IV/IV B. Tech (Regular) DEGREE EXAMINATION November Mechanical Engineering CAD/CAM (14ME 704)

Size: px
Start display at page:

Download "IV/IV B. Tech (Regular) DEGREE EXAMINATION November Mechanical Engineering CAD/CAM (14ME 704)"

Transcription

1 IV/IV B. Tech (Regular) DEGREE EXAMINATION November 2017 Mechanical Engineering CAD/CAM (14ME 704) Scheme of Evaluation Max. Marks: Answer all the questions. (1x12=12) (a) What is the importance of a pixel? Answer: The pixel (a word invented from "picture element") is the basic unit of programmable color on a computer display or in a computer image. The No. of Pixels in a square area is called Resolution. If the resolution is more the quality of picture is more and clear. If resolution is less, the quality of image is less. (b) List various display devices. Answer: 1) Cathode Ray Tube (CRT) 2) Raster scan Display 3) Random Scan Display 4) Liquid Crystal Display (LCD) 5) Light Emitting Diode (LED) (c) What is CSG? Answer: The Constructive Solid Geometry (CSG) systems allow the user to build the model out of solid graphic primitives, such as rectangular blocks, cubes, spheres, cylinders, and pyramids. In this building-block approach a solid three- dimensional representation of the object is produced. The most common method of structuring the solid model in the graphics data base is to use Boolean operations. (d) What is rendering? Answer: Rendering or image synthesis is the automatic process of generating a photorealistic or non-photorealistic image from a 2D or 3D model (or models in what collectively could be called a scene file) by means of computer programs. Also, the results of displaying such a model can be called a rendering. The term "rendering" may be by analogy with an "artist's rendering" of a scene. (e) What is Homogeneous coordinate system? Answer: A homogeneous coordinate system is one in which a 3-dimensional point is represented using four coordinates by adding a dummy coordinate. These are frequently useful in representing the projective operations inherent in computer graphics systems. It has two principal uses: It allows the use of 4 4 matrices to represent general 3-dimensional transformations It allows a simplified representation of mathematical functions the rational form in which rational polynomial functions can be simply represented. Page 1 of 23

2 (f) State different shading methods used. Answer: 1) Flat shading 2) Smooth shading (a) Gouraud shading (b) Phong shading (c) Fast Phong shading (g) What are the basic components of NC system? Answer: 1) Program of instructions or Program 2) Machine control unit (MCU) 3) Processing equipment (h) What is distributed control? Answer: Distributed Numerical control (DNC) is a control system in which the central computer is connected to MCUs, which are themselves computers. This permits complete part programs to be sent to the machine tools. Rather than one block at a time. It also permits easier and less costly installation of the overall system, because the individual CNC machines can be put into service and the distributed NC can be added later. Redundant computers improve system reliability compared with the original DNC. (i) Give the applications of NC. Answer: The operating principle of NC has many applications. There are many industrial operations in which the position of a work head must be controlled relative to a part or product being processed. The applications divide into two categories: (1) Machine tool applications and (2) Non-machine tool applications Machine tool applications are those usually associated with the metalworking industry. Ex: Turning, drilling, milling and Grinding Non-machine tool applications comprise a diverse group of operations in other industries. It should he noted that the applications are not always identified by the name "numerical control"; this term is used principally in the machine tool industry Ex: Punch Press, Welding machines, Thermal cutting machines, Tube bending machines (j) State the applications of Group Technology Answer: (a) Manufacturing applications o Informal scheduling and routing of similar parts through selected machines o Virtual machine cells o Formal machine cells o Automated process planning o Modular fixtures o Parametric programming in NC (b) Design applications: Design simplification and standardization (k) What is cellular manufacturing? Answer: Cellular manufacturing is an application of group technology in which dissimilar machines or processes have been aggregated into cells, each of which is dedicated to the production of a part or product family or a limited group of families. Cellular manufacturing is an example of mixed model production. (l) State the basic components of FMS 1) Work stations 2) Material handling and storage system 3) Computer control system and 4) People Page 2 of 23

3 UNIT-I 2. (a) Develop Bresenham s algorithm to generate a line and discus about its advantages (8M) Answer: The Bresenham s algorithm is an incremental scan conversion algorithm. The big advantage of this algorithm is that, it uses only integer calculations. Moving across the x axis in unit intervals and at each step choose between two different y coordinates. This algorithm samples a line by incrementing by one unit either x or y depending on the slope of the line and then selects the pixel lying at least a distance from the true line path at each sampling position. To illustrate Bresenham s approach let us consider a line (L) with positive slope less than 1. So the line will be sampled at unit intervals in X direction. Assuming we have already determined that the pixel at (x k, y k ) is to be displayed, we next need to decide which pixel to plot at next sampling position, i.e., at x k + 1 grid line. Our choices are clearly the pixels at (x k +1, y k +1) and (x k + 1, y k ), i.e., A and B respectively in Figure. Let C be the intersection point of the line L with the gridline x = x k + 1. In Bresenham s formulation, the difference between the vertical distances of A and B to C is computed, and the sign of the difference is used to select the pixel whose distance from C is smaller as the best approximation to the line. Page 3 of 23

4 Page 4 of 23

5 Advantages: 1. Simple in calculations 2. Uses integer values thus avoids floating point Page 5 of 23

6 (b) Explain the working principle of a CRT display device. (4M) Answer: The Cathode Ray Tube is today used in computer monitors, TV set s and oscilloscope tubes. The path of the electrons in the tube filled with a low pressure rare gas can be observed in a darkened room as a trace of light. Electron beam deflection can be effected by means of either an electrical or a magnetic field. Working Principle: The source of the electron beam is the electron gun, which produces a stream of electrons through thermionic emission at the heated cathode and focuses it into a thin beam by the control grid A strong electric field between cathode and anode accelerates the electrons, before they leave the electron gun through a small hole in the anode. The electron beam can be deflected by a capacitor or coils in a way which causes it to display an image on the screen. The image may represent electrical waveforms (oscilloscope), pictures (television, computer monitor), echoes of aircraft detected by radar etc. When electrons strike the fluorescent screen, light is emitted. The whole configuration is placed in a vacuum tube to avoid collisions between electrons and gas molecules of the air, which would attenuate the beam. (OR) 3. (a) Describe DDA algorithm for the generation of line. Write its advantages and limitations. (6M) Answer: The digital differential analyzer (DDA) algorithm is an incremental scan-conversion method. Such an approach is characterized by performing calculations at each step using results from the preceding step. Page 6 of 23

