Overview of Course. Practical Robot Implementation Details. August 28, 2008

Size: px
Start display at page:

Download "Overview of Course. Practical Robot Implementation Details. August 28, 2008"

Transcription

1 Overview of Course + Practical Robot Implementation Details August 28, 2008

2 Announcements/Questions Course mailing list set up: If you haven t received a welcome message from this mailing list, see Yifan Tang (TA) right away. Any questions about Assignment #1? Use submit script 594mr_submit to submit your assignment

3 Helpful tool: robot-playerv Client GUI that visualizes sensor data from player server, from robot s perspective. Can also use it to teleoperate robot. Is used instead of a player client program (such as laserobstacleavoid) Run something like robot-player everything.cfg, then start up robotplayerv in another window Use pull-down Devices menu to subscribe to various devices (such as position2d, sonar, laser, etc.) Shows position and sonar Shows position, laser, blobfinder, and ptz data

4 Explore!! Try out different programs already provided for you Make some changes and see what happens Pick out some example programs, look up the function definitions, and be sure you understand what they re doing.

5 <see separate pdf file> Course Overview Slides

6 Practical Robot Implementation Issues

7 E f f e c t o r s Typical mobile robot implementation architecture Essentially: PC on wheels/legs/tracks/... S e n s o r s Special- Purpose Processor for sensor processing M e m o r y Standard PC running Linux M e m o r y Special- Purpose Processor for motor control

8 Implication for Robot Control Code Two options: Separate threads with appropriate interfaces, interrupts, etc. Single process with operating-system -like time-slicing of procedures Usually: combination of both For now: let s examine single process with operating-system -like timeslicing of procedures

9 Simple program: Follow walls and obey human operator commands Assume we have the following functions needed: Communications to operator interface -- commands such as stop, go, etc. Sonar: used to follow wall and avoid obstacles S o n a r Wall follower Obstacle avoider Controller & Arbitrator W h e e l s Human operator commands Communicator Want all of this to happen in parallel on single processor

10 Typical single process control approach to achieve functional parallelism int wall_follower(){/* one time slice of work */} int obstacle_avoider(){/* one time slice of work */} int com municator(){/* one time slice of work */} int controller_arbitrator(){/* decides what action to take */} main() { for(;;) { wall_follower(); obstacle_avoider(); com municator(); controller_arbitrator(); } } Note of caution: dependent upon programmer to ensure individual functions return after time slice completed

11 Example Control Command in Player/Stage PlayerClient robot( localhost ); Position2dProxy pp(&robot, 0); for (;;) { pp.setspeed(speed, turnrate); } Robot continues to execute the given velocity command until another command issued. Thus, duration of time slice is important.

12 Sources and Effect of Uncertainty/Noise Sources of sensor noise: Limited resolution sensors Sensor reflection, multi-pathing, absorption Poor quality sensor conditions (e.g., low lighting for cameras) Sources of effector noise: Friction: constant or varying (e.g., carpet vs. vinyl vs. tile; clean vs. dirty floor) Slippage (e.g., when turning or on dusty surface) Varying battery level (drainage during mission) Impact: Sensors difficult to interpret Same action has different effects when repeated Incomplete information for decision making

13 Example of Effect of Noise on Robot Control Code: Exact Motions vs. Servo Loops Current robot position & orientation d θ Goal Two possible control strategies: (1) Exact motions: Turn right by amount θ Go forward by amount d (2) Servo loop: If to the left of desired trajectory, turn right. If to the right of desired trajectory, turn left. If online with desired trajectory, go straight. If error to desired trajectory is large, go slow. If error to desired trajectory is small, go fast.

14 Consider effect of noise: Exact control method Exact method: θ θ 1 d 1 d 2 θ 2 Current robot position & orientation d θ 1 Goal, d 1 : actual angle, distance traveled; Noise overshoot goal; have to turn back to goal Doesn t give good performance

15 Consider effect of noise: Servo method Servo method: Current robot position & orientation Goal Much better performance in presence of noise

16 Keep these points in mind when designing robot solutions Autonomous: robot makes majority of decisions on its own; no human-inthe-loop control (as opposed to teleoperated) Mobile: robot does not have fixed based (e.g., wheeled, as opposed to manipulator arm) Unstructured: environment has not been specially designed to make robot s job easier Dynamic: environment may change unexpectedly Partially observable: robot cannot sense entire state of the world (i.e., hidden states) Uncertain: sensor readings are noisy; effector output is noisy

Big Picture: Overview of Issues and Challenges in Autonomous Robotics + Impact on Practical Implementation Details

