of arithmetic operations (one instruction) - Slower random access (but only logic operations are necessary to address one bit) PI-SCN-4, ČVUT FIT, Petr Fišer,

5 Truth Table (SOP, POS) Bit-parallel representation + Parallel execution of arithmetic operations Example of encoding: literal 0 : [v, d] = [0, 0] literal 1 : [v, d] = [1, 0] literal X : [v, d] = [0, 1] Example of Boolean operations: t 3 = t 1 AND t 2 : t v 3 = t v 1 & t v 2 t d 3 = (t d 1 & t 2d ) (t d 1 & t 2v ) (t v 1 & t 2d ) Many logic operations big minus PI-SCN-4, ČVUT FIT, Petr Fišer,

6 Trie In computer science, a trie, or prefix tree, is an ordered tree data structure that is used to store an associative array where the keys are usually strings. The term trie comes from "retrieval. Following the etymology, the inventor, Edward Fredkin, pronounces it /tri:/. However, it is pronounced /traɪ/ by other authors. (Wikipedia) PI-SCN-4, ČVUT FIT, Petr Fišer,

7 Trie A tree Nodes have several successors Common prefixes are shared PI-SCN-4, ČVUT FIT, Petr Fišer,

8 Ternary Tree Used for storing of terms (of any kind) Each level associated with one variable given variable ordering Constant depth = number of variables Nodes may have up to 3 successors 0, 1, X Existence of a terminal represents existence of a term 0 X 1 PI-SCN-4, ČVUT FIT, Petr Fišer,

9 Ternary Tree a 0 1 X b c d e a b c d e a b c d b de b de ab ce abe abcde PI-SCN-4, ČVUT FIT, Petr Fišer,

10 Ternary Tree Properties: Insertion of a term in O(n) Looking up a term in O(n) Size: between n (one term) and 3 n+1 (all terms) Truth table: between n (one term) and n.3 n (all terms) Comparison of look-up speeds: Ternary tree n On success On failure < n Truth table n n.p n.p PI-SCN-4, ČVUT FIT, Petr Fišer,

11 Ternary Tree Look-Up Example Searching: ab c d (1001-) a 0 X 1 b failure c d e a b c d e a b c d b de b de ab ce abe abcde PI-SCN-4, ČVUT FIT, Petr Fišer,

12 Ternary Trees References E. Fredkin (1960). "Trie Memory". Communications of the ACM 3 (9): pp T. Sasao, "Ternary Decision Diagrams: Survey, In Proceedings of the 27th International Symposium on Multiple-Valued Logic (ISMVL), 1997, pp S. Hassoun and T. Sasao, Logic Synthesis and Verification", Boston, MA, Kluwer Academic Publishers, 2002, 454 p. P. Fišer and D. Toman, A Fast SOP Minimizer for Logic Funcions Described by Many Product Terms, Proc. of 12th Euromicro Conference on Digital Systems Design (DSD'09), Patras (Greece), , pp PI-SCN-4, ČVUT FIT, Petr Fišer,

13 Boolean Networks - Terminology Boolean (logic) network: directed acyclic (multi)graph Node: a gate (AND, OR, XOR, MUX, buffer, inverter, ) or a primary input/output Generally node has any number of inputs and outputs (?) Signal connection between nodes. Edge in the graph (do not use wire!) Node fan-in: set of nodes connected to the node inputs or the number of node inputs (= number of nodes connected to the node inputs) Node fan-out: set of nodes connected to the node outputs or the number of nodes connected to the node outputs Primary input (PI): node with no fan-in or signals driven by the environment Primary output (PO): node with no fan-out or signals driving the environment PI-SCN-4, ČVUT FIT, Petr Fišer,

14 Boolean Networks - Terminology Transitive fan-in of a node: set of all nodes driving the node, up to PIs Transitive fan-out of a node: set of all nodes driven by the node, up to POs Distance of two nodes: maximum number of signals one needs to pass to reach one node from the other one Level of a node: maximum distance from any of the PIs the level of PIs is 0 Network depth (or network levels ): maximum level Branching: one node output (or PI) feeds two or more nodes (or POs) Reconvergence: there are two or more paths from one node to another PI-SCN-4, ČVUT FIT, Petr Fišer,

15 Random Logic No restriction of node types node implements any function No restriction of the number of node inputs/outputs the most general network description but difficult to manipulate too complex operations big granularity PI-SCN-4, ČVUT FIT, Petr Fišer,

16 Networks Described in BLIF (Berkeley Logic Interchange Format) Each node is a single-output PLA Nodes have one output only Network of single-output nodes implementing any function Used in SIS, MVSIS, ABC G1 G3 G6 G2 G7 G10 G11 G16 G19 PI-SCN-4, ČVUT FIT, Petr Fišer, G22 G23.model C17.inputs G1 G2 G3 G6 G7.outputs G22 G23.names G1 G3 G names G3 G6 G names G11 G2 G names G11 G7 G names G10 G16 G names G16 G19 G end

