Ansoft HFSS Convergence

Size: px
Start display at page:

Download "Ansoft HFSS Convergence"

Transcription

1 Data Max Delta Matrix Parameters Ansoft HFSS Choose from the Executive Commands window to view information about the solution. If you have solved for a driven solution, the following window appears: Maxwell Online Help System 23 Copyright Ansoft Corporation

2 Data Max Delta Matrix Parameters Ansoft HFSS The following fields indicate the solution status in terms of how many adaptive passes (solve error analysis refine cycles) are completed: The total is set using the Setup Solution command. Data The system displays the following information for each solution: The adaptive pass number. This is displayed only when an adaptive field solution is computed. Completed Remaining The type of solution generated by Ansoft HFSS. The following solution types may be listed: A S P Driven Solutions only. The frequency at which the problem is driven. This is set under Setup Solution. Displays the number of adaptive passes that have been completed. Displays the number of adaptive passes that have yet to be completed. If the solutions converge within the specified criteria, fewer passes than requested may be solved. Indicates that the solution was an adaptive solution. Indicates that the solution was a frequency sweep solution. Indicates that the solution was a ports-only solution. The number of tetrahedra in the finite element mesh that were used during the solution. Maxwell Online Help System 24 Copyright Ansoft Corporation

3 Data Max Delta Matrix Parameters Ansoft HFSS If ports have been defined. The maximum change in the magnitude of the S-parameters between two consecutive passes. The maximum delta S is defined as: where: i and j cover all matrix entries. N represents the pass number. For the first pass the maximum delta S is labeled N/A. If voltage, current sources, or incident waves have been defined and no ports exist. The difference in the relative error from one adaptive solution to the next. This is a measure of the stability of the computed field values from pass to pass. This is available only after the system completes two iterations of the adaptive solution process. Max ij mag S N S N 1 ij ij For each element in the matrix, the mag margin is the difference between the S-parameter delta magnitude and the target delta magnitude, which was specified in the S-Matrix Criteria panel. The mag margin reported in the panel is the maximum of these values over the entire matrix. The mag margin is defined as: Max ij mags N mags N 1 magm ij ij ij where M ij is the matrix convergence entry. The mag margin indicates the solution s proximity to the target delta magnitude. If the solution has converged within the target delta magnitude, a value of zero will be reported for the pass. Maxwell Online Help System 25 Copyright Ansoft Corporation

4 Data Max Delta Matrix Parameters Ansoft HFSS For each element in the matrix, the phase margin is the difference between the S-parameter delta phase and the target delta phase, which was specified in the S-Matrix Criteria panel. The phase margin reported in the panel is the maximum of these values over the entire matrix. The phase margin is defined as: Max ij phases N phases N 1 phasem ij ij ij where M ij is the matrix convergence entry. The phase margin indicates the solution s proximity to the target delta phase. If the solution has converged within the target delta phase, a value of zero will be reported for the pass. Max Delta Eigenmode Solutions only. The percent difference in the resonant frequencies from one adaptive solution to the next. This is a measure of the stability of the computed frequencies from pass to pass and is available only after the system completes two or more iterations of the adaptive solution process. For lossless problems, the maximum delta frequency is the largest percent change in the real part of the frequency for any of the calculated modes. For lossy problems, the maximum delta frequency is the greater of two quantities: the largest percent change in the real part of the frequency over all the modes, and the largest percent change in the imaginary part of the frequency. Maxwell Online Help System 26 Copyright Ansoft Corporation

5 Data Max Delta Matrix Parameters Ansoft HFSS You may also plot the convergence data versus pass. This allows you to view a graphical representation of the solution s convergence. > To plot the convergence data: From the Display menu, select one of the following: Table Displays all of the convergence data in a table. This is the default setting. If all the convergence data does not fit on the screen, use the scroll bars to view the data that doesn t appear. Plot Displays a plot of the number of tetrahedra versus adaptive pass. Plot Max Delta S Displays a plot of the maximum change in the S-parameters versus adaptive pass. This is only available for Driven Solutions in which ports have been defined. Plot Displays a plot of the difference in the relative error from one adaptive solution to the next. Plot Max igenmodes only. Displays a plot of the difference in the resonant frequencies from one adaptive solution to the next. Freq Plot Magnitude Displays a plot of the difference of the magnitudes of the S- Margin parameters normalized to the target delta S. Plot Displays a plot of the difference of the phases of the S-parameters normalized to the target delta S. Plot Matrix Displays the convergence of the S-parameters, Zpi, and Gamma Parameters versus adaptive pass. The plot appears in the model window, replacing any tables or previous plots. To plot the tetrahedra or matrix parameters, you must have solved at least two adaptive passes. To plot the maximum delta S, maximum delta E, or maximum delta frequency, you must have solved at least three passes. Use the Zoom In, Zoom Out, and Fit All buttons to change your view of the plot. Use the Show Coords button to display information about selected points on the plot. Maxwell Online Help System 27 Copyright Ansoft Corporation