Big Picture: Overview of Issues and Challenges in Autonomous Robotics + Impact on Practical Implementation Details Big Picture: Overview of Issues and Challenges in Autonomous Robotics + Impact on Practical Implementation Details August 27, 2002 Class Meeting 2 Announcements/Questions Course mailing list set up: cs594-sir@cs.utk.edu

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration of robot

More information

Player/Gazebo Simulation Environment John I. Martin 7 January 2005

Player/Gazebo Simulation Environment John I. Martin 7 January 2005 Player/Gazebo Simulation Environment John I. Martin martinj@ece.osu.edu 7 January 2005 Introduction The Player/Gazebo simulation environment provides a virtual world in which high level robot control code

More information

IVR: Open- and Closed-Loop Control. M. Herrmann

IVR: Open- and Closed-Loop Control. M. Herrmann IVR: Open- and Closed-Loop Control M. Herrmann Overview Open-loop control Feed-forward control Towards feedback control Controlling the motor over time Process model V B = k 1 s + M k 2 R ds dt Stationary

More information

Autonomous Programming FTC Challenge Workshops VCU School of Engineering September 24, 2016 Presented by: Team 8297 Geared UP!

Autonomous Programming FTC Challenge Workshops VCU School of Engineering September 24, 2016 Presented by: Team 8297 Geared UP! Autonomous Programming 2016-2017 FTC Challenge Workshops VCU School of Engineering September 24, 2016 Presented by: Team 8297 Geared UP! Autonomous in VELOCITY VORTEX The Match starts with a 30 second

More information

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors CS 188: Artificial Intelligence Spring 2006 Lecture 5: Robot Motion Planning 1/31/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Motion planning (today) How to move from

More information

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Motion planning for industrial manipulators is a challenging task when obstacles are present in the workspace so that collision-free

More information

Final Exam Practice Fall Semester, 2012

Final Exam Practice Fall Semester, 2012 COS 495 - Autonomous Robot Navigation Final Exam Practice Fall Semester, 2012 Duration: Total Marks: 70 Closed Book 2 hours Start Time: End Time: By signing this exam, I agree to the honor code Name: Signature:

More information

Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System

Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System Under supervision of: Prof. Dr. -Ing. Klaus-Dieter Kuhnert Dipl.-Inform.

More information

CS283: Robotics Fall 2016: Software

CS283: Robotics Fall 2016: Software CS283: Robotics Fall 2016: Software Sören Schwertfeger / 师泽仁 ShanghaiTech University Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 2 Review Definition Robot: A machine capable of performing

More information

Embedded Motion Control Suggestions for the design of robotic tasks and of their software architectures

Embedded Motion Control Suggestions for the design of robotic tasks and of their software architectures Embedded Motion Control Suggestions for the design of robotic tasks and of their software architectures Eindhoven University of Technology KU Leuven http://people.mech.kuleuven.be/~bruyninc/ Introduction:

More information

Robotics: Science and Systems II

Robotics: Science and Systems II Robotics: Science and Systems II 6.189/2.994/16.401 September 7th, 2005 Last Semester Motor Control Visual Servoing Range Processing Planning Manipulation Lab Progression 1. Schematics: Layout and Components

More information

Exam in DD2426 Robotics and Autonomous Systems

Exam in DD2426 Robotics and Autonomous Systems Exam in DD2426 Robotics and Autonomous Systems Lecturer: Patric Jensfelt KTH, March 16, 2010, 9-12 No aids are allowed on the exam, i.e. no notes, no books, no calculators, etc. You need a minimum of 20

More information

Jo-Car2 Autonomous Mode. Path Planning (Cost Matrix Algorithm)

Jo-Car2 Autonomous Mode. Path Planning (Cost Matrix Algorithm) Chapter 8.2 Jo-Car2 Autonomous Mode Path Planning (Cost Matrix Algorithm) Introduction: In order to achieve its mission and reach the GPS goal safely; without crashing into obstacles or leaving the lane,

More information

MEAM 520. Mobile Robots

MEAM 520. Mobile Robots MEAM 520 Mobile Robots Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, Universit of Pennslvania Lecture 22: December 6, 2012 T

More information

Manipulator trajectory planning

Manipulator trajectory planning Manipulator trajectory planning Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Czech Republic http://cmp.felk.cvut.cz/~hlavac Courtesy to

More information

Last update: May 6, Robotics. CMSC 421: Chapter 25. CMSC 421: Chapter 25 1

Last update: May 6, Robotics. CMSC 421: Chapter 25. CMSC 421: Chapter 25 1 Last update: May 6, 2010 Robotics CMSC 421: Chapter 25 CMSC 421: Chapter 25 1 A machine to perform tasks What is a robot? Some level of autonomy and flexibility, in some type of environment Sensory-motor