17 Reduced Boolean Circuits (RBCs) Directed Acyclic Graph (DAG) Primary inputs (variables) are terminals Primary outputs are roots Nodes: Restricted to 2 inputs Operator nodes (AND, OR, XOR, ) Any binary operation Variable nodes terminals Edges can be complemented PI-SCN-4, ČVUT FIT, Petr Fišer,

18 And-Inverter Graphs (AIGs) Directed acyclic graph (DAG) Primary inputs (variables) are terminals Primary outputs are roots Node types restricted to: 2-input AND Inverter (implemented as a complemented edge) Advantages: Universality any network can be simply converted to AIG Scalability no size explosion (like, e.g., in BDDs) Low granularity good for technology mapping High flexibility parts of AIG may be easily restructured Simple operations Implemented in: ABC ( AIGER format ( PI-SCN-4, ČVUT FIT, Petr Fišer,

19 And-Inverter Graphs (AIGs) Example Inverter AND Not canonical PI-SCN-4, ČVUT FIT, Petr Fišer,

20 And-Inverter Graphs (AIGs) Balancing To reduce the depth By application of the associative transform a(bc) = ab(c) Linear time complexity PI-SCN-4, ČVUT FIT, Petr Fišer,

21 And-Inverter Graphs (AIGs) Structural hashing (strashing) Detect isomorphic subgraphs (like in BDDs) Hash table (unique table), AIG manager two nodes having equal fan-ins are merged but canonicity not ensured (only within one logic level) Linear time complexity PI-SCN-4, ČVUT FIT, Petr Fišer,

22 Functionally Reduced AIGs (FRAIGs) BDD, SAT and simulation is used to detect functionally equivalent nodes Ensures functional canonicity of AIG nodes Each node represents a unique function, in terms of PIs (no two nodes in AIG represent the same function) FRAIGs are semi-canonical (one function may have different FRAIGs) PI-SCN-4, ČVUT FIT, Petr Fišer,

23 Structural Choices - Lossless Synthesis Motivation Main disadvantage of standard synthesis processes: strong dependency on the currently processed structure Synthesis is executed in several consecutive steps The processed structure is lost in each synthesis step Sometimes it may be crucial what if I choose a bad synthesis procedure? Everything s lost! What if I want different optimization criteria? Technology mapping resolves this, synthesis steps usually ignore my requirements for the final result Original circuit (BLIF) Synthesis step Optimized circuit (BLIF) Synthesis step Optimized circuit (AIG)... Technology mapping PI-SCN-4, ČVUT FIT, Petr Fišer,

24 Structural Choices - Lossless Synthesis Lossless synthesis Results of all synthesis procedures are put together Technology mapping procedure exploits these choices Original circuit (BLIF) Synthesis step Optimized circuit (BLIF) Synthesis step Optimized circuit (AIG) Choices buffer... Technology mapping PI-SCN-4, ČVUT FIT, Petr Fišer,

25 And-Inverter Graphs (AIGs) Applications: Logic synthesis SAT-solving Technology mapping Formal verification (equivalence checking, model checking) Attempt for a unifying representation in EDA, throughout the whole design-flow PI-SCN-4, ČVUT FIT, Petr Fišer,

26 And-Inverter Graphs (AIGs) References P. Bjesse and A. Boralv, "DAG-aware circuit compression for formal verification", Proc. ICCAD 04, pp A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG rewriting: A fresh look at combinational logic synthesis", Proc. DAC '06, pp A. Mishchenko and R. Brayton, Scalable logic synthesis using a simple circuit structure, Proc. IWLS 06. A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton, FRAIGs: A unifying representation for logic synthesis and verification, ERL Technical Report, EECS Dept., U. C. Berkeley, March S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, Reducing structural bias in technology mapping, Proc. ICCAD '05, pp A. Mishchenko, S. Chatterjee, and R. Brayton, Improvements to technology mapping for LUT-based FPGAs, Proc. FPGA 06, pp PI-SCN-4, ČVUT FIT, Petr Fišer,

Sequential Logic Synthesis

Sequential Logic Synthesis Sequential Logic Synthesis Logic Circuits Design Seminars WS2010/2011, Lecture 9 Ing. Petr Fišer, Ph.D. Department of Digital Design Faculty of Information Technology Czech Technical University in Prague

More information

BoolTool: A Tool for Manipulation of Boolean Functions

BoolTool: A Tool for Manipulation of Boolean Functions BoolTool: A Tool for Manipulation of Boolean Functions Petr Fišer, David Toman Czech Technical University in Prague Department of Computer Science and Engineering Karlovo nám. 13, 121 35 Prague 2 e-mail:

More information

ABC basics (compilation from different articles)

ABC basics (compilation from different articles) 1. AIG construction 2. AIG optimization 3. Technology mapping ABC basics (compilation from different articles) 1. BACKGROUND An And-Inverter Graph (AIG) is a directed acyclic graph (DAG), in which a node

More information

Quick Look under the Hood of ABC

Quick Look under the Hood of ABC Quick Look under the Hood of ABC A Programmer s Manual December 25, 2006 Network ABC is similar to SIS/MVSIS in that it processes the design by applying a sequence of transformations to the current network,

More information

Fast Boolean Matching for Small Practical Functions

Fast Boolean Matching for Small Practical Functions Fast Boolean Matching for Small Practical Functions Zheng Huang Lingli Wang Yakov Nasikovskiy Alan Mishchenko State Key Lab of ASIC and System Computer Science Department Department of EECS Fudan University,

More information

Are XORs in Logic Synthesis Really Necessary?

Are XORs in Logic Synthesis Really Necessary? Are XORs in Logic Synthesis Really Necessary? Ivo Háleček, Petr Fišer, Jan Schmidt Faculty of Information Technology Czech Technical University in Prague Prague, Czech Republic Email: {halecivo, fiserp,

More information

Boolean Representations and Combinatorial Equivalence

Boolean Representations and Combinatorial Equivalence Chapter 2 Boolean Representations and Combinatorial Equivalence This chapter introduces different representations of Boolean functions. It then discusses the applications of these representations for proving

More information

IMPLEMENTATION DESIGN FLOW

IMPLEMENTATION DESIGN FLOW IMPLEMENTATION DESIGN FLOW Hà Minh Trần Hạnh Nguyễn Duy Thái Course: Reconfigurable Computing Outline Over view Integra tion Node manipulation LUT-based mapping Design flow Design entry Functional simulation

More information

On Resolution Proofs for Combinational Equivalence Checking

On Resolution Proofs for Combinational Equivalence Checking On Resolution Proofs for Combinational Equivalence Checking Satrajit Chatterjee Alan Mishchenko Robert Brayton Department of EECS U. C. Berkeley {satrajit, alanmi, brayton}@eecs.berkeley.edu Andreas Kuehlmann

More information

A New Enhanced Approach to Technology Mapping

A New Enhanced Approach to Technology Mapping A New Enhanced Approach to Technology Mapping Alan Mishchenko Satrajit Chatterjee Robert Brayton Xinning Wang Timothy Kam Department of EECS Strategic CAD Labs University of California, Berkeley Intel

More information

Local Two-Level And-Inverter Graph Minimization without Blowup

Local Two-Level And-Inverter Graph Minimization without Blowup Local Two-Level And-Inverter Graph Minimization without Blowup Robert Brummayer and Armin Biere Institute for Formal Models and Verification Johannes Kepler University Linz, Austria {robert.brummayer,

More information

A Toolbox for Counter-Example Analysis and Optimization

A Toolbox for Counter-Example Analysis and Optimization A Toolbox for Counter-Example Analysis and Optimization Alan Mishchenko Niklas Een Robert Brayton Department of EECS, University of California, Berkeley {alanmi, een, brayton}@eecs.berkeley.edu Abstract

More information

FRAIGs: A Unifying Representation for Logic Synthesis and Verification

FRAIGs: A Unifying Representation for Logic Synthesis and Verification FRAIGs: A Unifying Representation for Logic Synthesis and Verification Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, Robert Brayton Department of EECS, University of California, Berkeley {alanmi,

More information

On Using Permutation of Variables to Improve the Iterative Power of Resynthesis

On Using Permutation of Variables to Improve the Iterative Power of Resynthesis On Using Permutation of Variables to Improve the Iterative Power of Resynthesis Petr Fiser, Jan Schmidt Faculty of Information, Czech Technical University in Prague fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

More information

CSE241 VLSI Digital Circuits UC San Diego

CSE241 VLSI Digital Circuits UC San Diego CSE241 VLSI Digital Circuits UC San Diego Winter 2003 Lecture 05: Logic Synthesis Cho Moon Cadence Design Systems January 21, 2003 CSE241 L5 Synthesis.1 Kahng & Cichy, UCSD 2003 Outline Introduction Two-level

More information

Reducing Structural Bias in Technology Mapping

Reducing Structural Bias in Technology Mapping Reducing Structural Bias in Technology Mapping S. Chatterjee A. Mishchenko R. Brayton Department of EECS U. C. Berkeley {satrajit, alanmi, brayton}@eecs.berkeley.edu X. Wang T. Kam Strategic CAD Labs Intel