7 Advantages of DDA: (1) It is simplest algorithm and does not require special skill for implementation. (2) It is a faster method for calculating pixel values instead of using the equation directly. Limitations of DDA: (1) The rounding operation & floating point arithmetic are time consuming procedures. (2) The accumulation of round-off error in successive addition of floating point increment can cause the calculated pixel position to drift away from the true line path for long line segment. Page 7 of 23

8 (b) Find the position in Homogeneous coordinates for the initial point P (2, 1, 3) which is rotated about 60 0 in counter clockwise direction. (6M) Page 8 of 23

9 UNIT-II 4. (a) Develop parametric equation to generate B-Spline curve and discus its advantages. (6M) Answer: Page 9 of 23

10 Page 10 of 23

11 Page 11 of 23

12 (b) Explain about boundary representation in solid modeling. Answer: (6M) Page 12 of 23

13 Page 13 of 23

14 5. (a) Explain the hidden line removal technique in related to visual realism (6M) (OR) Answer: Hidden line removal (HLR) is the method of computing which edges are not hidden by the faces of parts for a specified view and the display of parts in the projection of a model into a 2D plane. Hidden line removal is utilized by a CAD to display the visual lines. It is considered that information openly exists to define a 2D wireframe model as well as the 3D topological information. Typically, the best algorithm is required for viewing this information from an available part representation. 3D parts are simply manufactured and frequently happen in a CAD design of such a part. In addition, the degrees of freedom are adequate to show the majority of models and are not overwhelming in the number of constraints to be forced. Also, almost all the surface-surface intersections and shadow computations can be calculated analytically which results in significant savings in the number of computations over numerical methods Page 14 of 23

15 Priority algorithm: Priority algorithm is basis on organization all the polygons in the view according to the biggest Z-coordinate value of each. If a face intersects more than one face, other visibility tests besides the Z- depth required to solve any issue. This step comprises purposes of wrapper. Imagines that objects are modeled with lines and lines are generated where surfaces join. If only the visible surfaces are created then the invisible lines are automatically removed. ABCD, ADFG, DCEF are given higher priority-1. Hence, all lines in this faces are visible, that is, AB, BC, CD, DA, AD, DF, FG, AG, DC, CE, EF and DF are visible. AGHB, EFGH, BCEH are given lower priority-2. Hence, all lines in this faces other than priority-1 are invisible, that is BH, EH and GH. These lines must be eliminated. (b) What is shading? Develop the algorithm for shading in solid modeling. (6M) Answer: Shading refers to depicting depth perception in 3D models or illustrations by varying levels of darkness. In the field of computer graphics, a shader is a special type of computer program that was originally used to do shading (the production of appropriate levels of light, darkness, and color within an image) but which now perform a variety of specialized functions in various fields of computer graphics special effects or do video post-processing unrelated to shading, and even functions unrelated to graphics at all. Shaders calculate rendering effects on graphics hardware with a high degree of flexibility. Most shaders are coded for a graphics processing unit (GPU), though this is not a strict requirement. Shading languages are usually used to program the programmable GPU rendering pipeline, which has mostly superseded the fixed-function pipeline that allowed only common geometry transformation and pixel-shading functions; with shaders, customized effects can be used. The position, hue, saturation, brightness, and contrast of all pixels, vertices, or textures used to construct a final image can be altered on the fly, using algorithms defined in the shader, and can be modified by external variables or textures introduced by the program calling the shader. The following shading models are popularly used. 1. Flat shading 2. Smooth shading (a) Gouraud shading (b) Phong shading (c) Fast Phong shading UNIT-III 6. (a) What are the features of CNC? Explain in detail. (6M) Page 15 of 23

16 Answer: Computer NC systems include additional features beyond what is feasible with conventional hard-wired NC. These features, many of which are standard on most CNC MCUs where as others are optional, include the following: 1) Storage of more than one part program: With improvements in computer storage technology. Newer CNC controllers have sufficient capacity to store multiple programs. Controller manufacturers generally offer one or more memory expansions as options to the MCU. 2) Various forms of program input. Whereas conventional (hard-wired) MCUs are limited to punched tape as the input medium for entering part programs. CNC controllers generally possess multiple data entry capabilities, such as punched tape (if the machine shop still uses punched tape), magnetic tape. Floppy diskette. 3) Program edit at the machine tool. CNC permits a part program to be edited while it resides in the MCU computer memory. Hence, the process of testing and correcting a program can be done entirely at the machine site, rather than returning to the programming office to correct the tape. In addition to part program corrections, Editing also permits optimizing cutting conditions in the machining cycle. After correcting and optimizing the program. The revised version can be stored on punched tape or other media for future use. 4) Fixed cycles and programming subroutines. The increased memory capacity and the ability to program the control computer provide the opportunity to store frequently used machining cycles as macros that can be called by the part program. Instead of writing the full instructions for the particular cycle into every program, a call statement is included in the part program to indicate that the macro cycle should be executed. These cycles often require that certain parameters be defined; for example. A bolt hole circle, in which the diameter of the bolt circle, the spacing of the bolt holes, and other parameters must be specified. 5) Interpolation. Some of the interpolation schemes are normally executed only on a CNC system because of the computational requirements. Linear and circular interpolation arc sometimes hard-wired into the control unit, but helical, parabolic and cubic interpolations are usually executed in a stored program algorithm. 6) Positioning features for setup. Setting up the machine tool for a given work part involves installing and aligning a fixture on the machine tool table. This must be accomplished so that the machine axes are established with respect to the work part; the alignment task can be facilitated using certain features made possible by software options in a CNC system. Position set is one of these features. With position set, the operator is not required to locate the fixture on the machine table with extreme accuracy. Instead, the machine tool axes are referenced to the location of the fixture by using a target point or set of target points on the work or fixture. 7) Cutter length and size compensation. In older style controls, cutter dimensions had to be set very precisely to agree with the tool path defined in the part program. Alternative methods for ensuring accurate tool path definition have been incorporated into CNC controls. One method involves manually entering the actual tool dimensions into the MCU. These actual dimensions may differ from those originally programmed Compensations are then automatically made in the computed tool path. Another method involves use of a tool length sensor built into the machine. In this technique, the cutter is mounted in the spindle and the sensor measures its length. This measured value is then used to correct the programmed tool path. 8) Acceleration and deceleration calculations: This feature is applicable when the cutter moves at high feed rates. It is designed to avoid tool marks on the work surface that would be generated due to machine tool dynamics when the cutter path changes abruptly. Instead, the feed rate is smoothly decelerated in anticipation of a tool path change and then accelerated back up to the programmed feed rate after the direction change. 9) Communications interface. With the trend toward interfacing and networking in plants today, most modem CNC con/rollers are equipped with a standard RS-232 or other Page 16 of 23