More information

Particle Filter Localization

Particle Filter Localization E190Q Autonomous Mobile Robots Lab 4 Particle Filter Localization INTRODUCTION Determining a robots position in a global coordinate frame is one of the most important and difficult problems to overcome

More information

EEL 5666C FALL Robot Name: DogBot. Author: Valerie Serluco. Date: December 08, Instructor(s): Dr. Arroyo. Dr. Schwartz. TA(s): Andrew Gray

EEL 5666C FALL Robot Name: DogBot. Author: Valerie Serluco. Date: December 08, Instructor(s): Dr. Arroyo. Dr. Schwartz. TA(s): Andrew Gray EEL 5666C FALL 2015 Robot Name: DogBot Author: Valerie Serluco Date: December 08, 2015 Instructor(s): Dr. Arroyo Dr. Schwartz TA(s): Andrew Gray Jacob Easterling INTRODUCTION ABSTRACT One of the fun things

More information

DARPA Investments in GEO Robotics

DARPA Investments in GEO Robotics DARPA Investments in GEO Robotics Carl Glen Henshaw, Ph.D. Signe Redfield, Ph.D. Naval Center for Space Technology U.S. Naval Research Laboratory Washington, DC 20375 May 22, 2015 Introduction Program

More information

Velocity. Velocity Lab Simulation. Apparatus. IA. Position Motion Away From the Motion Sensor. KET Virtual Physics Labs Worksheet Lab 2-1

Velocity. Velocity Lab Simulation. Apparatus. IA. Position Motion Away From the Motion Sensor. KET Virtual Physics Labs Worksheet Lab 2-1 Velocity KET Virtual Physics Labs Worksheet Lab 2-1 As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact values you record

More information

CACIC Documentation. Release Gabriel F P Araujo

CACIC Documentation. Release Gabriel F P Araujo CACIC Documentation Release 1.0.0 Gabriel F P Araujo March 12, 2017 Hardware 1 Who am I? 1 1.1 Camera.................................................. 2 1.2 Laser...................................................

More information

Cobots

Cobots Cobots http://cobot.com Michael Peshkin J. Edward Colgate Witaya Wannasuphoprasit ( Wit ) Intelligent Assist Devices IADs use computer control of motion to create functionality greater than that of conventional

More information

Preface...vii. Printed vs PDF Versions of the Book...ix. 1. Scope of this Volume Installing the ros-by-example Code...3

Preface...vii. Printed vs PDF Versions of the Book...ix. 1. Scope of this Volume Installing the ros-by-example Code...3 Contents Preface...vii Printed vs PDF Versions of the Book...ix 1. Scope of this Volume...1 2. Installing the ros-by-example Code...3 3. Task Execution using ROS...7 3.1 A Fake Battery Simulator...8 3.2

More information

Robotics. Haslum COMP3620/6320

Robotics. Haslum COMP3620/6320 Robotics P@trik Haslum COMP3620/6320 Introduction Robotics Industrial Automation * Repetitive manipulation tasks (assembly, etc). * Well-known, controlled environment. * High-power, high-precision, very

More information

Announcements. CS 188: Artificial Intelligence Fall Robot motion planning! Today. Robotics Tasks. Mobile Robots

Announcements. CS 188: Artificial Intelligence Fall Robot motion planning! Today. Robotics Tasks. Mobile Robots CS 188: Artificial Intelligence Fall 2007 Lecture 6: Robot Motion Planning 9/13/2007 Announcements Project 1 due (yesterday)! Project 2 (Pacman with ghosts) up in a few days Reminder: you are allowed to

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificial Intelligence Fall 2007 Lecture 6: Robot Motion Planning 9/13/2007 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore Announcements Project

More information

CS 395 Fall 2000 Behavior-Based Robotics Pracitce Quiz 1

CS 395 Fall 2000 Behavior-Based Robotics Pracitce Quiz 1 CS 395 Fall 2000 Behavior-Based Robotics Pracitce Quiz 1 This is longer than a real quiz would be. Question 1 (30 points) You have a robot equipped with a heat-sensing camera that can track people. You

More information

Recycling Robotics Garbage collecting Robot Application - Project Work Definitions and Design

Recycling Robotics Garbage collecting Robot Application - Project Work Definitions and Design Recycling Robotics Garbage collecting Robot Application - Project Work Definitions and Design Jari Saarinen 10. Sep. 2010 Table of Contents Recycling Robotics Garbage collecting Robot Application - Project

More information

State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements

State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements António Pedro Aguiar aguiar@ece.ucsb.edu João Pedro Hespanha hespanha@ece.ucsb.edu Dept.

