Multi-dimensional Image Analysis

Size: px
Start display at page:

Download "Multi-dimensional Image Analysis"

Transcription

1 Multi-dimensional Image Analysis Lucas J. van Vliet

2 Image Analysis Paradigm scene Image formation sensor pre-processing Image enhancement Image restoration Texture filtering segmentation Measurements: Point: edge location, isophote curvatures Global: size and shape descriptors Local: texture attributes anisotropy, orientation, scale analysis classification CBP course: Multi-Dimensional Image Analysis 2

3 Multi-dimensional analysis Goal: Use sampling-error free measurements for analog properties in digitized images Point measurements for object identification Exact boundary location (Principal) curvatures Global measurement for object description Integrated object intensity (gray-volume) Size in 2D: area and perimeter Size in 3D: volume, surface area, length Shape: Bending energy, Euler numbers Local texture analysis Anisotropy, orientation, scale Use gray-scale rather than binary operations to obtain high accuracy and precision CBP course: Multi-Dimensional Image Analysis 3

4 Better geometric measurements State-of-the-art cameras offer: Large images of 1000 x 1000 pixels or more bit photometric information A binary image is disturbed by aliasing Thresholding corrupts data irreversible Faithful representation Binary representation CBP course: Multi-Dimensional Image Analysis 4

5 Location of curved edges Zero-crossing of second derivatives applied to blurred curved edges are biased. Laplace: D xx + D yy = D cc + D gg outwards in grad direction: D gg inwards PLUS 2D gg + D cc on edge! Results on an ellipse: object with slowly varying curvature. PLUS y x g c g PLUS c c g g = gradient c = contour Laplace SDGD CBP course: Multi-Dimensional Image Analysis 5

6 Isophote curvature in 2D An isophote is a curve of constant gray-value (level curve) Curvature is the change of contour direction per unit length Curvature (κ=1/r) with R the radius of the osculating circle object contour κ = D D g cc g =(D x,d y ) c =(-D y,d x ) Usage: corner detection, dominant points, bending energy CBP course: Multi-Dimensional Image Analysis 6

7 Isophote curvature in 3D 2D isophote surface patch in 3D image space Principal curvatures κ 1 and κ 2 along c 1 and c 2 : c1 c2 g κ 1 κ2 0 > > κ2 < κ1 < 0 κ1> 0, κ2 = 0 κ > 0, κ < 0 κ1 = κ2 = κ 1 D D cc = g κ 2 = D D cc g Usage for local shape: elliptic (convex, concave), cylinder,saddle, flat CBP course: Multi-Dimensional Image Analysis 7

8 Sampling-error free measures A sampling-error free measurement is a digital measurement performed on a sampled image that is exactly equal to its analog counterpart sampling operation in digital space operation in analog space reconstruction Digital track = Analog track The sum of all samples is measured without thresholding and does not introduce a sampling error ( b) = b( i j ) = ( π ) B( ) sum, 2 0,0 iff : f sampling x y x y > 1 2 f Nyquist 2 CBP course: Multi-Dimensional Image Analysis 8

9 Sum() as measure for Sum() is a sampling-error free measure Recipe for object measurements in gray-scale images: 1. Transform the input image with the object into an output image whose sum() is directly proportional to the feature to be measured 2. The transformation must consist of sampling-error free operations 3. Proper sampling is required to avoid aliasing 4. Bias correction terms can be extracted from the mathematical framework! (not empirically) CBP course: Multi-Dimensional Image Analysis 9

10 2D area & 3D volume Clip image a to produce a flat object on a flat background Use soft-clipping to avoid aliasing output after: linear input slope thresholding hard-clipping erf-clipping b = clip erf ( a) A V 2D 3D = b = sum( b) CBP course: Multi-Dimensional Image Analysis 10

11 2D perimeter, 3D surface area Transform the flat, bandlimited object into a contour a Analytical dilation / erosion by Taylor series around a smooth edge (with height = 1) over a distance δ =½ 2 dilation : b 1 ( r + δ) b( r ) + δ b + δ b 2 erosion : b 1 ( r δ) b( r ) δ b + δ b contour δ= 1 2 : b g g g 2 2 gg gg b b g CBP course: Multi-Dimensional Image Analysis 11