17 communications interface to allow the machine to be linked to other computers and computer-driven devices. This is useful for various applications, such as: (1) downloading part programs from a central data file as in distributed NC; (2) collecting operational data such as work piece counts, cycle times, and machine utilization; and (3) interfacing with peripheral equipment, such as robots that load and unload parts. 10) Diagnostics. Many modern CNC systems possess an on-line diagnostics capability that monitors certain aspects of the machine tool to detect malfunctions or signs of impending malfunctions or to diagnose system breakdowns. (b) Explain principles of DNC. (6M) Answer: Direct Numerical Control: The first attempt to use a digital computer to drive the NC machine tool was DNC. As initially implemented DNC involved the control or a number of machine tools by a single (mainframe) computer through direct connection and in real time. Instead of using a punched tape reader to enter the part program into the MCU, the program was transmitted to the MCU directly from the computer, one block of instructions at a time. This mode of operation was referred to by the name behind the tape reader (BTR). The DNC computer provided instruction blocks to the machine tool on demand; when a machine needed control commands, they were communicated to it immediately. As each block was executed by the machine, the next block was transmitted. As far as the machine tool was concerned, the operation was no different from that of a conventional NC controller. In theory, DNC relieved the NC system of its least reliable components: the punched tape and tape reader. The general configuration of a DNC system is depicted in Figure. The system consisted of four components: (1) central computer, (2) bulk memory at the central computer site, (3) set of controlled machines, and (4) telecommunications lines to connect the machines to the central computer. In operation, the computer caned the required part program from bulk memory and sent it (one block at a time) to the designated machine tool. This procedure was replicated for all machine toots under direct control of the computer. Distributed Numerical Control: The configuration of the DNC is very similar to that of Direct numerical control except that the central computer is connected to MCUs, which are themselves computers. This permits complete part programs to be sent to the machine tools rather than one block at a time. It also permits easier and less costly installation of the overall system, because the individual CNC machines can be put into service and the distributed NC can be added later. Redundant computers improve system reliability compared with the original DNC. The new DNC permits two-way communication of data between the shop floor and the central computer which was one of the important features included in the old DNC. However, improvements in data collection devices as well as advances in computer and communications technologies have expanded the range and flexibility of the information that can be gathered and disseminated. Distributed NC systems can take on a variety of physical configurations, depending on the number of machine tools included, job complexity, security requirements, and equipment availability and preferences. There are several ways to configure a DNC system. Page 17 of 23

18 (a) Switching network (b) LAN (OR) 7. (a) Explain any four different ways of representing circles and planes in APT geometry. (6M) Answer: CIRCLE: Circle (geometry type). Used to define a circle in the x-y plane. Methods of definition include: 1. Using the coordinates of its center and its radius (see Figure): C1 = CIRCLE/CENTER, 100, 50, 0, RADIUS, Using the point identifying its center and its radius (see Figure): C1 = CIRCLE/CENTER, PI, RADIUS, Using the point identifying its center and a line to which it is tangent (see Figure): C1 = CIRCLEICENTER, P1, TANTO, L1 PLANE: Plane (geometry type). Used to define a plane. Methods of definition include: 1. Using three points that do not lie on the same straight line: PL1= PLANEIPI, P2, P3 2. Using a point and parallelism to another plane: PL2 = PLANEIP4, PARLEL, PL1 3. Using two points and perpendicularity to another plane: P13 = PLANE/P5, PO, PFRPTO, PL1 (b) Describe point to point and contouring motion statements. (6M) Answer: Point-to-point motions, there are only two commands: GOTO and GODLTA. The GOTO statement instructs the tool to go to a particular point location specified in the descriptive data. Two examples are: GOTO/P2 GOTO/25.0, 40, 0, 0 Page 18 of 23

19 In the first command, P2 is the destination of the tool point. In the second command, the tool has been instructed to go to the location whose coordinates are x = 25.0, Y = 40.0, and z = 0. The GODLTA command specifies an incremental move for the tool. To illustrate, the following statement instructs the tool to move from its present position by a distance of 50.0 mm in the x-direction, mm in the y-direction, and 40 rum in the z-direction GODLTA/50.0, 120.0, 40.0 The GODLTA statement is useful in drilling and related machining operations. The tool can be directed to go to a given hole location; then the GODLTA command can be used to drill the hole, as in the following sequence: GOTO/P2 GODLTA/0, 0, GODLTA/O, 0, 50.0 Contouring motion commands are more complicated than PTP commands because the tool's position must be continuously controlled throughout the move. To exercise this control, the tool is directed along two intersecting surfaces until it reaches a third surface, as shown in Figure. These three surfaces have specific names in APT; they are: 1. Drive surface. This is the surface that guides the side of the cutler. It is pictured as plane in our figure. 2. Part surface. This is the surface, again pictured as a plane, on which the bottom or nose of the tool is guided. 3. Check surface. This is the surface that stops the forward motion of the tool in the execution of the current command. One might say that this surface "checks" the advance of the tool. An APT contouring motion command causes the cutter to proceed along a trajectory defined by the drive surface and part surface; when the tool reaches the check surface it stops according to one of the modifier words TO, ON, PAST, or TANTO. In writing a motion statement, the part programmer must keep in mind the direction from which the tool is coming in the preceding motion command. The programmer must pretend to be riding on top of the tool, as if driving a car. UNIT-IV 8. (a) Explain OPITZ coding system. (7M) Answer: This system was developed by H. OPITZ of the University of Aachen in Germany. It represents one of the pioneering efforts in group technology and is probably the best known, if not the most frequently used, of the parts classification and coding systems. It is intended for machined parts. The OPITZ coding scheme uses the following digit sequence: ABCD The basic code consists of nine digits, which can be extended by adding four more digits. The first nine are intended to convey both design and manufacturing data. The interpretation of the first nine Page 19 of 23