6 Matrix Parameters Ansoft HFSS Matrix Parameters Choose Display/Plot Matrix Parameters to create a plot of selected matrix parameters from the adaptive pass solutions. > To plot the matrix parameters: 1. Choose Display/Plot Matrix Parameters. The following window appears: More 2. Select the matrix parameters to plot from the Select Matrix Parameter list. Choose Clear at any time to deselect 3. Select the type of plot to create. 4. Optionally, if you have defined ports and terminals, select Terminal S-matrix to plot the terminal S-matrix for the problem. Maxwell Online Help System 28 Copyright Ansoft Corporation

7 Matrix Parameters Ansoft HFSS 5. Choose OK to accept the settings and create the plot, or Cancel to cancel the plot. You return to the Executive Commands window. As with the tabular convergence display, if you are viewing the plot when another adaptive pass completes, data for it will be added to the plot. Maxwell Online Help System 29 Copyright Ansoft Corporation

Lecture 2: Introduction

Lecture 2: Introduction Lecture 2: Introduction v2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Multiple Advanced Techniques Allow HFSS to Excel at a Wide Variety of Applications Platform Integration and RCS

More information

LAB # 3 Wave Port Excitation Radiation Setup & Analysis

LAB # 3 Wave Port Excitation Radiation Setup & Analysis COMSATS Institute of Information Technology Electrical Engineering Department (Islamabad Campus) LAB # 3 Wave Port Excitation Radiation Setup & Analysis Designed by Syed Muzahir Abbas 1 WAVE PORT 1. New

More information

Ansoft HFSS Mesh Menu

Ansoft HFSS Mesh Menu Ansoft HFSS After you have seeded your object, you must create the finite element mesh from which the variables and values of your model will be computed. The Mesh menu allows you to: Create or delete

More information

Ansoft HFSS 3D Boundary Manager

Ansoft HFSS 3D Boundary Manager and Selecting Objects and s Menu Functional and Ansoft HFSS Choose Setup / to: Define the location of ports, conductive surfaces, resistive surfaces, and radiation (or open) boundaries. Define sources

More information

Powerful features (1)

Powerful features (1) HFSS Overview Powerful features (1) Tangential Vector Finite Elements Provides only correct physical solutions with no spurious modes Transfinite Element Method Adaptive Meshing r E = t E γ i i ( x, y,

More information

Overview. Ansoft High Frequency Structure Simulator v 9.0 Training Seminar 1

Overview. Ansoft High Frequency Structure Simulator v 9.0 Training Seminar 1 Ansoft High Frequency Structure Simulator v 9.0 Training Seminar 1 The Process Design Solution Type 1.1. Boundaries 1. Parametric Model Geometry/Materials 2. Analysis Solution Setup Frequency Sweep 1.2.

More information

Nanostructures with HFSS

Nanostructures with HFSS . May 9 leidenberger@ifh.ee.ethz.ch / 9 Nanostructures with HFSS Patrick Leidenberger. May 9 . May 9 leidenberger@ifh.ee.ethz.ch / 9 Table of contents HFSS Features Mie Benchmark Possible Simulation Mistakes

More information

Advanced Techniques for Greater Accuracy, Capacity, and Speed using Maxwell 11. Julius Saitz Ansoft Corporation

Advanced Techniques for Greater Accuracy, Capacity, and Speed using Maxwell 11. Julius Saitz Ansoft Corporation Advanced Techniques for Greater Accuracy, Capacity, and Speed using Maxwell 11 Julius Saitz Ansoft Corporation Overview Curved versus Faceted Surfaces Mesh Operations Data Link Advanced Field Plotting

More information

Workshop 3-1: Coax-Microstrip Transition

Workshop 3-1: Coax-Microstrip Transition Workshop 3-1: Coax-Microstrip Transition 2015.0 Release Introduction to ANSYS HFSS 1 2015 ANSYS, Inc. Example Coax to Microstrip Transition Analysis of a Microstrip Transmission Line with SMA Edge Connector