12 Shape: 2D bending energy 2D bending energy proportional to the bending energy of a deformed circular rod (Young 74). Differential geometry Image analysis 2 2 E κ ( s) ds E κ b = = be be g The simply-connected, closed contour with the minimum bending energy is the circle (2π/R, not scale invariant). b b g κ κ 2 CBP course: Multi-Dimensional Image Analysis 12

13 Shape: 3D bending energy Elastic rods (SCC space curves) κ 1 cross-section of rod κ 2 trajectory of rod Deflected thin plates (SCC surfaces) principal curvatures κ 1 and κ 2 Erod = κ 2 ( s) ds 2 Differential geometry 2 2 M ( 1 2 ) E = 8πp+ κ + κ ds plate E rod = 2 κ2 bg ( 2 2 Image analysis E ) plate κ1 κ2 = + b g circle has minimal bending energy Torque forces are neglected Poisson s ratio p [0,½]. (let p = 0) sphere has minimal energy (8π). Dimensionless and therefore scaling invariant. CBP course: Multi-Dimensional Image Analysis 13

14 Length in 3D Resume: An erf-clipped object of unit intensity, b volume: V = Σ b surface area: A = Σ b g length: L =?? image b contains a cylinder (length L,radius R) Σ b = πr 2 L = volume Σ b g = 2πRL = area Σ b gg = 2πL = length Length of spaghetti L = b 1 3D 2π gg b b cc In the plane perpendicular to the string: g,c Σ b gg + b cc = 0 all g c = 0 Σ b gg = Σ b cc = 2π (see Euler) b gg CBP course: Multi-Dimensional Image Analysis 14

15 Shape: Euler numbers Euler numbers characterize the topology 2D: number of objects number of holes 3D: number of objects number of handles (donut & coffee cup have Euler number = 0) b Differential geometry Image analysis Hopf: L κ 1 ( s) ds = 2π N = κ b 2D 2π g b g Gauss- Bonnet: M κκ ds = 4π N = κκ b D 4π 1 2 g κ CBP course: Multi-Dimensional Image Analysis 15

16 Curvilinear structures 10 km 10 cm 10 cm 1 cm z = 10 µm Anisotropy Orientation Scale Curvature CBP course: Multi-Dimensional Image Analysis 16

17 Domains vs Scale Texture attributes are domain properties CBP course: Multi-Dimensional Image Analysis 17

18 Orientation and Scale Rotational invariant chirp image Orientation map by Gradient Structure Tensor Scale map by Gaussian Scale Space CBP course: Multi-Dimensional Image Analysis 18

19 Gradient Structure Tensor How to combine vectors? G 2 fx fxf t y = g g = 2 f f f x y y f y λ 1 f x λ 2 ϕ CBP course: Multi-Dimensional Image Analysis 19

20 GST: anisotropy, orientation Closed-form solutions for: ϕ 1 2ff xy = tan f 2 2 x fy ϕ λ λ ( ) ( ) 2 2 x y x y 4 x y = f + f + f f + f f ( ) ( ) 2 2 x y x y 4 x y = f + f f f + f f λ 1 λ 2 anisotropy: A λ λ = λ + λ A CBP course: Multi-Dimensional Image Analysis 20

21 PVC particle roughness Contour information (shape features) failed to rank batches according to quality Lobes show up as lines rather than points Measure the local anisotropy (ellipses) CBP course: Multi-Dimensional Image Analysis 21

22 Roughness = Integrated anisotropy Three scales: gradient, window, particle R λ2 = 1 = 0.44 λ 1 R λ2 = 1 = 0.61 λ 1 CBP course: Multi-Dimensional Image Analysis 22