20 digits is defined in Figure. The first five digits, 12345, are called the form code. It describes the primary design attributes of the part, such as external shape (e.g., rotational vs. rectangular) and machined features (e.g., holes, threads, gear teeth, etc.) The next four digits, 6789, constitute the supplementary code, which indicates some of the attributes that would be of use in manufacturing (e.g., dimensions, work material, starting shape, and accuracy). The extra four digits, ABCD, are referred to as the secondary code and are intended to identify the production operation type and sequence. The secondary code can be designed by the user firm to serve its own particular needs. (b) Discus about functions of computer control system in FMS. (5M) Answer: Functions performed by the FMS computer control system can be grouped into the following categories: 1. Workstation control. In a fully automated FMS, the individual processing or assembly stations generally operate under some form of computer control. For a machining system, CNC is used to control the individual machine tools. 2. Distribution of control instructions to workstations. Some form of central intelligence is also required to coordinate the processing at individual stations. In a machining FMS, part programs must be downloaded to machines, and DNC is used for this purpose, The DNC system stores the programs, allows submission of new programs and editing of existing programs as needed, and performs other DNC functions 3. Production control. The part mix and rate at which the various parts are launched into the system must be managed. Input data required for production control includes desired daily production rates per part. Numbers of raw work parts available, and number of applicable pallets.' The production control function is accomplished by routing an applicable pallet 10 the load/unload area and providing instructions to the operator for loading the desired work part. 4. Traffic control. This refers to the management of the primary material handling system that moves work parts between stations. Traffic control is accomplished by actuating switches at branches and merging points. Stopping parts at machine tool transfer locations, and moving pallets to load/unload stations. 5. Shuttle control. This control function is concerned with the operation and control of the secondary handling system at each workstation. Each shuttle must be coordinated with the primary handling system and synchronized with the operation of the machine tool it serves. Page 20 of 23

21 6. Work piece monitoring. The computer must monitor the status of each cart and/or pallet in the primary and secondary handling systems as well as the status of each of the various work piece types. 7. Tool control: In a machining system, cutting tools are required. Tool control is concerned with managing two aspects of the cutting tools: o Tool location. This involves keeping track of the cutting tools at each workstation, If one or mere tools required to process a particular work piece is not present at the station that is specified in the part's routing, the tool control subsystem takes one or both of the following actions: (a) determines whether an alternative workstation that has the required tool is available and/or (b) notifies the operator responsible for tooling in the system that the tool storage unit at the station must be loaded with the required cutter(s). o Tool life monitoring: In this aspect of tool control, a tool life is specified to the computer for each cutting tool in the FMS.A record of the machining time usage is maintained for each of the tools, and when the cumulative machining time reaches the specified life of the tool, the operator is notified that a tool replacement is needed. 8. Performance monitoring and reporting: The computer control system is programmed to collect data on the operation and performance of the FMS. This data is periodically summarized, and reports are prepared for management on system performance. 9. Diagnostics: This function is available to a greater or lesser degree on many manufacturing systems to indicate the probable source of the problem when a malfunction occurs. It can also be used to plan preventive maintenance in the system and to identify Impending failures. The purpose of the diagnostics function is to reduce breakdowns and downtime and increase availability of the system. (OR) 9. (a) Explain retrieval type CAPP system (6M) Answer: A retrieval CAPP system, also called a variant CAPP system, is based on the principles of group technology (GT) and parts classification and coding.in this type of CAPP, a standard process plan (route sheet) is stored in computer files for each part code number. The standard route sheets are based on current part routings in use in the factory or on an ideal process plan that has been prepared for each family. It should be noted that the development of the data base of these process plans requires substantial effort. Before the system can be used for process planning, a significant amount of information must be compiled and entered into the CAPP data files. This is called as the "preparatory phase:' It consists of the following steps: (1) selecting an appropriate classification and coding scheme for the company, (2) forming part families for the parts produced by the company; and (3) preparing standard process plans for the part families. It should be mentioned that steps (2) and (3) continue as new parts are designed and added to the company's design data base. Page 21 of 23

22 (b) Differentiate CAD/CAM and CIM (6M) Answer: CAD/CAM is concerned with the engineering functions in both design and manufacturing. Product design, engineering analysis, and documentation of the design (e.g. drafting) represent engineering activities in design. Process planning, NC part programming, and other activities associated with CAM represent engineering activities in manufacturing. The CAD/CAM systems developed during the 1970s and early 1980s were designed primarily to address these types of engineering problems. In addition, CAM has evolved to include many other functions in manufacturing, such as material requirements planning, production scheduling, computer production monitoring, and computer process control. It should also be noted that CAD/CAM denotes an integration of design and manufacturing activities by means of computer systems. The method of manufacturing a product is a direct function of its design. Computer integrated manufacturing (CIM) includes all of the engineering functions of CAD/CAM, but it also includes the firm's business functions that are related to manufacturing. The ideal CIM system applies computer and communications technology to all of the operational functions and information processing functions in manufacturing from order receipt, through design and production, to product shipment. The scope of CIM, compared with the more limited scope of CAD/CAM is shown in the diagram. Page 22 of 23

23 Prepared by: Rajasekharababu. K, Asst. Professor, Dept. of Mechanical Engineering Cell: Bapatla, 17. Nov Page 23 of 23

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming L1 - Introduction Contents Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming 1 Definitions Computer-Aided Design (CAD) The technology concerned with the

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 Course Name : CAD CAM Course Code : A0328 Class : IV B. Tech I Semester MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Branch

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK M.E: CAD/CAM I SEMESTER ED5151 COMPUTER APPLICATIONS IN DESIGN Regulation 2017 Academic

More information

2. INTRODUCTION TO CNC

2. INTRODUCTION TO CNC Q. Define NC Machines. 2. INTRODUCTION TO CNC A method of automation, in which various functions and processing of machine tools are controlled by letters and symbols. The general objective of NC technology

More information

Chapter 1 Introduction to Numerically Controlled Machines

Chapter 1 Introduction to Numerically Controlled Machines Chapter 1 Introduction to Numerically Controlled Machines The primary building blocks of flexible manufacturing and computer integrated manufacturing systems are numerically controlled (CNC) machine tools.