More information

Basic User Manual Maxwell 2D Student Version. Rick Hoadley Jan 2005

Basic User Manual Maxwell 2D Student Version. Rick Hoadley Jan 2005 1 Basic User Manual Maxwell 2D Student Version Rick Hoadley Jan 2005 2 Overview Maxwell 2D is a program that can be used to visualize magnetic fields and predict magnetic forces. Magnetic circuits are

More information

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation Laila Salman, PhD Technical Services Specialist laila.salman@ansys.com 1 Agenda Overview of

More information

The Probe Feed Patch Antenna

The Probe Feed Patch Antenna Finite Element Tutorial in Electromagnetics #1 DRAFT Sponsored by NSF Grant #05-559: Finite Element Method Exercises for use in Undergraduate Engineering Programs The Probe Feed Patch Antenna Prepared

More information

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation HFSS - Antennas, Arrays and FSS's David Perry Applications Engineer Ansoft Corporation Synopsis Some Excerpts from What s New Enhancements to HFSS Wave Guide Simulator (WGS) What is it? Why you would use

More information

Workshop 3-1: Antenna Post-Processing

Workshop 3-1: Antenna Post-Processing Workshop 3-1: Antenna Post-Processing 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Example Antenna Post-Processing Analysis of a Dual Polarized Probe Fed Patch Antenna This example is

More information

Chapter 6.0. Chapter 6.0 Eddy Current Examples. 6.1 Asymmetrical Conductor with a Hole. Ansoft Maxwell 3D Field Simulator v11 User s Guide

Chapter 6.0. Chapter 6.0 Eddy Current Examples. 6.1 Asymmetrical Conductor with a Hole. Ansoft Maxwell 3D Field Simulator v11 User s Guide Chapter 6.0 Chapter 6.0 Eddy Current Examples Asymmetrical Conductor with a Hole 6 The Asymmetrical Conductor with a Hole This example is intended to show you how to create and analyze an Asymmetrical

More information

Workshop 10-1: HPC for Finite Arrays

Workshop 10-1: HPC for Finite Arrays Workshop 10-1: HPC for Finite Arrays 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Getting Started Launching ANSYS Electronics Desktop 2015 Select Programs > ANSYS Electromagnetics >

More information

Ansoft HFSS Windows Screen Windows. Topics: Side Window. Go Back. Contents. Index

Ansoft HFSS Windows Screen Windows. Topics: Side Window. Go Back. Contents. Index Modifying Coordinates Entering Data in the Side Windows Modifying Snap To Absolute Relative Each screen in divided up into many windows. These windows can allow you to change the coordinates of the model,

More information

Getting started. Starting Capture. To start Capture. This chapter describes how to start OrCAD Capture.

Getting started. Starting Capture. To start Capture. This chapter describes how to start OrCAD Capture. Getting started 1 This chapter describes how to start OrCAD Capture. Starting Capture The OrCAD Release 9 installation process puts Capture in the \PROGRAM FILES\ORCAD\CAPTURE folder, and adds Pspice Student

More information

Ansoft HFSS Solids Menu

Ansoft HFSS Solids Menu Ansoft HFSS Use the commands on the Solids menu to: Draw simple 3D objects such as cylinders, boxes, cones, and spheres. Draw a spiral or helix. Sweep a 2D object to create a 3D object. 2D objects can

More information

Maxwell 2D Student Version. A 2D Electrostatic Problem

Maxwell 2D Student Version. A 2D Electrostatic Problem Maxwell 2D Student Version A 2D Electrostatic Problem November 2002 Notice The information contained in this document is subject to change without notice. Ansoft makes no warranty of any kind with regard

More information

FEM Simulation. EMPro 2012 May 2012 FEM Simulation

FEM Simulation. EMPro 2012 May 2012 FEM Simulation EMPro 2012 May 2012 FEM Simulation 1 Agilent Technologies, Inc 2000-2011 5301 Stevens Creek Blvd, Santa Clara, CA 95052 USA No part of this documentation may be reproduced in any form or by any means (including

More information

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary HFSS 12.0 Ansys 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Comparison of HFSS 11 and HFSS 12 for JSF Antenna Model UHF blade antenna on Joint Strike Fighter Inherent improvements in

More information

Maxwell v Example (2D/3D Transient) Core Loss. Transformer Core Loss Calculation in Maxwell 2D and 3D