23 Roughness distributions (Cumulative) distributions for N=30 particles can be used as roughness measure Roughness measure correlates well with product quality particle roughness histograms cumulative particle roughness histograms % 10 75% 8 6 count smooth middle 50% smooth middle rough roughness rough smooth middle rough roughness % 0% CBP course: Multi-Dimensional Image Analysis 23

24 Orientation-driven analysis Dominant orientation of Gradient Structure Tensor Strongest peak in orientation space Dominant orientation of GST yields the gradient 2 -weighted orientation map. Strongest orientation in ϕ-space allows very abrupt changes in orientation map. CBP course: Multi-Dimensional Image Analysis 24

25 Orientation space Decompose the image into narrow orientation bands Apply a nonlinear operator in orientation space: Labeling yields segmentation Peak selection for detection selectivity Φ Φ 1 Φ CBP course: Multi-Dimensional Image Analysis 25

26 Circle in image-space A circle in 2D image space becomes a double-helix in orientation space. Note that orientation-axis is periodic with π CBP course: Multi-Dimensional Image Analysis 26

27 Overlapping circles Two overlapping circles in 2D image space compose a single object. Since the circles cross at different orientations, they become separated in orientation space. CBP course: Multi-Dimensional Image Analysis 27

28 Orientation selectivity N=8 orientation N=16 Green = first peak, Red = second peak, Blue = remainder N=8 N=16 N=32 CBP course: Multi-Dimensional Image Analysis 28

29 Multi-Scale Series of images filtered of decreasing scale: Scale-space Sample the scales logarithmically using filters of size = base scale yields n scales per octave base 2,2,2,...,2 1 n Input image Scale space scale 0 scale 1 scale 2 scale 3 scale 4 scale 5 Scale difference scale derivative var (scale 1) var (scale 2) var (scale 3) var (scale 4) var (scale 5) { } Local variance between scales n and n-1. Scale space CBP course: Multi-Dimensional Image Analysis 29

30 Chirp example Scale derivative Spatial variance Scale-space Scale-space CBP course: Multi-Dimensional Image Analysis 30

31 Gaussian scale space Chirp of varying contrast Low-pass filters of increasing scale: color code (fine to course) Normalization: sum per pixel is constant CBP course: Multi-Dimensional Image Analysis 31

32 Scale analysis Scale information reveals geological structures in seismic data Absolute Normalized CBP course: Multi-Dimensional Image Analysis 32

33 Morphological scale space Measure the hole-size distribution The image acts like a sieve Subtract closings of increasing scale The hole-size is the scale that closes the gap 256 x Scale CBP course: Multi-Dimensional Image Analysis 33

34 Labeling of holes by size CBP course: Multi-Dimensional Image Analysis 34

35 Pore-size distribution Milk (blue) + substate (red) + enzyme (green) Milk Milk + substrate Milk + substrate + enzime C N=32 Average pore-size distributions images CBP course: Multi-Dimensional Image Analysis 35

36 Literature pdf files available at: L.J. van Vliet and P.W. Verbeek, Better geometric measurements based on photometric information, Proc. IEEE Instrumentation and Measurement Technology Conf. IMTC94 (Hamamatsu, Japan, May 10-12), 1994, G.M.P. van Kempen et al., The application of a local dimensionality estimator to the analysis of 3D microscopic network structures, in: SCIA'99, Proc. 11th Scandinavian Conference on Image Analysis (Kangerlussuaq, Greenland, June 7-11), 1999, M. van Ginkel et al., Improved Orientation Selectivity for Orientation Estimation, in: SCIA'97, Proc. 10 th Scandinavian Conference on Image Analysis (Lappeenranta, Finland, June 9-11), 1997, CBP course: Multi-Dimensional Image Analysis 36

Fourier Transform and Texture Filtering

Fourier Transform and Texture Filtering Fourier Transform and Texture Filtering Lucas J. van Vliet www.ph.tn.tudelft.nl/~lucas Image Analysis Paradigm scene Image formation sensor pre-processing Image enhancement Image restoration Texture filtering