More information

Localization, Where am I?

Localization, Where am I? 5.1 Localization, Where am I?? position Position Update (Estimation?) Encoder Prediction of Position (e.g. odometry) YES matched observations Map data base predicted position Matching Odometry, Dead Reckoning

More information

Suture knot manipulation with a robot

Suture knot manipulation with a robot Suture knot manipulation with a robot Tian Xia Ph.D Advisor: Peter Kazanzides Project Advisor: Russell Taylor, Rajesh Kumar Johns Hopkins University Baltimore, Maryland, USA 9/16/09 1 Knot Tying Video

More information

logic table of contents: squarebot logic subsystem 7.1 parts & assembly concepts to understand 7 subsystems interfaces 7 logic subsystem inventory 7

logic table of contents: squarebot logic subsystem 7.1 parts & assembly concepts to understand 7 subsystems interfaces 7 logic subsystem inventory 7 logic table of contents: squarebot logic subsystem 7.1 parts & assembly concepts to understand 7 subsystems interfaces 7 logic subsystem inventory 7 7 1 The Vex Micro Controller coordinates the flow of

More information

Programming with the NXT using the touch and ultrasonic sensors. To be used with the activity of the How do Human Sensors Work?

Programming with the NXT using the touch and ultrasonic sensors. To be used with the activity of the How do Human Sensors Work? Programming with the NXT using the touch and ultrasonic sensors To be used with the activity of the How do Human Sensors Work? lesson How do you incorporate sensors into your programs? What you know: You

More information

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017 Electric Electronic Engineering Bogazici University December 13, 2017 Absolute position measurement Outline Motion Odometry Inertial systems Environmental Tactile Proximity Sensing Ground-Based RF Beacons

More information

Self-Correcting Projectile Launcher. Josh Schuster Yena Park Diana Mirabello Ryan Kindle

Self-Correcting Projectile Launcher. Josh Schuster Yena Park Diana Mirabello Ryan Kindle Self-Correcting Projectile Launcher Josh Schuster Yena Park Diana Mirabello Ryan Kindle Motivation & Applications Successfully reject disturbances without use of complex sensors Demonstrate viability of

More information

Final Exam : Introduction to Robotics. Last Updated: 9 May You will have 1 hour and 15 minutes to complete this exam

Final Exam : Introduction to Robotics. Last Updated: 9 May You will have 1 hour and 15 minutes to complete this exam Final Exam 16-311: Introduction to Robotics Last Updated: 9 May 2017 Name: Andrew ID: Team Number: You will have 1 hour and 15 minutes to complete this exam There are 6 sections on 20 pages. Make sure

More information

INTELLIGENT GUIDE ROBOT

INTELLIGENT GUIDE ROBOT INTELLIGENT GUIDE ROBOT FUNCTIONAL DESCRIPTION & COMPLETE SYSTEM BLOCK DIAGRAM By: Joe Buckner Nir Chezrony Project Advisors: Dr. Joel Schipper Dr. James Irwin Date: November 11, 2008 INTRODUCTION & SYSTEM

More information

Project 1 : Dead Reckoning and Tracking

Project 1 : Dead Reckoning and Tracking CS3630 Spring 2012 Project 1 : Dead Reckoning and Tracking Group : Wayward Sons Sameer Ansari, David Bernal, Tommy Kazenstein 2/8/2012 Wayward Sons CS3630 Spring 12 Project 1 Page 2 of 12 CS 3630 (Spring

More information

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today CS 188: Artificial Intelligence Fall 2006 Lecture 5: Robot Motion Planning 9/14/2006 Local Search Methods Queue-based algorithms keep fallback options (backtracking) Local search: improve what you have

More information

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators Robotics and automation Dr. Ibrahim Al-Naimi Chapter two Introduction To Robot Manipulators 1 Robotic Industrial Manipulators A robot manipulator is an electronically controlled mechanism, consisting of

More information

Wall-Follower. Xiaodong Fang. EEL5666 Intelligent Machines Design Laboratory University of Florida School of Electrical and Computer Engineering

Wall-Follower. Xiaodong Fang. EEL5666 Intelligent Machines Design Laboratory University of Florida School of Electrical and Computer Engineering Wall-Follower Xiaodong Fang EEL5666 Intelligent Machines Design Laboratory University of Florida School of Electrical and Computer Engineering TAs: Tim Martin Josh Weaver Instructors: Dr. A. Antonio Arroyo

More information

Uniform Motion Lab. The position equation for an object moving with a constant velocity is:

Uniform Motion Lab. The position equation for an object moving with a constant velocity is: Uniform Motion Lab INTRODUCTION: In this experiment we will investigate motion without acceleration. Motion without acceleration is uniform (constant velocity) motion, which means it describes the motion

More information

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping A Short Introduction to the Bayes Filter and Related Models Gian Diego Tipaldi, Wolfram Burgard 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Recursive

More information

Everything You Always Wanted To Know About Programming Behaviors But Were Afraid To Ask

Everything You Always Wanted To Know About Programming Behaviors But Were Afraid To Ask Everything You Always Wanted To Know About Programming Behaviors But Were Afraid To Ask By Kevin Harrelson Machine Intelligence Lab University of Florida Spring, 1995 Overview Programming multiple behaviors

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Olivier Aycard Associate Professor University of Grenoble Laboratoire d Informatique de Grenoble http://membres-liglab.imag.fr/aycard 1/29 Some examples of mobile robots

More information

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang Localization, Mapping and Exploration with Multiple Robots Dr. Daisy Tang Two Presentations A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping, by Thrun, Burgard

More information

Planning in Mobile Robotics

Planning in Mobile Robotics Planning in Mobile Robotics Part I. Miroslav Kulich Intelligent and Mobile Robotics Group Gerstner Laboratory for Intelligent Decision Making and Control Czech Technical University in Prague Tuesday 26/07/2011

More information

Rapid Simultaneous Learning of Multiple Behaviours with a Mobile Robot

Rapid Simultaneous Learning of Multiple Behaviours with a Mobile Robot Rapid Simultaneous Learning of Multiple Behaviours with a Mobile Robot Koren Ward School of Information Technology and Computer Science University of Wollongong koren@uow.edu.au www.uow.edu.au/~koren Abstract

More information

15-780: Problem Set #4

15-780: Problem Set #4 15-780: Problem Set #4 April 21, 2014 1. Image convolution [10 pts] In this question you will examine a basic property of discrete image convolution. Recall that convolving an m n image J R m n with a

More information

Robotics (Kinematics) Winter 1393 Bonab University

Robotics (Kinematics) Winter 1393 Bonab University Robotics () Winter 1393 Bonab University : most basic study of how mechanical systems behave Introduction Need to understand the mechanical behavior for: Design Control Both: Manipulators, Mobile Robots

More information

Experiment 7: Robotics++ V3 Robot BlueToothbot

Experiment 7: Robotics++ V3 Robot BlueToothbot Experiment 7: Robotics++ V3 Robot BlueToothbot 1 Two different ways to control your robot via Bluetooth 1. Android phone wire your robot, download apps from the Google Play Store or install an APK (app

More information

Robotics. Lecture 5: Monte Carlo Localisation. See course website for up to date information.

Robotics. Lecture 5: Monte Carlo Localisation. See course website  for up to date information. Robotics Lecture 5: Monte Carlo Localisation See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review:

More information

MS4SSA Robotics Module:

MS4SSA Robotics Module: Robotics Module: Programming and Sensors Kim Hollan Why Program a Robot? Building a robot teaches many valuable skills; however, the learning doesn t stop there Programming also teaches valuable life skills

More information

Distributed Robotic Architecture

Distributed Robotic Architecture Distributed Robotic Architecture Using Actin and DDS Justin Keesling Energid Technologies www.energid.com Overview Who is Energid? What is Actin? Actin with DDS Tasking with DDS Projects using DDS Live

More information

1 Lab + Hwk 5: Particle Swarm Optimization

1 Lab + Hwk 5: Particle Swarm Optimization 1 Lab + Hwk 5: Particle Swarm Optimization This laboratory requires the following equipment: C programming tools (gcc, make). Webots simulation software. Webots User Guide Webots Reference Manual. The

More information

Control 2. Keypoints: Given desired behaviour, determine control signals Inverse models:

Control 2. Keypoints: Given desired behaviour, determine control signals Inverse models: Control 2 Keypoints: Given desired behaviour, determine control signals Inverse models: Inverting the forward model for simple linear dynamic system Problems for more complex systems Open loop control:

More information

Sensor Modalities. Sensor modality: Different modalities:

Sensor Modalities. Sensor modality: Different modalities: Sensor Modalities Sensor modality: Sensors which measure same form of energy and process it in similar ways Modality refers to the raw input used by the sensors Different modalities: Sound Pressure Temperature

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

FumiyaIida.