Maxwell v Example (2D/3D Transient) Core Loss. Transformer Core Loss Calculation in Maxwell 2D and 3D Transformer Core Loss Calculation in Maxwell 2D and 3D This example analyzes cores losses for a 3ph power transformer having a laminated steel core using Maxwell 2D and 3D. The transformer is rated 115-13.8kV,

More information

Outline. Darren Wang ADS Momentum P2

Outline. Darren Wang ADS Momentum P2 Outline Momentum Basics: Microstrip Meander Line Momentum RF Mode: RFIC Launch Designing with Momentum: Via Fed Patch Antenna Momentum Techniques: 3dB Splitter Look-alike Momentum Optimization: 3 GHz Band

More information

user s guide High Frequency Structure Simulator electronic design automation software High Frequency Structure Simulator

user s guide High Frequency Structure Simulator electronic design automation software High Frequency Structure Simulator High Frequency Structure Simulator 9.0 electronic design automation software user s guide High Frequency Structure Simulator ANSOFT CORPORATION Four Station Square Suite 200 Pittsburgh, PA 15219-1119 The

More information

Package on Board Simulation with 3-D Electromagnetic Simulation

Package on Board Simulation with 3-D Electromagnetic Simulation White Paper Package on Board Simulation with 3-D Electromagnetic Simulation For many years, designers have taken into account the effect of package parasitics in simulation, from using simple first-order

More information

Customer Training Material. Segmented Return Path. ANSYS Q3D Extractor. ANSYS, Inc. Proprietary 2011 ANSYS, Inc. All rights reserved. WS1.

Customer Training Material. Segmented Return Path. ANSYS Q3D Extractor. ANSYS, Inc. Proprietary 2011 ANSYS, Inc. All rights reserved. WS1. Workshop 1.3 Segmented Return Path Introduction to ANSYS Q3D Extractor WS1.3-1 Example Segmented Return Path Segmented Return Path This example is intended to show you how to create, simulate, and analyze

More information

Workshop 9: Basic Postprocessing. ANSYS Maxwell 2D V ANSYS, Inc. May 21, Release 14.5

Workshop 9: Basic Postprocessing. ANSYS Maxwell 2D V ANSYS, Inc. May 21, Release 14.5 Workshop 9: Basic Postprocessing ANSYS Maxwell 2D V16 2013 ANSYS, Inc. May 21, 2013 1 Release 14.5 About Workshop Post Processing in Maxwell 2D This workshop will discuss how to use the Maxwell 2D Post

More information

ECE ILLINOIS. ECE 451: Ansys HFSS Tutorial. Simulate and Analyze an Example of Microstrip Line. Drew Handler, Jerry Yang October 20, 2014

ECE ILLINOIS. ECE 451: Ansys HFSS Tutorial. Simulate and Analyze an Example of Microstrip Line. Drew Handler, Jerry Yang October 20, 2014 ECE ILLINOIS ECE 451: Ansys HFSS Tutorial Simulate and Analyze an Example of Microstrip Line Drew Handler, Jerry Yang October 20, 2014 Introduction ANSYS HFSS is an industry standard tool for simulating

More information

Lecture 7: Introduction to HFSS-IE

Lecture 7: Introduction to HFSS-IE Lecture 7: Introduction to HFSS-IE 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. HFSS-IE: Integral Equation Solver Introduction HFSS-IE: Technology An Integral Equation solver technology

More information

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD STUDY OF SCATTERING & RESULTANT RADIATION PATTERN: INFINITE LINE CURRENT SOURCE POSITIONED HORIZONTALLY OVER A PERFECTLY CONDUCTING INFINITE GROUND PLANE IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL

More information

Maxwell 3D Field Simulator NSOFT. Getting Started: A 3D Magnetic Force Problem

Maxwell 3D Field Simulator NSOFT. Getting Started: A 3D Magnetic Force Problem Maxwell 3D Field Simulator NSOFT Getting Started: A 3D Magnetic Force Problem February 2002 Notice The information contained in this document is subject to change without notice. Ansoft makes no warranty

More information

Design and Characterization of a Two Channel Transmitter SiP Module

Design and Characterization of a Two Channel Transmitter SiP Module Design and Characterization of a Two Channel Transmitter SiP Module Amkor Technology: Nozad Karim, Rong Zhou, Ozgur Misman, Mike DeVita, Yida Zou Contact: Nozad Karim, Ph: 480 786 7731, email: Nozad.Karim@amkor.com

More information

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1 CECOS University Department of Electrical Engineering Wave Propagation and Antennas LAB # 1 Introduction to HFSS 3D Modeling, Properties, Commands & Attributes Lab Instructor: Amjad Iqbal 1. What is HFSS?