More information

Applying Logic Synthesis for Speeding Up SAT

Applying Logic Synthesis for Speeding Up SAT Applying Logic Synthesis for Speeding Up SAT Niklas Een, Alan Mishchenko, Niklas Sörensson Cadence Berkeley Labs, Berkeley, USA. EECS Department, University of California, Berkeley, USA. Chalmers University

More information

Integrating an AIG Package, Simulator, and SAT Solver

Integrating an AIG Package, Simulator, and SAT Solver Integrating an AIG Package, Simulator, and SAT Solver Alan Mishchenko Robert Brayton Department of EECS, UC Berkeley {alanmi, brayton}@berkeley.edu Abstract This paper focuses on problems where the interdependence

More information

OPTIMIZATION OF BINARY AND MULTI-VALUED DIGITAL CIRCUITS USING MVSIS AND AIG REWRITING (ABC)

OPTIMIZATION OF BINARY AND MULTI-VALUED DIGITAL CIRCUITS USING MVSIS AND AIG REWRITING (ABC) Journal of Electronic and Electrical Engineering ISSN: 0976 8106 & E-ISSN: 0976 8114, Vol. 2, Issue 1, 2011, pp-24-29 Available online at http://www.bioinfo.in/contents.php?id=82 OPTIMIZATION OF BINARY

More information

A Boolean Paradigm in Multi-Valued Logic Synthesis

A Boolean Paradigm in Multi-Valued Logic Synthesis A Boolean Paradigm in Multi-Valued Logic Synthesis Abstract Alan Mishchenko Department of ECE Portland State University alanmi@ece.pd.edu Optimization algorithms used in binary multi-level logic synthesis,

More information

ECE260B CSE241A Winter Logic Synthesis

ECE260B CSE241A Winter Logic Synthesis ECE260B CSE241A Winter 2007 Logic Synthesis Website: /courses/ece260b-w07 ECE 260B CSE 241A Static Timing Analysis 1 Slides courtesy of Dr. Cho Moon Introduction Why logic synthesis? Ubiquitous used almost

More information

On Resolution Proofs for Combinational Equivalence

On Resolution Proofs for Combinational Equivalence 33.4 On Resolution Proofs for Combinational Equivalence Satrajit Chatterjee Alan Mishchenko Robert Brayton Department of EECS U. C. Berkeley {satrajit, alanmi, brayton}@eecs.berkeley.edu Andreas Kuehlmann

More information

1/28/2013. Synthesis. The Y-diagram Revisited. Structural Behavioral. More abstract designs Physical. CAD for VLSI 2

1/28/2013. Synthesis. The Y-diagram Revisited. Structural Behavioral. More abstract designs Physical. CAD for VLSI 2 Synthesis The Y-diagram Revisited Structural Behavioral More abstract designs Physical CAD for VLSI 2 1 Structural Synthesis Behavioral Physical CAD for VLSI 3 Structural Processor Memory Bus Behavioral

More information

Versatile SAT-based Remapping for Standard Cells

Versatile SAT-based Remapping for Standard Cells Versatile SAT-based Remapping for Standard Cells Alan Mishchenko Robert Brayton Department of EECS, UC Berkeley {alanmi, brayton@berkeley.edu Thierry Besson Sriram Govindarajan Harm Arts Paul van Besouw

More information

SAT-Based Area Recovery in Technology Mapping

SAT-Based Area Recovery in Technology Mapping SAT-Based Area Recovery in Technology Mapping Bruno Schmitt Ecole Polytechnique Federale de Lausanne (EPFL) bruno@oschmitt.com Alan Mishchenko Robert Brayton Department of EECS, UC Berkeley {alanmi, brayton}@berkeley.edu

More information

Lazy Man s Logic Synthesis

Lazy Man s Logic Synthesis Lazy Man s Logic Synthesis Wenlong Yang Lingli Wang State Key Lab of ASIC and System Fudan University, Shanghai, China {allanwin@hotmail.com, llwang@fudan.edu.cn Abstract Deriving a circuit for a Boolean

More information

Factor Cuts. Satrajit Chatterjee Alan Mishchenko Robert Brayton ABSTRACT

Factor Cuts. Satrajit Chatterjee Alan Mishchenko Robert Brayton ABSTRACT Factor Cuts Satrajit Chatterjee Alan Mishchenko Robert Brayton Department of EECS U. C. Berkeley {satrajit, alanmi, brayton}@eecs.berkeley.edu ABSTRACT Enumeration of bounded size cuts is an important

More information

Introduction to Programmable Logic Devices (Class 7.2 2/28/2013)

Introduction to Programmable Logic Devices (Class 7.2 2/28/2013) Introduction to Programmable Logic Devices (Class 7.2 2/28/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE Today s Topics Complexity issues Implementation