FumiyaIida. Robotics Principles Principles and and Applications Applications Robotics FumiyaIida Iida Fumiya Bio-InspiredRobotics RoboticsLab, Lab,Department Departmentof ofengineering Engineering Bio-Inspired Universityof

More information

Sonar Car 3 SELECT CASE Command and Rotate Sonar Car Cornerstone Electronics Technology and Robotics II

Sonar Car 3 SELECT CASE Command and Rotate Sonar Car Cornerstone Electronics Technology and Robotics II Sonar Car 3 SELECT CASE Command and Rotate Sonar Car Cornerstone Electronics Technology and Robotics II Administration: o Prayer PicBasic Pro Programs Used in This Lesson: o General PicBasic Pro Program

More information

THE UNIVERSITY OF AUCKLAND

THE UNIVERSITY OF AUCKLAND THE UNIVERSITY OF AUCKLAND FIRST SEMESTER, 2002 Campus: Tamaki COMPUTER SCIENCE Intelligent Active Vision (Time allowed: TWO hours) NOTE: Attempt questions A, B, C, D, E, and F. This is an open book examination.

More information

Final Project Report: Mobile Pick and Place

Final Project Report: Mobile Pick and Place Final Project Report: Mobile Pick and Place Xiaoyang Liu (xiaoyan1) Juncheng Zhang (junchen1) Karthik Ramachandran (kramacha) Sumit Saxena (sumits1) Yihao Qian (yihaoq) Adviser: Dr Matthew Travers Carnegie

More information

5. Tests and results Scan Matching Optimization Parameters Influence

5. Tests and results Scan Matching Optimization Parameters Influence 126 5. Tests and results This chapter presents results obtained using the proposed method on simulated and real data. First, it is analyzed the scan matching optimization; after that, the Scan Matching

More information

IROBOT RIG LABORATORY USER GUIDE VERSION 2.1

IROBOT RIG LABORATORY USER GUIDE VERSION 2.1 IROBOT RIG LABORATORY USER GUIDE VERSION 2.1 University of Technology, Sydney 2012 Table of Contents 1 Introduction... 2 1.1 Remote Laboratories... 2 1.2 irobot - The Rig Apparatus... 3 2 Rig Specifications...

More information

The Magellan is Back Player/Stage on the Magellan Pro Robot SNeRG Technical Note 40

The Magellan is Back Player/Stage on the Magellan Pro Robot SNeRG Technical Note 40 The Magellan is Back Player/Stage on the Magellan Pro Robot SNeRG Technical Note 40 Timothy J. Burns Department of Computer Science and Engineering University at Buffalo, the State University of New York

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

Autodesk's VEX Robotics Curriculum. Unit 12: Object Manipulation

Autodesk's VEX Robotics Curriculum. Unit 12: Object Manipulation Autodesk's VEX Robotics Curriculum Unit 12: Object Manipulation 1 Overview Object manipulation is one of the primary objectives in most mobile robotic development today. In Unit 12: Object Manipulation,

More information

CONTENTS. xfischertechnik Mobile Robots. xintroductory Example; Sliding Door

CONTENTS. xfischertechnik Mobile Robots. xintroductory Example; Sliding Door CONTENTS xmobile Robots xfischertechnik Mobile Robots xthe Kit xintroductory Example; Sliding Door xhelpful Tips Welcome to the Intelligent Interface online documentation by fischertechnik x How to handle

More information

UAV Autonomous Navigation in a GPS-limited Urban Environment

UAV Autonomous Navigation in a GPS-limited Urban Environment UAV Autonomous Navigation in a GPS-limited Urban Environment Yoko Watanabe DCSD/CDIN JSO-Aerial Robotics 2014/10/02-03 Introduction 2 Global objective Development of a UAV onboard system to maintain flight

More information

Robot Art Competition Using HERB: Final Report

Robot Art Competition Using HERB: Final Report Robot Art Competition Using HERB: Final Report Ryan Gibbs (rgibbs), Dorothy Kirlew (dkirlew), Astha Prasad (asthap), Sida Wang (sidaw) 1. Problem Description The purpose of this project is for a user to

More information

i wonder, therefore i am. Welcome to the Wonder League! This packet includes everything you need to know about Dash, Dot, and how to get started!

i wonder, therefore i am. Welcome to the Wonder League! This packet includes everything you need to know about Dash, Dot, and how to get started! 1 2 3 4 5 6 7 8 9 * 0 # 8 i wonder, therefore i am. Welcome to the Wonder League! This packet includes everything you need to know about Dash, Dot, and how to get started! Setting up your robots Setting

More information

Adept Lynx Triangle Drive: Configuration and Applications

Adept Lynx Triangle Drive: Configuration and Applications Adept Lynx Triangle Drive: Configuration and Applications Parker Conroy Version 4: April 7 2014 Summary Triangle drive is a positioning method by which the Lynx maneuvers with increased accuracy relative