More information

Eigenmode Simulation. EMPro 2012 May 2012 Eigenmode Simulation

Eigenmode Simulation. EMPro 2012 May 2012 Eigenmode Simulation EMPro 2012 May 2012 Eigenmode Simulation 1 Agilent Technologies, Inc 2000-2011 5301 Stevens Creek Blvd, Santa Clara, CA 95052 USA No part of this documentation may be reproduced in any form or by any means

More information

2 T. x + 2 T. , T( x, y = 0) = T 1

2 T. x + 2 T. , T( x, y = 0) = T 1 LAB 2: Conduction with Finite Difference Method Objective: The objective of this laboratory is to introduce the basic steps needed to numerically solve a steady state two-dimensional conduction problem

More information

newfasant US User Guide

newfasant US User Guide newfasant US User Guide Software Version: 6.2.10 Date: April 15, 2018 Index 1. FILE MENU 2. EDIT MENU 3. VIEW MENU 4. GEOMETRY MENU 5. MATERIALS MENU 6. SIMULATION MENU 6.1. PARAMETERS 6.2. DOPPLER 7.

More information

FEKO Mesh Optimization Study of the EDGES Antenna Panels with Side Lips using a Wire Port and an Infinite Ground Plane

FEKO Mesh Optimization Study of the EDGES Antenna Panels with Side Lips using a Wire Port and an Infinite Ground Plane FEKO Mesh Optimization Study of the EDGES Antenna Panels with Side Lips using a Wire Port and an Infinite Ground Plane Tom Mozdzen 12/08/2013 Summary This study evaluated adaptive mesh refinement in the

More information

Ansys Designer RF Training Lecture 2: Introduction to the Designer GUI

Ansys Designer RF Training Lecture 2: Introduction to the Designer GUI Ansys Designer RF Solutions for RF/Microwave Component and System Design 7. 0 Release Ansys Designer RF Training Lecture 2: Introduction to the Designer GUI Ansoft Designer Desktop Menu bar Toolbars Schematic

More information

How to run a MATLAB based optimization in ANSYS Electronics Desktop

How to run a MATLAB based optimization in ANSYS Electronics Desktop How to run a MATLAB based optimization in ANSYS Electronics Desktop Problem/Description: It is possible to run an optimization in the ANSYS Electronics Desktop using MATLAB optimization algorithms. Described

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

Quaternions & Rotation in 3D Space

Quaternions & Rotation in 3D Space Quaternions & Rotation in 3D Space 1 Overview Quaternions: definition Quaternion properties Quaternions and rotation matrices Quaternion-rotation matrices relationship Spherical linear interpolation Concluding

More information

Algorithm Concepts. 1 Basic Algorithm Concepts. May 16, Computational Method

Algorithm Concepts. 1 Basic Algorithm Concepts. May 16, Computational Method Algorithm Concepts David R. Musser Brian Osman May 16, 2003 This document contains Section 1 of Algorithm Concepts, a collection of algorithm concept descriptions in both Web page and print form under

More information

Create coupled designs between Maxwell and ephysics

Create coupled designs between Maxwell and ephysics Create coupled designs between Maxwell and ephysics Creating datalink coupling with Maxwell is easy. In general this is a two step process when the link involves one Maxwell solver and one ephysics solver.

More information

Using Periodic Boundary Conditions

Using Periodic Boundary Conditions 1 of 6 2004 11 08 15:20 Use periodic boundary conditions, periodic edge conditions, and periodic point conditions to define a constraint that makes two quantities equal on two different (but usually equally

More information

CONTENTS Preface Introduction Finite Element Formulation Finite Element Mesh Truncation

CONTENTS Preface Introduction Finite Element Formulation Finite Element Mesh Truncation Preface xi 1 Introduction 1 1.1 Numerical Simulation of Antennas 1 1.2 Finite Element Analysis Versus Other Numerical Methods 2 1.3 Frequency- Versus Time-Domain Simulations 5 1.4 Brief Review of Past

More information

MATLAB Antenna Toolbox. A draft

MATLAB Antenna Toolbox. A draft MATLAB Antenna Toolbox. A draft The final report to the NSF DUE grant 0231312 MATLAB Antenna Toolbox http://ece.wpi.edu/mom/ Sergey N. Makarov ECE DEPARTMENT, WORCESTER POLYTECHNIC INSTITUTE 100 INSTITUTE