More information

Flexible Two-Level Boolean Minimizer BOOM-II and Its Applications

Flexible Two-Level Boolean Minimizer BOOM-II and Its Applications Flexible Two-Level Boolean Minimizer BOOM-II and Its Applications Petr Fišer, Hana Kubátová Czech Technical University Dept. of Computer Science and Engineering, Karlovo nám. 13, 121 35, Prague 2 e-mail:

More information

Cut-Based Inductive Invariant Computation

Cut-Based Inductive Invariant Computation Cut-Based Inductive Invariant Computation Alan Mishchenko 1 Michael Case 1,2 Robert Brayton 1 1 Department of EECS, University of California, Berkeley, CA 2 IBM Systems and Technology Group, Austin, TX

More information

EECS 219C: Formal Methods Binary Decision Diagrams (BDDs) Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Formal Methods Binary Decision Diagrams (BDDs) Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Formal Methods Binary Decision Diagrams (BDDs) Sanjit A. Seshia EECS, UC Berkeley Boolean Function Representations Syntactic: e.g.: CNF, DNF (SOP), Circuit Semantic: e.g.: Truth table, Binary

More information

Chapter 2 Combinational

Chapter 2 Combinational Computer Engineering 1 (ECE290) Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization HOANG Trang 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits and Boolean Equations Binary Logic

More information

Simplification of Boolean Functions

Simplification of Boolean Functions COM111 Introduction to Computer Engineering (Fall 2006-2007) NOTES 5 -- page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean

More information

CS8803: Advanced Digital Design for Embedded Hardware

CS8803: Advanced Digital Design for Embedded Hardware CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

More information

ON AN OPTIMIZATION TECHNIQUE USING BINARY DECISION DIAGRAM

ON AN OPTIMIZATION TECHNIQUE USING BINARY DECISION DIAGRAM ON AN OPTIMIZATION TECHNIQUE USING BINARY DECISION DIAGRAM Debajit Sensarma # 1, Subhashis Banerjee #1, Krishnendu Basuli #1,Saptarshi Naskar #2, Samar Sen Sarma #3 #1 West Bengal State University, West

More information

Chapter 3. Gate-Level Minimization. Outlines

Chapter 3. Gate-Level Minimization. Outlines Chapter 3 Gate-Level Minimization Introduction The Map Method Four-Variable Map Five-Variable Map Outlines Product of Sums Simplification Don t-care Conditions NAND and NOR Implementation Other Two-Level

More information

L3: Representations of functions

L3: Representations of functions L3: Representations of functions Representations of Boolean functions Boolean expression Two level sum of product form, factorized form Truth tables Karnaugh maps Cubes (MIN,MAX) notation positional cube

More information

QUESTION BANK FOR TEST

QUESTION BANK FOR TEST CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show

More information

Presentation 4: Programmable Combinational Devices

Presentation 4: Programmable Combinational Devices Presentation 4: Programmable Combinational Devices Asst. Prof Dr. Ahmet ÖZKURT DEUEEE Based on the Presentation by Prof. Kim, Young Ho Dept. of Information Computer Engineering E-mail : yhkim@hyowon.cs.pusan.ac.kr

More information

Improvements to Technology Mapping for LUT-Based FPGAs

Improvements to Technology Mapping for LUT-Based FPGAs Improvements to Technology Mapping for LUT-Based FPGAs Alan Mishchenko Satrajit Chatterjee Robert Brayton Department of EECS, University of California, Berkeley {alanmi, satrajit, brayton}@eecs.berkeley.edu

More information

EECS 150 Homework 7 Solutions Fall (a) 4.3 The functions for the 7 segment display decoder given in Section 4.3 are:

EECS 150 Homework 7 Solutions Fall (a) 4.3 The functions for the 7 segment display decoder given in Section 4.3 are: Problem 1: CLD2 Problems. (a) 4.3 The functions for the 7 segment display decoder given in Section 4.3 are: C 0 = A + BD + C + BD C 1 = A + CD + CD + B C 2 = A + B + C + D C 3 = BD + CD + BCD + BC C 4

More information

END-TERM EXAMINATION

END-TERM EXAMINATION (Please Write your Exam Roll No. immediately) END-TERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA-103 Subject: Digital Electronics Time: 3 Hours Maximum

More information

SAT-Based Logic Optimization and Resynthesis

SAT-Based Logic Optimization and Resynthesis SAT-Based Logic Optimization and Resynthesis Alan Mishchenko Robert Brayton Jie-Hong Roland Jiang Stephen Jang Department of EECS Department of EE Xilinx Inc. University of California, Berkeley National

More information

SEPP: a New Compact Three-Level Logic Form

SEPP: a New Compact Three-Level Logic Form SEPP: a New Compact Three-Level Logic Form Valentina Ciriani Department of Information Technologies Università degli Studi di Milano, Italy valentina.ciriani@unimi.it Anna Bernasconi Department of Computer