More information

Flexible Visual Inspection. IAS-13 Industrial Forum Horizon 2020 Dr. Eng. Stefano Tonello - CEO

Flexible Visual Inspection. IAS-13 Industrial Forum Horizon 2020 Dr. Eng. Stefano Tonello - CEO Flexible Visual Inspection IAS-13 Industrial Forum Horizon 2020 Dr. Eng. Stefano Tonello - CEO IT+Robotics Spin-off of University of Padua founded in 2005 Strong relationship with IAS-LAB (Intelligent

More information

Autonomous SLAM Robot

Autonomous SLAM Robot THE UNIVERSITY OF AUCKLAND DEPARTMENT OF MECHANICAL ENGINEERING THE UNIVERSITY OF AUCKLAND DEPARTMENT OF MECHANICAL ENGINEERING Autonomous SLAM Robot Project Report MECHENG 706 Mechatronics Design Group

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing Visual servoing vision allows a robotic system to obtain geometrical and qualitative information on the surrounding environment high level control motion planning (look-and-move visual grasping) low level

More information

Part A: Monitoring the Rotational Sensors of the Motor

Part A: Monitoring the Rotational Sensors of the Motor LEGO MINDSTORMS NXT Lab 1 This lab session is an introduction to the use of motors and rotational sensors for the Lego Mindstorm NXT. The first few parts of this exercise will introduce the use of the

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

Last 2 modules were about. What the other robot did : Robotics systems and science Lecture 15: Grasping and Manipulation

Last 2 modules were about. What the other robot did : Robotics systems and science Lecture 15: Grasping and Manipulation 6.141: Robotics systems and science Lecture 15: Grasping and Manipulation Lecture Notes Prepared by Daniela Rus EECS/MIT Spring 2009 What the robot did over Spring break Reading: Chapter3, Craig: Robotics

More information

Society A Publish/Subscribe Architecture for Behavior Based Control

Society A Publish/Subscribe Architecture for Behavior Based Control Society A Publish/Subscribe Architecture for Behavior Based Control CPE 426 - Senior Projects Hardware Component Lance Hutchinson Department of Computer Science and Engineering University of Nevada, Reno

More information

Summary of Computing Team s Activities Fall 2007 Siddharth Gauba, Toni Ivanov, Edwin Lai, Gary Soedarsono, Tanya Gupta

Summary of Computing Team s Activities Fall 2007 Siddharth Gauba, Toni Ivanov, Edwin Lai, Gary Soedarsono, Tanya Gupta Summary of Computing Team s Activities Fall 2007 Siddharth Gauba, Toni Ivanov, Edwin Lai, Gary Soedarsono, Tanya Gupta 1 OVERVIEW Input Image Channel Separation Inverse Perspective Mapping The computing

More information

Mobile Manipulator Design

Mobile Manipulator Design Mobile Manipulator Design December 10, 2007 Reid Simmons, Sanjiv Singh Robotics Institute Carnegie Mellon University 1. Introduction This report provides a preliminary design for two mobile manipulators

More information

Design of a Home Multi- Robot System for the Elderly and Disabled PAT RICK BENAVID EZ

Design of a Home Multi- Robot System for the Elderly and Disabled PAT RICK BENAVID EZ Design of a Home Multi- Robot System for the Elderly and Disabled PAT RICK BENAVID EZ Overview Introduction Proposed Home Robotic System Software and Simulation Environment Hardware Summary of Contributions

More information

AMR 2011/2012: Final Projects

AMR 2011/2012: Final Projects AMR 2011/2012: Final Projects 0. General Information A final project includes: studying some literature (typically, 1-2 papers) on a specific subject performing some simulations or numerical tests on an

More information

Torque-Position Transformer for Task Control of Position Controlled Robots

Torque-Position Transformer for Task Control of Position Controlled Robots 28 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 28 Torque-Position Transformer for Task Control of Position Controlled Robots Oussama Khatib, 1 Peter Thaulad,

More information

1 Lab + Hwk 5: Particle Swarm Optimization

1 Lab + Hwk 5: Particle Swarm Optimization 1 Lab + Hwk 5: Particle Swarm Optimization This laboratory requires the following equipment: C programming tools (gcc, make), already installed in GR B001 Webots simulation software Webots User Guide Webots

More information

S. Krishnamoorthy Mechatronics, Robotics, and Control Lab

S. Krishnamoorthy Mechatronics, Robotics, and Control Lab Robotic Puppet, Smart Glove, and ios application-based Human-Robot Interaction Using A Visual Programming Environment and Custom Robots to Learn C Programming and K-12 STEM Concepts S. Krishnamoorthy Mechatronics,