More information

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town Recap: Smoothing with a Gaussian Computer Vision Computer Science Tripos Part II Dr Christopher Town Recall: parameter σ is the scale / width / spread of the Gaussian kernel, and controls the amount of

More information

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking Representation REPRESENTATION & DESCRIPTION After image segmentation the resulting collection of regions is usually represented and described in a form suitable for higher level processing. Most important

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Computer Vision for HCI. Topics of This Lecture

Computer Vision for HCI. Topics of This Lecture Computer Vision for HCI Interest Points Topics of This Lecture Local Invariant Features Motivation Requirements, Invariances Keypoint Localization Features from Accelerated Segment Test (FAST) Harris Shi-Tomasi

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary) Towards image analysis Goal: Describe the contents of an image, distinguishing meaningful information from irrelevant one. Perform suitable transformations of images so as to make explicit particular shape

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B 8. Boundary Descriptor 8.. Some Simple Descriptors length of contour : simplest descriptor - chain-coded curve 9 length of contour no. of horiontal and vertical components ( no. of diagonal components

More information

Local Features: Detection, Description & Matching

Local Features: Detection, Description & Matching Local Features: Detection, Description & Matching Lecture 08 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr David Lowe Professor, University of British

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chain Codes Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified length and direction. The direction of each segment is coded by using a numbering

More information

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments Image Processing Fundamentals Nicolas Vazquez Principal Software Engineer National Instruments Agenda Objectives and Motivations Enhancing Images Checking for Presence Locating Parts Measuring Features

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1 Feature Detection Raul Queiroz Feitosa 3/30/2017 Feature Detection 1 Objetive This chapter discusses the correspondence problem and presents approaches to solve it. 3/30/2017 Feature Detection 2 Outline

More information

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University CS443: Digital Imaging and Multimedia Binary Image Analysis Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding

More information

Topic 6 Representation and Description

Topic 6 Representation and Description Topic 6 Representation and Description Background Segmentation divides the image into regions Each region should be represented and described in a form suitable for further processing/decision-making Representation

More information

Normalized averaging using adaptive applicability functions with applications in image reconstruction from sparsely and randomly sampled data

Normalized averaging using adaptive applicability functions with applications in image reconstruction from sparsely and randomly sampled data Normalized averaging using adaptive applicability functions with applications in image reconstruction from sparsely and randomly sampled data Tuan Q. Pham, Lucas J. van Vliet Pattern Recognition Group,

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION EE 584 MACHINE VISION Binary Images Analysis Geometrical & Topological Properties Connectedness Binary Algorithms Morphology Binary Images Binary (two-valued; black/white) images gives better efficiency

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

morphology on binary images

morphology on binary images morphology on binary images Ole-Johan Skrede 10.05.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 16 th, 2017 Pranav Mantini Ack: Shah. M Image Processing Geometric Transformation Point Operations Filtering (spatial, Frequency) Input Restoration/

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 9: Representation and Description AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapter 11 2011-05-17 Contents

More information

Chapter 9 Morphological Image Processing

Chapter 9 Morphological Image Processing Morphological Image Processing Question What is Mathematical Morphology? An (imprecise) Mathematical Answer A mathematical tool for investigating geometric structure in binary and grayscale images. Shape

More information

Machine vision. Summary # 6: Shape descriptors

Machine vision. Summary # 6: Shape descriptors Machine vision Summary # : Shape descriptors SHAPE DESCRIPTORS Objects in an image are a collection of pixels. In order to describe an object or distinguish between objects, we need to understand the properties

More information

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS.