More information

ECE260B CSE241A Winter Logic Synthesis

ECE260B CSE241A Winter Logic Synthesis ECE260B CSE241A Winter 2005 Logic Synthesis Website: / courses/ ece260bw05 ECE 260B CSE 241A Static Timing Analysis 1 Slides courtesy of Dr. Cho Moon Introduction Why logic synthesis? Ubiquitous used almost

More information

Breakup Algorithm for Switching Circuit Simplifications

Breakup Algorithm for Switching Circuit Simplifications , No.1, PP. 1-11, 2016 Received on: 22.10.2016 Revised on: 27.11.2016 Breakup Algorithm for Switching Circuit Simplifications Sahadev Roy Dept. of ECE, NIT Arunachal Pradesh, Yupia, 791112, India e-mail:sdr.ece@nitap.in

More information

CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES This chapter in the book includes: Objectives Study Guide 9.1 Introduction 9.2 Multiplexers 9.3 Three-State Buffers 9.4 Decoders and Encoders

More information

ECE 5775 (Fall 17) High-Level Digital Design Automation. Binary Decision Diagrams Static Timing Analysis

ECE 5775 (Fall 17) High-Level Digital Design Automation. Binary Decision Diagrams Static Timing Analysis ECE 5775 (Fall 17) High-Level Digital Design Automation Binary Decision Diagrams Static Timing Analysis Announcements Start early on Lab 1 (CORDIC design) Fixed-point design should not have usage of DSP48s

More information

SAT-Based Area Recovery in Structural Technology Mapping

SAT-Based Area Recovery in Structural Technology Mapping SAT-Based Area Recovery in Structural Technology Mapping Bruno Schmitt Alan Mishchenko Robert Brayton Ecole Polytechnique Federale de Lausanne (EPFL) bruno.schmitt@epfl.ch Department of EECS, UC Berkley

More information

Large-scale Boolean Matching

Large-scale Boolean Matching Large-scale Boolean Matching Hadi Katebi, Igor L. Markov University of Michigan, 2260 Hayward St., Ann Arbor, MI 48109 {hadik, imarkov}@eecs.umich.edu Abstract We propose a methodology for Boolean matching

More information

Integrating Logic Synthesis, Technology Mapping, and Retiming

Integrating Logic Synthesis, Technology Mapping, and Retiming Integrating Logic Synthesis, Technology Mapping, and Retiming Alan Mishchenko Satrajit Chatterjee Jie-Hong Jiang Robert Brayton Department of Electrical Engineering and Computer Sciences University of

More information

Programmable Logic Devices

Programmable Logic Devices Programmable Logic Devices Programmable Logic Devices Fig. (1) General structure of PLDs Programmable Logic Device (PLD): is an integrated circuit with internal logic gates and/or connections that can

More information

Minimization of Multiple-Valued Functions in Post Algebra

Minimization of Multiple-Valued Functions in Post Algebra Minimization of Multiple-Valued Functions in Post Algebra Elena Dubrova Yunjian Jiang Robert Brayton Department of Electronics Dept. of Electrical Engineering and Computer Sciences Royal Institute of Technology

More information

Incremental Sequential Equivalence Checking and Subgraph Isomorphism

Incremental Sequential Equivalence Checking and Subgraph Isomorphism Incremental Sequential Equivalence Checking and Subgraph Isomorphism Sayak Ray Alan Mishchenko Robert Brayton Department of EECS, University of California, Berkeley {sayak, alanmi, brayton}@eecs.berkeley.edu

More information

Literal Cost F = BD + A B C + A C D F = BD + A B C + A BD + AB C F = (A + B)(A + D)(B + C + D )( B + C + D) L = 10

Literal Cost F = BD + A B C + A C D F = BD + A B C + A BD + AB C F = (A + B)(A + D)(B + C + D )( B + C + D) L = 10 Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm

More information

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra

More information

Combinational Logic Circuits

Combinational Logic Circuits Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical

More information

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 5: Binary Decision Diagrams. Historical Context. Binary Decision Trees

Motivation. CS389L: Automated Logical Reasoning. Lecture 5: Binary Decision Diagrams. Historical Context. Binary Decision Trees Motivation CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams Işıl Dillig Previous lectures: How to determine satisfiability of propositional formulas Sometimes need to efficiently

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard

More information

Integrating Logic Synthesis, Technology Mapping, and Retiming

Integrating Logic Synthesis, Technology Mapping, and Retiming Integrating Logic Synthesis, Technology Mapping, and Retiming Alan Mishchenko Satrajit Chatterjee Robert Brayton Department of EECS University of California, Berkeley Berkeley, CA 94720 {alanmi, satrajit,

More information

Experiment 3: Logic Simplification

Experiment 3: Logic Simplification Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed El-Saied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions

More information

B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN

B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is ----- Write the first 9 decimal digits in base 3. (c) What is meant by don