More information

ME COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A

ME COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A ME6501 - COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A Unit I 1. What is CAD? Computer aided design (CAD) is the technology concerned with the use of computer systems to assist the creation,

More information

Geometric Modeling. Introduction

Geometric Modeling. Introduction Geometric Modeling Introduction Geometric modeling is as important to CAD as governing equilibrium equations to classical engineering fields as mechanics and thermal fluids. intelligent decision on the

More information

Table of Contents. Table Of Contents. Access to parameters (lesson 2)) 26 Surprised? 26 Key Points for Lesson 1: 26 Quiz 26

Table of Contents. Table Of Contents. Access to parameters (lesson 2)) 26 Surprised? 26 Key Points for Lesson 1: 26 Quiz 26 Preface 9 Why you should buy this book 9 What is parametric programming? 10 A word about CAM systems 10 Scope 10 Versions of Custom Macro 10 Machine types 10 Prerequisites 11 Optional status 11 Lessons

More information

OF MECHANICAL ENGINERING COMPUTER INEGRATED MANUFACTURING SYSTEMS 8ME1A

OF MECHANICAL ENGINERING COMPUTER INEGRATED MANUFACTURING SYSTEMS 8ME1A Solution of Midterm as Follows BHARTIYA INSTITUTE OF ENGINEERING &TECHNOLOGY,SIKAR Q1.(A) Explain the role of computer in manufacturing? Ans: Computer based control systems can be combined with manufacturing

More information

Engineering designs today are frequently

Engineering designs today are frequently Basic CAD Engineering designs today are frequently constructed as mathematical solid models instead of solely as 2D drawings. A solid model is one that represents a shape as a 3D object having mass properties.

More information

Graphics Hardware and Display Devices

Graphics Hardware and Display Devices Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SUB.NAME: COMPUTER GRAPHICS SUB.CODE: IT307 CLASS : III/IT UNIT-1 2-marks 1. What is the various applications

More information

End-Term Examination

End-Term Examination Paper Code: MCA-108 Paper ID : 44108 Second Semester [MCA] MAY-JUNE 2006 Q. 1 Describe the following in brief :- (3 x 5 = 15) (a) QUADRATIC SURFACES (b) RGB Color Models. (c) BSP Tree (d) Solid Modeling

More information

Chapter - 2: Geometry and Line Generations

Chapter - 2: Geometry and Line Generations Chapter - 2: Geometry and Line Generations In Computer graphics, various application ranges in different areas like entertainment to scientific image processing. In defining this all application mathematics

More information

MEB COMPUTER INTEGRATED MANUFACTURING. Unit - I Part - A

MEB COMPUTER INTEGRATED MANUFACTURING. Unit - I Part - A MEB - 620 - COMPUTER INTEGRATED MANUFACTURING One Mark Questions: Unit - I 1. What is meant by CIM? 2. Define: CAD 3. What are the different types of CAD system? 4. What is meant by graphic workstation?

More information

CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505. Clipping & Scan Conversion CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

More information

Line Drawing. Introduction to Computer Graphics Torsten Möller / Mike Phillips. Machiraju/Zhang/Möller

Line Drawing. Introduction to Computer Graphics Torsten Möller / Mike Phillips. Machiraju/Zhang/Möller Line Drawing Introduction to Computer Graphics Torsten Möller / Mike Phillips Rendering Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Color Interaction Texture/ Realism

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

MET71 COMPUTER AIDED DESIGN

MET71 COMPUTER AIDED DESIGN UNIT - II BRESENHAM S ALGORITHM BRESENHAM S LINE ALGORITHM Bresenham s algorithm enables the selection of optimum raster locations to represent a straight line. In this algorithm either pixels along X

More information

Touch Control Panels. Precision Built Solutions

Touch Control Panels. Precision Built Solutions Touch 2200 Control Panels Precision Built Solutions The Touch 2200 provides world class technology and advanced features not available in other controls proving that east-to-use does not have to mean compromising

More information

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~elf Instructor: Eugene Fiume Office: BA 5266 Phone: 416 978 5472 (not a reliable way) Email:

More information

(Refer Slide Time: 00:01:27 min)

(Refer Slide Time: 00:01:27 min) Computer Aided Design Prof. Dr. Anoop Chawla Department of Mechanical engineering Indian Institute of Technology, Delhi Lecture No. # 01 An Introduction to CAD Today we are basically going to introduce

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-500043 MECHANICAL ENGINEERING ASSIGNMENT QUESTIONS Title Code Class Structure Coordinator Team of Instructors CAD/CAM A70328-R15 IV

More information

Line Drawing. Foundations of Computer Graphics Torsten Möller

Line Drawing. Foundations of Computer Graphics Torsten Möller Line Drawing Foundations of Computer Graphics Torsten Möller Rendering Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Interaction Color Texture/ Realism Reading Angel

More information

Geometric Modeling Lecture Series. Prof. G. Wang Department of Mechanical and Industrial Engineering University of Manitoba

Geometric Modeling Lecture Series. Prof. G. Wang Department of Mechanical and Industrial Engineering University of Manitoba Geometric Modeling 25.353 Lecture Series Prof. G. Wang Department of Mechanical and Industrial Engineering University of Manitoba Introduction Geometric modeling is as important to CAD as governing equilibrium

More information

TopMill TopTurn. Jobshop Programming & Simulation for Multi-Side & Complete Mill-Turn Machining for every CNC Control

TopMill TopTurn. Jobshop Programming & Simulation for Multi-Side & Complete Mill-Turn Machining for every CNC Control MEKAMS MillTurnSim TopCAM TopCAT Jobshop Programming & Simulation for Multi-Side & Complete Mill-Turn Machining for every CNC Control 2 Jobshop Programming for Multi-Side and Complete Mill-Turn Machining

More information

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations Multimedia Systems 03 Vector Graphics 2D and 3D Graphics, Transformations Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures

More information

EML 2322L -- MAE Design and Manufacturing Laboratory. CNC Machining

EML 2322L -- MAE Design and Manufacturing Laboratory. CNC Machining EML 2322L -- MAE Design and Manufacturing Laboratory CNC Machining Intro to CNC Machining CNC stands for computer numeric controlled. It refers to any machine tool (i.e. mill, lathe, drill press, etc.)