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. 1. 3D AIRWAY TUBE RECONSTRUCTION. RELATED TO FIGURE 1 AND STAR METHODS

More information

Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011

Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011 Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011 Hasso-Plattner-Institut, University of Potsdam, Germany Image/Video Abstraction Stylized Augmented Reality for

More information

OCCHIO USA WHITE STONE VA TEL(866)

OCCHIO USA WHITE STONE VA TEL(866) PARAMETERS : 79 Weight factors: 6 Parameter Other name Symbol Definition Formula Number Volume V The volume of the particle volume model. Equivalent Volume The volume of the sphere having the same projection

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

6. Applications - Text recognition in videos - Semantic video analysis

6. Applications - Text recognition in videos - Semantic video analysis 6. Applications - Text recognition in videos - Semantic video analysis Stephan Kopf 1 Motivation Goal: Segmentation and classification of characters Only few significant features are visible in these simple

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Robotica Anno accademico 6/7 Davide Migliore migliore@elet.polimi.it Today What is a feature? Some useful information The world of features: Detectors Edges detection Corners/Points detection Descriptors?!?!?

More information

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11 Announcement Edge and Corner Detection Slides are posted HW due Friday CSE5A Lecture 11 Edges Corners Edge is Where Change Occurs: 1-D Change is measured by derivative in 1D Numerical Derivatives f(x)

More information

SIFT - scale-invariant feature transform Konrad Schindler

SIFT - scale-invariant feature transform Konrad Schindler SIFT - scale-invariant feature transform Konrad Schindler Institute of Geodesy and Photogrammetry Invariant interest points Goal match points between images with very different scale, orientation, projective

More information

Corner Detection. GV12/3072 Image Processing.

Corner Detection. GV12/3072 Image Processing. Corner Detection 1 Last Week 2 Outline Corners and point features Moravec operator Image structure tensor Harris corner detector Sub-pixel accuracy SUSAN FAST Example descriptor: SIFT 3 Point Features

More information

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13.

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13. Announcements Edge and Corner Detection HW3 assigned CSE252A Lecture 13 Efficient Implementation Both, the Box filter and the Gaussian filter are separable: First convolve each row of input image I with

More information

Outlines. Medical Image Processing Using Transforms. 4. Transform in image space

Outlines. Medical Image Processing Using Transforms. 4. Transform in image space Medical Image Processing Using Transforms Hongmei Zhu, Ph.D Department of Mathematics & Statistics York University hmzhu@yorku.ca Outlines Image Quality Gray value transforms Histogram processing Transforms

More information

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS Cognitive Robotics Original: David G. Lowe, 004 Summary: Coen van Leeuwen, s1460919 Abstract: This article presents a method to extract

More information

Lecture 10: Image Descriptors and Representation

Lecture 10: Image Descriptors and Representation I2200: Digital Image processing Lecture 10: Image Descriptors and Representation Prof. YingLi Tian Nov. 15, 2017 Department of Electrical Engineering The City College of New York The City University of

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh, CEO at Mapizy (www.mapizy.com) and InFarm (www.infarm.io) Lecture 02 Binary Image Analysis Objectives Revision of image formation

More information

Local invariant features

Local invariant features Local invariant features Tuesday, Oct 28 Kristen Grauman UT-Austin Today Some more Pset 2 results Pset 2 returned, pick up solutions Pset 3 is posted, due 11/11 Local invariant features Detection of interest

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Why do we care about matching features? Scale Invariant Feature Transform Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Automatic

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington A^ ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Features 2 SIFT descriptor Aaron Bobick School of Interactive Computing Administrivia PS 3: Out due Oct 6 th. Features recap: Goal is to find corresponding locations in two images.

More information

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit Augmented Reality VU Computer Vision 3D Registration (2) Prof. Vincent Lepetit Feature Point-Based 3D Tracking Feature Points for 3D Tracking Much less ambiguous than edges; Point-to-point reprojection

More information

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Features Points Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Finding Corners Edge detectors perform poorly at corners. Corners provide repeatable points for matching, so

More information

Digital Image Processing Chapter 11: Image Description and Representation

Digital Image Processing Chapter 11: Image Description and Representation Digital Image Processing Chapter 11: Image Description and Representation Image Representation and Description? Objective: To represent and describe information embedded in an image in other forms that

More information

The. Handbook ijthbdition. John C. Russ. North Carolina State University Materials Science and Engineering Department Raleigh, North Carolina