More information

Improving autonomous orchard vehicle trajectory tracking performance via slippage compensation

Improving autonomous orchard vehicle trajectory tracking performance via slippage compensation Improving autonomous orchard vehicle trajectory tracking performance via slippage compensation Dr. Gokhan BAYAR Mechanical Engineering Department of Bulent Ecevit University Zonguldak, Turkey This study

More information

University of Twente

University of Twente University of Twente Mechanical Automation Group Robotic Seam Teaching and Laser Welding Dimitrios Iakovou Johan Meijer November 2006 Contents 3 Contents 1) Task Description 5 2) SurfNet Breeze 2.1) Introduction

More information

Kinematics, Kinematics Chains CS 685

Kinematics, Kinematics Chains CS 685 Kinematics, Kinematics Chains CS 685 Previously Representation of rigid body motion Two different interpretations - as transformations between different coord. frames - as operators acting on a rigid body

More information

What is a Manipulator? 2007 RoboJackets TE Sessions 10/16/2007. Keys to Understanding Manipulators TE Sessions Manipulators 10/16/07

What is a Manipulator? 2007 RoboJackets TE Sessions 10/16/2007. Keys to Understanding Manipulators TE Sessions Manipulators 10/16/07 2007 TE Sessions Manipulators 10/16/07 www.robojackets.org Keys to Understanding Manipulators What is a manipulator? What kinds of manipulators are there? What are the different types of joints and linkages

More information

Cooperative Conveyance of an Object with Tethers by Two Mobile Robots

Cooperative Conveyance of an Object with Tethers by Two Mobile Robots Proceeding of the 11th World Congress in Mechanism and Machine Science April 1-4, 2004, Tianjin, China China Machine Press, edited by Tian Huang Cooperative Conveyance of an Object with Tethers by Two

More information

Drawing using the Scorbot-ER VII Manipulator Arm

Drawing using the Scorbot-ER VII Manipulator Arm Drawing using the Scorbot-ER VII Manipulator Arm Luke Cole Adam Ferenc Nagy-Sochacki Jonathan Symonds cole@lc.homedns.org u2546772@anu.edu.au u3970199@anu.edu.au October 29, 2007 Abstract This report discusses

More information

Sense Autonomous 2_11. All rights reserved.

Sense Autonomous 2_11. All rights reserved. Sense Autonomous Sense Autonomous 2_11 All rights reserved. The material in this book may not be copied, duplicated, printed, translated, re-edited or broadcast without prior agreement in writing. For

More information

Scott Kanowitz, A. Antonio Arroyo. Machine Intelligence Laboratory Department of Electrical and Computer Engineering

Scott Kanowitz, A. Antonio Arroyo. Machine Intelligence Laboratory Department of Electrical and Computer Engineering Scott Kanowitz, A. Antonio Arroyo Machine Intelligence Laboratory Department of Electrical and Computer Engineering 332 Benton Hall University of Florida Gainesville, FL 32611 Email: skano@mil.ufl.edu

More information

Elastic Bands: Connecting Path Planning and Control

Elastic Bands: Connecting Path Planning and Control Elastic Bands: Connecting Path Planning and Control Sean Quinlan and Oussama Khatib Robotics Laboratory Computer Science Department Stanford University Abstract Elastic bands are proposed as the basis

More information

Sonar range sensor WiFi n

Sonar range sensor WiFi n Continuously rotating Pan and 100o Tilt Thermal Imaging Camera (option) On-board Peripherals:USB RS232 I2C SPI GPIO Laser Pointer 36x Optical Zoom / 12x Digital Zoom SONY Camera Front & Rear Drive Camera

More information

AASS, Örebro University

AASS, Örebro University Henrik Andreasson, Abdelbaki Bouguerra, Marcello Mobile Cirillo, Robotics Dimitar Dimitrov, and Olfaction Dimiter Driankov, Lab, Martin Magnusson, Federico Pecora, and Achim J. Lilienthal AASS, Örebro

More information

TABLE OF CONTENTS. Page 2 14

TABLE OF CONTENTS. Page 2 14 TABLE OF CONTENTS INTRODUCTION... 3 WARNING SIGNS AND THEIR MEANINGS... 3 1. PRODUCT OVERVIEW... 4 1.1. Basic features and components... 4 1.2. Supply package... 5 1.3. Robot arm specifications... 6 1.4.

More information

Obstacle Avoidance Project: Final Report

Obstacle Avoidance Project: Final Report ERTS: Embedded & Real Time System Version: 0.0.1 Date: December 19, 2008 Purpose: A report on P545 project: Obstacle Avoidance. This document serves as report for P545 class project on obstacle avoidance

More information