More information

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401 Computer Graphics CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401- COMPUTER GRAPHICS UNIT 1-2D PRIMITIVES 1. Define Computer Graphics. 2. Explain any 3 uses of computer graphics applications.

More information

Ch 5 Industrial Control Systems

Ch 5 Industrial Control Systems Ch 5 Industrial Control Systems Sections: 1. Process Industries vs. Discrete Manufacturing Industries 2. Continuous vs. Discrete Control 3. Computer Process Control Industrial Control - Defined The automatic

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Scan Conversion. CMP 477 Computer Graphics S. A. Arekete

Scan Conversion. CMP 477 Computer Graphics S. A. Arekete Scan Conversion CMP 477 Computer Graphics S. A. Areete What is Scan-Conversion? 2D or 3D objects in real world space are made up of graphic primitives such as points, lines, circles and filled polygons.

More information

Live Classroom Curriculum Guide

Live Classroom Curriculum Guide Curriculum Guide Live Classroom Curriculum Guide Milling using Pro/ENGINEER Wildfire 4.0 Pro/ENGINEER Mechanica Simulation using Pro/ENGINEER Wildfire 4.0 Introduction to Pro/ENGINEER Wildfire 4.0 Pro/ENGINEER

More information

Introduction to Solid Modeling

Introduction to Solid Modeling Introduction to Solid Modeling Parametric Modeling 1 Why draw 3D Models? 3D models are easier to interpret. 3D models can be used to perform engineering analysis, finite element analysis (stress, deflection,

More information

TOOLPATHS TRAINING GUIDE. Sample. Distribution. not for MILL-LESSON-4-TOOLPATHS DRILL AND CONTOUR

TOOLPATHS TRAINING GUIDE. Sample. Distribution. not for MILL-LESSON-4-TOOLPATHS DRILL AND CONTOUR TOOLPATHS TRAINING GUIDE MILL-LESSON-4-TOOLPATHS DRILL AND CONTOUR Mill-Lesson-4 Objectives You will generate a toolpath to machine the part on a CNC vertical milling machine. This lesson covers the following

More information

4) Finish the spline here. To complete the spline, double click the last point or select the spline tool again.

4) Finish the spline here. To complete the spline, double click the last point or select the spline tool again. 1) Select the line tool 3) Move the cursor along the X direction (be careful to stay on the X axis alignment so that the line is perpendicular) and click for the second point of the line. Type 0.5 for

More information

Overview of Computer Graphics

Overview of Computer Graphics Application of Computer Graphics UNIT- 1 Overview of Computer Graphics Computer-Aided Design for engineering and architectural systems etc. Objects maybe displayed in a wireframe outline form. Multi-window

More information

Lesson 5 Solid Modeling - Constructive Solid Geometry

Lesson 5 Solid Modeling - Constructive Solid Geometry AutoCAD 2000i Tutorial 5-1 Lesson 5 Solid Modeling - Constructive Solid Geometry Understand the Constructive Solid Geometry Concept. Create a Binary Tree. Understand the basic Boolean Operations. Create

More information

INSTRUCTIONAL PLAN L( 3 ) T ( ) P ( ) Instruction Plan Details: DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL

INSTRUCTIONAL PLAN L( 3 ) T ( ) P ( ) Instruction Plan Details: DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL INSTRUCTIONAL PLAN RECORD NO.: QF/ACD/009 Revision No.: 00 Name of Faculty: Course Title: Theory of elasticity L( 3 ) T ( ) P ( ) Department: Mechanical

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective

More information

Ch 22 Inspection Technologies

Ch 22 Inspection Technologies Ch 22 Inspection Technologies Sections: 1. Inspection Metrology 2. Contact vs. Noncontact Inspection Techniques 3. Conventional Measuring and Gaging Techniques 4. Coordinate Measuring Machines 5. Surface

More information

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo)

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) www.vucybarien.com Question No: 1 What are the two focusing methods in CRT? Explain briefly. Page no : 26 1. Electrostatic focusing

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011 Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

More information

RASTERIZING POLYGONS IN IMAGE SPACE

RASTERIZING POLYGONS IN IMAGE SPACE On-Line Computer Graphics Notes RASTERIZING POLYGONS IN IMAGE SPACE Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis A fundamental

More information

Principles of Computer Graphics. Lecture 3 1

Principles of Computer Graphics. Lecture 3 1 Lecture 3 Principles of Computer Graphics Lecture 3 1 Why we learn computer graphics? Appreciate what we see The knowledge can applied when we want to develop specific engineering program that requires

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

MAE 455 COMPUTER-AIDED DESIGN AND DRAFTING MIDTERM EXAM PRACTICE QUESTIONS. Name: You are allowed one sheet of notes.