The. Handbook ijthbdition. John C. Russ. North Carolina State University Materials Science and Engineering Department Raleigh, North Carolina The IMAGE PROCESSING Handbook ijthbdition John C. Russ North Carolina State University Materials Science and Engineering Department Raleigh, North Carolina (cp ) Taylor &. Francis \V J Taylor SiFrancis

More information

EECS490: Digital Image Processing. Lecture #17

EECS490: Digital Image Processing. Lecture #17 Lecture #17 Morphology & set operations on images Structuring elements Erosion and dilation Opening and closing Morphological image processing, boundary extraction, region filling Connectivity: convex

More information

CS534 Introduction to Computer Vision Binary Image Analysis. Ahmed Elgammal Dept. of Computer Science Rutgers University

CS534 Introduction to Computer Vision Binary Image Analysis. Ahmed Elgammal Dept. of Computer Science Rutgers University CS534 Introduction to Computer Vision Binary Image Analysis Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding Digital

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 03 Image Processing Basics 13/01/28 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spatial Domain Filtering http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background Intensity

More information

Counting Particles or Cells Using IMAQ Vision

Counting Particles or Cells Using IMAQ Vision Application Note 107 Counting Particles or Cells Using IMAQ Vision John Hanks Introduction To count objects, you use a common image processing technique called particle analysis, often referred to as blob

More information

Feature Based Registration - Image Alignment

Feature Based Registration - Image Alignment Feature Based Registration - Image Alignment Image Registration Image registration is the process of estimating an optimal transformation between two or more images. Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html

More information

Ulrik Söderström 21 Feb Representation and description

Ulrik Söderström 21 Feb Representation and description Ulrik Söderström ulrik.soderstrom@tfe.umu.se 2 Feb 207 Representation and description Representation and description Representation involves making object definitions more suitable for computer interpretations

More information

CoE4TN4 Image Processing

CoE4TN4 Image Processing CoE4TN4 Image Processing Chapter 11 Image Representation & Description Image Representation & Description After an image is segmented into regions, the regions are represented and described in a form suitable

More information

ksa MOS Ultra-Scan Performance Test Data

ksa MOS Ultra-Scan Performance Test Data ksa MOS Ultra-Scan Performance Test Data Introduction: ksa MOS Ultra Scan 200mm Patterned Silicon Wafers The ksa MOS Ultra Scan is a flexible, highresolution scanning curvature and tilt-measurement system.

More information

Laboratory of Applied Robotics

Laboratory of Applied Robotics Laboratory of Applied Robotics OpenCV: Shape Detection Paolo Bevilacqua RGB (Red-Green-Blue): Color Spaces RGB and HSV Color defined in relation to primary colors Correlated channels, information on both

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Robot vision review. Martin Jagersand

Robot vision review. Martin Jagersand Robot vision review Martin Jagersand What is Computer Vision? Computer Graphics Three Related fields Image Processing: Changes 2D images into other 2D images Computer Graphics: Takes 3D models, renders

More information

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7)

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7) 5 Years Integrated M.Sc.(IT)(Semester - 7) 060010707 Digital Image Processing UNIT 1 Introduction to Image Processing Q: 1 Answer in short. 1. What is digital image? 1. Define pixel or picture element?

More information

Image representation. 1. Introduction

Image representation. 1. Introduction Image representation Introduction Representation schemes Chain codes Polygonal approximations The skeleton of a region Boundary descriptors Some simple descriptors Shape numbers Fourier descriptors Moments

More information

Digital Image Processing Fundamentals

Digital Image Processing Fundamentals Ioannis Pitas Digital Image Processing Fundamentals Chapter 7 Shape Description Answers to the Chapter Questions Thessaloniki 1998 Chapter 7: Shape description 7.1 Introduction 1. Why is invariance to

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Section 10 - Detectors part II Descriptors Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Announcements. Edges. Last Lecture. Gradients: Numerical Derivatives f(x) Edge Detection, Lines. Intro Computer Vision. CSE 152 Lecture 10