More information

Fast Generation of Lexicographic Satisfiable Assignments: Enabling Canonicity in SAT-based Applications

Fast Generation of Lexicographic Satisfiable Assignments: Enabling Canonicity in SAT-based Applications Fast Generation of Lexicographic Satisfiable Assignments: Enabling Canonicity in -based Applications Ana Petkovska 1 ana.petkovska@epfl.ch Giovanni De Micheli 1 giovanni.demicheli@epfl.ch Alan Mishchenko

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

More information

EECS 140/141 Introduction to Digital Logic Design Fall Semester 2016 Exam #1 Date: 3 October 2016

EECS 140/141 Introduction to Digital Logic Design Fall Semester 2016 Exam #1 Date: 3 October 2016 EECS 4/4 Introduction to Digital Logic Design Fall Semester 26 Exam # Date: 3 October 26 NAME: KUID: General Instructions. This exam is closed-book. You are allowed a non-communicating calculator and one

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

More information

Synthesis 1. 1 Figures in this chapter taken from S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, Typeset by FoilTEX 1

Synthesis 1. 1 Figures in this chapter taken from S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, Typeset by FoilTEX 1 Synthesis 1 1 Figures in this chapter taken from S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, 1998. Typeset by FoilTEX 1 Introduction Logic synthesis is automatic generation of circuitry

More information

EECS 140/141 Introduction to Digital Logic Design Spring Semester 2017 Exam #1 Date: 27 February 2017

EECS 140/141 Introduction to Digital Logic Design Spring Semester 2017 Exam #1 Date: 27 February 2017 EECS 4/4 Introduction to Digital Logic Design Spring Semester 27 Exam # Date: 27 February 27 NAME: KUID: General Instructions. This exam is closed-book. You are allowed a non-communicating calculator and

More information

ESE535: Electronic Design Automation. Today. EDA Use. Problem PLA. Programmable Logic Arrays (PLAs) Two-Level Logic Optimization

ESE535: Electronic Design Automation. Today. EDA Use. Problem PLA. Programmable Logic Arrays (PLAs) Two-Level Logic Optimization ESE535: Electronic Design Automation Day 18: March 25, 2013 Two-Level Logic-Synthesis Today Two-Level Logic Optimization Problem Behavioral (C, MATLAB, ) Arch. Select Schedule RTL FSM assign Definitions

More information

Exploiting Structure in an AIG Based QBF Solver

Exploiting Structure in an AIG Based QBF Solver Exploiting Structure in an AIG Based QBF Solver Florian Pigorsch and Christoph Scholl Albert-Ludwigs-Universität Freiburg, Institut für Informatik, D-79110 Freiburg im Breisgau, Germany {pigorsch, scholl}@informatik.uni-freiburg.de

More information

Outline. EECS Components and Design Techniques for Digital Systems. Lec 11 Putting it all together Where are we now?

Outline. EECS Components and Design Techniques for Digital Systems. Lec 11 Putting it all together Where are we now? Outline EECS 5 - Components and Design Techniques for Digital Systems Lec Putting it all together -5-4 David Culler Electrical Engineering and Computer Sciences University of California Berkeley Top-to-bottom

More information

2.6 BOOLEAN FUNCTIONS

2.6 BOOLEAN FUNCTIONS 2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses

More information

Node Mergers in the Presence of Don t Cares

Node Mergers in the Presence of Don t Cares Node Mergers in the Presence of Don t Cares Stephen M. Plaza, Kai-hui Chang, Igor L. Markov, Valeria Bertacco EECS Department, University of Michigan, Ann Arbor, MI 48109-2121 {splaza, changkh, imarkov,

More information

Definitions. 03 Logic networks Boolean algebra. Boolean set: B 0,

Definitions. 03 Logic networks Boolean algebra. Boolean set: B 0, 3. Boolean algebra 3 Logic networks 3. Boolean algebra Definitions Boolean functions Properties Canonical forms Synthesis and minimization alessandro bogliolo isti information science and technology institute

More information

ECE380 Digital Logic

ECE380 Digital Logic ECE38 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Dr. D. J. Jackson Lecture 8- Terminology For

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

More information

Specifying logic functions

Specifying logic functions CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last

More information

Unit 4: Formal Verification

Unit 4: Formal Verification Course contents Unit 4: Formal Verification Logic synthesis basics Binary-decision diagram (BDD) Verification Logic optimization Technology mapping Readings Chapter 11 Unit 4 1 Logic Synthesis & Verification

More information

Symbolic Model Checking

Symbolic Model Checking Bug Catching 5-398 Symbolic Model Checking Hao Zheng Dept. of Computer Science & Eng. Univ. of South Florida Overview CTL model checking operates on sets. Calculates the fix points over finite state sets.