MAE 455 COMPUTER-AIDED DESIGN AND DRAFTING MIDTERM EXAM PRACTICE QUESTIONS. Name: You are allowed one sheet of notes. 47 MAE 455 COMPUTER-AIDED DESIGN AND DRAFTING MIDTERM EXAM PRACTICE QUESTIONS Name: You are allowed one sheet of notes. 1. What constraints could be added to fully constrain the wireframe shown? Include

More information

Animation & Rendering

Animation & Rendering 7M836 Animation & Rendering Introduction, color, raster graphics, modeling, transformations Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl 1 Purpose Understand 3D computer graphics

More information

CAD/CAM COURSE TOPIC OF DISCUSSION GEOMETRIC MODELING DAWOOD COLLEGE OF ENGINEERING & TECHNOLOGY- KARACHI- ENGR. ASSAD ANIS 4/16/2011 1

CAD/CAM COURSE TOPIC OF DISCUSSION GEOMETRIC MODELING DAWOOD COLLEGE OF ENGINEERING & TECHNOLOGY- KARACHI- ENGR. ASSAD ANIS 4/16/2011 1 CAD/CAM COURSE TOPIC OF DISCUSSION GEOMETRIC MODELING 1 CAD attempts to eliminate the need of developing a prototype for testing and optimizing the design CAD evaluates a design using a model with geometric

More information

Lecture 17: Solid Modeling.... a cubit on the one side, and a cubit on the other side Exodus 26:13

Lecture 17: Solid Modeling.... a cubit on the one side, and a cubit on the other side Exodus 26:13 Lecture 17: Solid Modeling... a cubit on the one side, and a cubit on the other side Exodus 26:13 Who is on the LORD's side? Exodus 32:26 1. Solid Representations A solid is a 3-dimensional shape with

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR

SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS QUESTION BANK (2017-2018) Course / Branch : BCA Semester / Year : IV / II Subject Name : Computer

More information

CS 4620 Final Exam. (a) Is a circle C 0 continuous?

CS 4620 Final Exam. (a) Is a circle C 0 continuous? CS 4620 Final Exam Wednesday 9, December 2009 2 1 2 hours Prof. Doug James Explain your reasoning for full credit. You are permitted a double-sided sheet of notes. Calculators are allowed but unnecessary.

More information

Chapter 1 Introduction

Chapter 1 Introduction Graphics & Visualization Chapter 1 Introduction Graphics & Visualization: Principles & Algorithms Brief History Milestones in the history of computer graphics: 2 Brief History (2) CPU Vs GPU 3 Applications

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction Theory: Whenever a wave traveling in some medium encounters an interface or boundary with another medium either (or both) of the processes of (1) reflection and (2) refraction

More information

4.5 VISIBLE SURFACE DETECTION METHODES

4.5 VISIBLE SURFACE DETECTION METHODES 4.5 VISIBLE SURFACE DETECTION METHODES A major consideration in the generation of realistic graphics displays is identifying those parts of a scene that are visible from a chosen viewing position. There

More information

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models 3D Programming Concepts Outline 3D Concepts Displaying 3D Models 3D Programming CS 4390 3D Computer 1 2 3D Concepts 3D Model is a 3D simulation of an object. Coordinate Systems 3D Models 3D Shapes 3D Concepts

More information

Course Title: Computer Graphics Course no: CSC209

Course Title: Computer Graphics Course no: CSC209 Course Title: Computer Graphics Course no: CSC209 Nature of the Course: Theory + Lab Semester: III Full Marks: 60+20+20 Pass Marks: 24 +8+8 Credit Hrs: 3 Course Description: The course coversconcepts of

More information

Institutionen för systemteknik

Institutionen för systemteknik Code: Day: Lokal: M7002E 19 March E1026 Institutionen för systemteknik Examination in: M7002E, Computer Graphics and Virtual Environments Number of sections: 7 Max. score: 100 (normally 60 is required

More information

Solid Modeling: Part 1

Solid Modeling: Part 1 Solid Modeling: Part 1 Basics of Revolving, Extruding, and Boolean Operations Revolving Exercise: Stepped Shaft Start AutoCAD and use the solid.dwt template file to create a new drawing. Create the top

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Computer Graphics. - Rasterization - Philipp Slusallek

Computer Graphics. - Rasterization - Philipp Slusallek Computer Graphics - Rasterization - Philipp Slusallek Rasterization Definition Given some geometry (point, 2D line, circle, triangle, polygon, ), specify which pixels of a raster display each primitive

More information

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control 5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control 2013-01-2224 Published 09/17/2013 Joseph R. Malcomb Electroimpact Inc. Copyright 2013 SAE International doi:10.4271/2013-01-2224

More information

Convergent Modeling and Reverse Engineering

Convergent Modeling and Reverse Engineering Convergent Modeling and Reverse Engineering 25 October 2017 Realize innovation. Tod Parrella NX Design Product Management Product Engineering Solutions tod.parrella@siemens.com Realize innovation. Siemens

More information

The University of Calgary

The University of Calgary The University of Calgary Department of Computer Science Final Examination, Questions ENEL/CPSC 555 Computer Graphics Time: 2 Hours Closed Book, calculators are permitted. The questions carry equal weight.

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS LECTURE 14 RASTERIZATION 1 Lecture Overview Review of last class Line Scan conversion Polygon Scan conversion Antialiasing 2 Rasterization The raster display is a matrix of picture

More information

Turning ISO Dialect T

Turning ISO Dialect T SINUMERIK 802D Short Guide 09.2001 Edition Turning ISO Dialect T User Documentation SINUMERIK 802D Turning ISO Dialect T Short Guide 09.2001 Edition Valid for Control Software Version SINUMERIK 802D 1

More information

CNC PART PROGRAMMING

CNC PART PROGRAMMING CNC PART PROGRAMMING (1) Programming fundamentals Machining involves an important aspect of relative movement between cutting tool and workpiece. In machine tools this is accomplished by either moving

More information

CAD/CAM DESIGN TOOLS. Software supplied with all new and upgraded Boxford Lathes, Mills and Routers

CAD/CAM DESIGN TOOLS. Software supplied with all new and upgraded Boxford Lathes, Mills and Routers CAD/CAM DESIGN TOOLS Software supplied with all new and upgraded Boxford Lathes, Mills and Routers The Boxford CAD/CAM Design Tools software is a unique suite of integrated CAD and CAM tools designed specifically

More information

Introduction to Solid Modeling Parametric Modeling. Mechanical Engineering Dept.