Announcements. Edges. Last Lecture. Gradients: Numerical Derivatives f(x) Edge Detection, Lines. Intro Computer Vision. CSE 152 Lecture 10 Announcements Assignment 2 due Tuesday, May 4. Edge Detection, Lines Midterm: Thursday, May 6. Introduction to Computer Vision CSE 152 Lecture 10 Edges Last Lecture 1. Object boundaries 2. Surface normal

More information

ECE 176 Digital Image Processing Handout #14 Pamela Cosman 4/29/05 TEXTURE ANALYSIS

ECE 176 Digital Image Processing Handout #14 Pamela Cosman 4/29/05 TEXTURE ANALYSIS ECE 176 Digital Image Processing Handout #14 Pamela Cosman 4/29/ TEXTURE ANALYSIS Texture analysis is covered very briefly in Gonzalez and Woods, pages 66 671. This handout is intended to supplement that

More information

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37 Extended Contents List Preface... xi About the authors... xvii CHAPTER 1 Introduction 1 1.1 Overview... 1 1.2 Human and Computer Vision... 2 1.3 The Human Vision System... 4 1.3.1 The Eye... 5 1.3.2 The

More information

Chapter 3: Intensity Transformations and Spatial Filtering

Chapter 3: Intensity Transformations and Spatial Filtering Chapter 3: Intensity Transformations and Spatial Filtering 3.1 Background 3.2 Some basic intensity transformation functions 3.3 Histogram processing 3.4 Fundamentals of spatial filtering 3.5 Smoothing

More information

THE ANNALS OF DUNAREA DE JOS UNIVERSITY OF GALATI FASCICLE III, 2007 ISSN X ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

THE ANNALS OF DUNAREA DE JOS UNIVERSITY OF GALATI FASCICLE III, 2007 ISSN X ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS SIFT BASE ALGORITHM FOR POINT FEATURE TRACKING Adrian Burlacu, Cosmin Copot and Corneliu Lazar Gh. Asachi Technical University of Iasi, epartment

More information

CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN CHAPTER 3: IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN Principal objective: to process an image so that the result is more suitable than the original image

More information

Schedule for Rest of Semester

Schedule for Rest of Semester Schedule for Rest of Semester Date Lecture Topic 11/20 24 Texture 11/27 25 Review of Statistics & Linear Algebra, Eigenvectors 11/29 26 Eigenvector expansions, Pattern Recognition 12/4 27 Cameras & calibration

More information

Outline 7/2/201011/6/

Outline 7/2/201011/6/ Outline Pattern recognition in computer vision Background on the development of SIFT SIFT algorithm and some of its variations Computational considerations (SURF) Potential improvement Summary 01 2 Pattern

More information

Morphology-form and structure. Who am I? structuring element (SE) Today s lecture. Morphological Transformation. Mathematical Morphology

Morphology-form and structure. Who am I? structuring element (SE) Today s lecture. Morphological Transformation. Mathematical Morphology Mathematical Morphology Morphology-form and structure Sonka 13.1-13.6 Ida-Maria Sintorn Ida.sintorn@cb.uu.se mathematical framework used for: pre-processing - noise filtering, shape simplification,...

More information

cse 252c Fall 2004 Project Report: A Model of Perpendicular Texture for Determining Surface Geometry

cse 252c Fall 2004 Project Report: A Model of Perpendicular Texture for Determining Surface Geometry cse 252c Fall 2004 Project Report: A Model of Perpendicular Texture for Determining Surface Geometry Steven Scher December 2, 2004 Steven Scher SteveScher@alumni.princeton.edu Abstract Three-dimensional

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Scale Invariant Feature Transform Why do we care about matching features? Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Image

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Review of Motion Modelling and Estimation Introduction to Motion Modelling & Estimation Forward Motion Backward Motion Block Motion Estimation Motion

More information

Lecture 4: Spatial Domain Transformations

Lecture 4: Spatial Domain Transformations # Lecture 4: Spatial Domain Transformations Saad J Bedros sbedros@umn.edu Reminder 2 nd Quiz on the manipulator Part is this Fri, April 7 205, :5 AM to :0 PM Open Book, Open Notes, Focus on the material