More information

EEE130 Digital Electronics I Lecture #4_1

EEE130 Digital Electronics I Lecture #4_1 EEE130 Digital Electronics I Lecture #4_1 - Boolean Algebra and Logic Simplification - By Dr. Shahrel A. Suandi 4-6 Standard Forms of Boolean Expressions There are two standard forms: Sum-of-products form

More information

Memory and Programmable Logic

Memory and Programmable Logic Memory and Programmable Logic Memory units allow us to store and/or retrieve information Essentially look-up tables Good for storing data, not for function implementation Programmable logic device (PLD),

More information

Busy Man s Synthesis: Combinational Delay Optimization With SAT

Busy Man s Synthesis: Combinational Delay Optimization With SAT Busy Man s Synthesis: Combinational Delay Optimization With SAT Mathias Soeken 1 Giovanni De Micheli 1 Alan Mishchenko 2 1 Integrated Systems Laboratory, EPFL, Lausanne, Switzerland 2 Department of EECS,

More information

Binary Decision Diagrams (BDD)

Binary Decision Diagrams (BDD) Binary Decision Diagrams (BDD) Contents Motivation for Decision diagrams Binary Decision Diagrams ROBDD Effect of Variable Ordering on BDD size BDD operations Encoding state machines Reachability Analysis

More information

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

More information

problem maximum score 1 10pts 2 8pts 3 10pts 4 12pts 5 7pts 6 7pts 7 7pts 8 17pts 9 22pts total 100pts

problem maximum score 1 10pts 2 8pts 3 10pts 4 12pts 5 7pts 6 7pts 7 7pts 8 17pts 9 22pts total 100pts University of California at Berkeley College of Engineering epartment of Electrical Engineering and Computer Sciences EECS150 J. Wawrzynek Spring 2003 2/21/03 Exam I Solutions Name: I number: This is a

More information

1. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z

1. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z CS W3827 05S Solutions for Midterm Exam 3/3/05. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.

More information

Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs

Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs and an arbitrary truth table Analysis Procedure We

More information

Formal Verification Methods 2: Symbolic Simulation

Formal Verification Methods 2: Symbolic Simulation Formal Verification Methods 2: Symbolic Simulation John Harrison Intel Corporation Marktoberdorf 2003 Thu 3st July 2003 (:25 2:0) 0 Summary Simulation Symbolic and ternary simulation BDDs Quaternary lattice

More information

Servers I. Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc.

Servers I. Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc. Jiří Kašpar, Pavel Tvrdík (ČVUT FIT) Servers I. MI-POA, 2011, Lecture 5 1/17 Servers I. Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc. Department of Computer Systems Faculty of Information Technology Czech

More information

Date Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 04. Boolean Expression Simplification and Implementation

Date Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 04. Boolean Expression Simplification and Implementation Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 04 Boolean Expression Simplification and Implementation OBJECTIVES: To understand the utilization

More information

CMPE223/CMSE222 Digital Logic

CMPE223/CMSE222 Digital Logic CMPE223/CMSE222 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Terminology For a given term, each

More information

EECS150 Homework 2 Solutions Fall ) CLD2 problem 2.2. Page 1 of 15

EECS150 Homework 2 Solutions Fall ) CLD2 problem 2.2. Page 1 of 15 1.) CLD2 problem 2.2 We are allowed to use AND gates, OR gates, and inverters. Note that all of the Boolean expression are already conveniently expressed in terms of AND's, OR's, and inversions. Thus,

More information

Digital Logic Lecture 7 Gate Level Minimization

Digital Logic Lecture 7 Gate Level Minimization Digital Logic Lecture 7 Gate Level Minimization By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. K-map principles. Simplification using K-maps. Don t-care

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

Node Mergers in the Presence of Don t Cares

Node Mergers in the Presence of Don t Cares Node Mergers in the Presence of Don t Cares Stephen M. Plaza, Kai-hui Chang, Igor L. Markov, Valeria Bertacco EECS Department, University of Michigan, Ann Arbor, MI 48109-2121 {splaza, changkh, imarkov,

More information

Midterm Exam Review. CS 2420 :: Fall 2016 Molly O'Neil

Midterm Exam Review. CS 2420 :: Fall 2016 Molly O'Neil Midterm Exam Review CS 2420 :: Fall 2016 Molly O'Neil Midterm Exam Thursday, October 20 In class, pencil & paper exam Closed book, closed notes, no cell phones or calculators, clean desk 20% of your final

More information

Lecture 5. Chapter 2: Sections 4-7

Lecture 5. Chapter 2: Sections 4-7 Lecture 5 Chapter 2: Sections 4-7 Outline Boolean Functions What are Canonical Forms? Minterms and Maxterms Index Representation of Minterms and Maxterms Sum-of-Minterm (SOM) Representations Product-of-Maxterm

More information