Introduction to Solid Modeling Parametric Modeling. Mechanical Engineering Dept. Introduction to Solid Modeling Parametric Modeling 1 Why draw 3D Models? 3D models are easier to interpret. Simulation under real-life conditions. Less expensive than building a physical model. 3D models

More information

Reading. 18. Projections and Z-buffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading:

Reading. 18. Projections and Z-buffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading: Reading Required: Watt, Section 5.2.2 5.2.4, 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading: 18. Projections and Z-buffers Foley, et al, Chapter 5.6 and Chapter 6 David F. Rogers

More information

An Experimental Analysis of Surface Roughness

An Experimental Analysis of Surface Roughness An Experimental Analysis of Surface Roughness P.Pravinkumar, M.Manikandan, C.Ravindiran Department of Mechanical Engineering, Sasurie college of engineering, Tirupur, Tamilnadu ABSTRACT The increase of

More information

GENIO CAD/CAM software powered by Autodesk technology for parametric programming of boring, routing and edge-banding work centers Genio SPAI SOFTWARE

GENIO CAD/CAM software powered by Autodesk technology for parametric programming of boring, routing and edge-banding work centers Genio SPAI SOFTWARE GENIO CAD/CAM software powered by Autodesk technology for parametric programming of boring, routing and edge-banding work centers Overview is a powerful CAD/CAM system powered by Autodesk 3D environment

More information

CS Rasterization. Junqiao Zhao 赵君峤

CS Rasterization. Junqiao Zhao 赵君峤 CS10101001 Rasterization Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Vector Graphics Algebraic equations describe

More information

3D Modeling: Surfaces

3D Modeling: Surfaces CS 430/536 Computer Graphics I 3D Modeling: Surfaces Week 8, Lecture 16 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

Digital Image Processing Fundamentals

Digital Image Processing Fundamentals Ioannis Pitas Digital Image Processing Fundamentals Chapter 7 Shape Description Answers to the Chapter Questions Thessaloniki 1998 Chapter 7: Shape description 7.1 Introduction 1. Why is invariance to

More information

9000 CNC 9000 CNC: THE NEW STANDARD OF CONTROL. INTUITIVE EFFICIENT PRODUCTIVE

9000 CNC 9000 CNC: THE NEW STANDARD OF CONTROL. INTUITIVE EFFICIENT PRODUCTIVE 3D Solid Model Graphics Solid Model with Tool Path Overlay 9000 CNC 9000 CNC: THE NEW STANDARD OF CONTROL. At Milltronics we are constantly refining our controls to simplify operation, shorten setup times

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

CAM Express for machinery

CAM Express for machinery Siemens PLM Software CAM Express for machinery Optimized NC programming for machinery and heavy equipment Benefits Effectively program any type of machinery part Program faster Reduce air cutting Automate

More information

P0 = POINT/1.0, 1.2, 1.3 specifies a point at XYZ coordinates 1.0, 1.2, and 1.3, respectively.

P0 = POINT/1.0, 1.2, 1.3 specifies a point at XYZ coordinates 1.0, 1.2, and 1.3, respectively. HAND OUT 02: APT PROGRAMMING NOTES APT stands for Automatically Programmed Tool. It is a language that defines the tool path with respect to the part geometry, and often forms the basis for post-processor

More information

Display Technologies: CRTs Raster Displays

Display Technologies: CRTs Raster Displays Rasterization Display Technologies: CRTs Raster Displays Raster: A rectangular array of points or dots Pixel: One dot or picture element of the raster Scanline: A row of pixels Rasterize: find the set

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

Graphics Systems and Models

Graphics Systems and Models Graphics Systems and Models 2 nd Week, 2007 Sun-Jeong Kim Five major elements Input device Processor Memory Frame buffer Output device Graphics System A Graphics System 2 Input Devices Most graphics systems

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Computer Graphics Instructor: Brian Curless CSE 457 Spring 2013 Homework #2 Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Assigned: Sunday, May 12 th Due: Thursday,

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Images from 3D Creative Magazine. 3D Modelling Systems

Images from 3D Creative Magazine. 3D Modelling Systems Images from 3D Creative Magazine 3D Modelling Systems Contents Reference & Accuracy 3D Primitives Transforms Move (Translate) Rotate Scale Mirror Align 3D Booleans Deforms Bend Taper Skew Twist Squash

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS2401 COMPUTER GRAPHICS QUESTION BANK PART A UNIT I-2D PRIMITIVES 1. Define Computer graphics. 2. Define refresh

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

COMPUTER GRAPHICS COURSE. Rendering Pipelines

COMPUTER GRAPHICS COURSE. Rendering Pipelines COMPUTER GRAPHICS COURSE Rendering Pipelines Georgios Papaioannou - 2014 A Rendering Pipeline Rendering or Graphics Pipeline is the sequence of steps that we use to create the final image Many graphics/rendering

More information

This work is about a new method for generating diffusion curve style images. Although this topic is dealing with non-photorealistic rendering, as you

This work is about a new method for generating diffusion curve style images. Although this topic is dealing with non-photorealistic rendering, as you This work is about a new method for generating diffusion curve style images. Although this topic is dealing with non-photorealistic rendering, as you will see our underlying solution is based on two-dimensional

More information

Flank Millable Surface Design with Conical and Barrel Tools

Flank Millable Surface Design with Conical and Barrel Tools 461 Computer-Aided Design and Applications 2008 CAD Solutions, LLC http://www.cadanda.com Flank Millable Surface Design with Conical and Barrel Tools Chenggang Li 1, Sanjeev Bedi 2 and Stephen Mann 3 1

More information

Computer Aided Design (CAD)

Computer Aided Design (CAD) CAD/CAM Dr. Ibrahim Al-Naimi Chapter two Computer Aided Design (CAD) The information-processing cycle in a typical manufacturing firm. PRODUCT DESIGN AND CAD Product design is a critical function in the

More information

P1 REVISION EXERCISE: 1

P1 REVISION EXERCISE: 1 P1 REVISION EXERCISE: 1 1. Solve the simultaneous equations: x + y = x +y = 11. For what values of p does the equation px +4x +(p 3) = 0 have equal roots? 3. Solve the equation 3 x 1 =7. Give your answer

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES MANUFACTURING PROCESSES - AMEM 201 Lecture 7: CNC MACHINE TOOLS 1 CNC MACHINE TOOLS TERMINOLOGY NC Numerical Control CNC Computer Numerical Control CAD Computer Aided Design CAM Computer Aided Manufacturing

More information

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Motion planning for industrial manipulators is a challenging task when obstacles are present in the workspace so that collision-free

More information