More information

Estimation of curvature on surfaces in 3D grey-value images

Estimation of curvature on surfaces in 3D grey-value images Estimation of on surfaces in 3D grey-value images B. Rieger, F.J. Timmermans, L.J. van Vliet 1 Pattern Recognition Group, Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Image Processing and Analysis

Image Processing and Analysis Image Processing and Analysis 3 stages: Image Restoration - correcting errors and distortion. Warping and correcting systematic distortion related to viewing geometry Correcting "drop outs", striping and

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS 130 CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS A mass is defined as a space-occupying lesion seen in more than one projection and it is described by its shapes and margin

More information

Biomedical Image Analysis. Mathematical Morphology

Biomedical Image Analysis. Mathematical Morphology Biomedical Image Analysis Mathematical Morphology Contents: Foundation of Mathematical Morphology Structuring Elements Applications BMIA 15 V. Roth & P. Cattin 265 Foundations of Mathematical Morphology

More information

Lecture 18 Representation and description I. 2. Boundary descriptors

Lecture 18 Representation and description I. 2. Boundary descriptors Lecture 18 Representation and description I 1. Boundary representation 2. Boundary descriptors What is representation What is representation After segmentation, we obtain binary image with interested regions

More information

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013 Feature Descriptors CS 510 Lecture #21 April 29 th, 2013 Programming Assignment #4 Due two weeks from today Any questions? How is it going? Where are we? We have two umbrella schemes for object recognition

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Binary image processing In binary images, we conventionally take background as black (0) and foreground objects as white (1 or 255) Morphology Figure 4.1 objects on a conveyor

More information

Level-set MCMC Curve Sampling and Geometric Conditional Simulation

Level-set MCMC Curve Sampling and Geometric Conditional Simulation Level-set MCMC Curve Sampling and Geometric Conditional Simulation Ayres Fan John W. Fisher III Alan S. Willsky February 16, 2007 Outline 1. Overview 2. Curve evolution 3. Markov chain Monte Carlo 4. Curve

More information

MPEG-7 Visual shape descriptors

MPEG-7 Visual shape descriptors MPEG-7 Visual shape descriptors Miroslaw Bober presented by Peter Tylka Seminar on scientific soft skills 22.3.2012 Presentation Outline Presentation Outline Introduction to problem Shape spectrum - 3D

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Morphology Identification, analysis, and description of the structure of the smallest unit of words Theory and technique for the analysis and processing of geometric structures

More information

Robert Collins CSE598G. Intro to Template Matching and the Lucas-Kanade Method

Robert Collins CSE598G. Intro to Template Matching and the Lucas-Kanade Method Intro to Template Matching and the Lucas-Kanade Method Appearance-Based Tracking current frame + previous location likelihood over object location current location appearance model (e.g. image template,

More information

Texture. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors

Texture. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors Texture The most fundamental question is: How can we measure texture, i.e., how can we quantitatively distinguish between different textures? Of course it is not enough to look at the intensity of individual

More information

OBJECT DESCRIPTION - FEATURE EXTRACTION

OBJECT DESCRIPTION - FEATURE EXTRACTION INF 4300 Digital Image Analysis OBJECT DESCRIPTION - FEATURE EXTRACTION Fritz Albregtsen 1.10.011 F06 1.10.011 INF 4300 1 Today We go through G&W section 11. Boundary Descriptors G&W section 11.3 Regional

More information

Local Feature Detectors

Local Feature Detectors Local Feature Detectors Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Slides adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial, Matthew Brown,

More information

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision EE547 Computer Vision: Lecture Slides Anthony P. Reeves November 24, 1998 Lecture 2: Image Display and Digital Images 2: Image Display and Digital Images Image Display: - True Color, Grey, Pseudo Color,

More information

Object Recognition. The Chair Room

Object Recognition. The Chair Room Object Recognition high-level interpretations objects scene elements image elements raw images Object recognition object recognition is a typical goal of image analysis object recognition includes - object

More information