More information

ACCELEWARE FDTD PERFORMANCE GUIDE

ACCELEWARE FDTD PERFORMANCE GUIDE Eight easy ways to speed up your simulation - January 21 Logan Maxwell, Mike Weldon Copyright Notice All material herein is Acceleware copyright and shall not be reproduced, copied, forwarded, published

More information

Laboratory Assignment: EM Numerical Modeling of a Stripline

Laboratory Assignment: EM Numerical Modeling of a Stripline Laboratory Assignment: EM Numerical Modeling of a Stripline Names: Objective This laboratory experiment provides a hands-on tutorial for drafting up an electromagnetic structure (a stripline transmission

More information

High Connection Density, Inc. NexMod Technology Solutions

High Connection Density, Inc. NexMod Technology Solutions High Connection Density, Inc. NexMod Technology Solutions 1 NexMod Product Line Product Timelines Networking RDRAM NexMod available now DDR NexMod Lite available February 2002 Blade server DDR NexMod available

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

Lesson 5: Mesh Refinement

Lesson 5: Mesh Refinement Lesson 5: Mesh Refinement In this lesson, you will learn how to improve accuracy of solution using mesh refinement techniques. Lesson content: Case Study: Drill Press Table Mesh Refinement Design Intent

More information

Supersonic Flow Over a Wedge

Supersonic Flow Over a Wedge SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 2 Supersonic Flow Over a Wedge Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification A uniform supersonic stream encounters a wedge

More information

FEKO Tutorial I. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department

FEKO Tutorial I. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department Mohammad S. Sharawi, Ph.D. Electrical Engineering Department This tutorial will get you started with FEKO. FEKO is a full-wave electromagnetic field simulator that is based on the Method of Moments (MoM).

More information

Ansoft HFSS Version 7 Training Section 5: Boundary Module

Ansoft HFSS Version 7 Training Section 5: Boundary Module Ansoft HFSS Version 7 Training Section 5: Boundary Module 5-1 General Overview Synopsis Boundary Types, Definitions, and Parameters Source Types, Definitions, and Parameters Interface Layout Assigning

More information

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems Veysel Demir vdemir@olemiss.edu Mohamed Al Sharkawy malshark@olemiss.edu Atef Z. Elsherbeni atef@olemiss.edu Abstract

More information

Getting Started with HFSS v9 for Antenna Design October, 2003

Getting Started with HFSS v9 for Antenna Design October, 2003 Getting Started with HFSS v9 for Antenna Design October, 2003 This Getting Started training material is intended for new users of HFSS. The objective is to provide a very thorough introduction to HFSS

More information

ME scopeves. VES-4600 Advanced Modal Analysis. (February 8, 2019)

ME scopeves. VES-4600 Advanced Modal Analysis. (February 8, 2019) ME scopeves VES-4600 Advanced Modal Analysis (February 8, 2019) Notice Information in this document is subject to change without notice and does not represent a commitment on the part of Vibrant Technology.

More information

For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE

For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE CST MICROWAVE STUDIO Technical Specification 1 May 2015 Frontend Module For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE Transient Solver Module Fast and

More information

Transient Response of a Rocket

Transient Response of a Rocket Transient Response of a Rocket 100 Force 0 1.0 1.001 3.0 Time Objectives: Develope a finite element model that represents an axial force (thrust) applied to a rocket over time. Perform a linear transient

More information

Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis

Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis Electrical Interconnect and Packaging Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis Jason Morsey Barry Rubin, Lijun Jiang, Lon Eisenberg, Alina Deutsch Introduction Fast

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

Problem description C L. Tank walls. Water in tank

Problem description C L. Tank walls. Water in tank Problem description A cylindrical water tank is subjected to gravity loading and ground accelerations, as shown in the figures below: Tank walls Water in tank Wall thickness 0.05 C L 5 g=9.81 m/s 2 Water:

More information

Finite Element Methods for the Poisson Equation and its Applications

Finite Element Methods for the Poisson Equation and its Applications Finite Element Methods for the Poisson Equation and its Applications Charles Crook July 30, 2013 Abstract The finite element method is a fast computational method that also has a solid mathematical theory

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

Image Acquisition Image Digitization Spatial domain Intensity domain Image Characteristics

Image Acquisition Image Digitization Spatial domain Intensity domain Image Characteristics Image Acquisition Image Digitization Spatial domain Intensity domain Image Characteristics 1 What is an Image? An image is a projection of a 3D scene into a 2D projection plane. An image can be defined

More information

Myridas Sales Navigator User Guide

Myridas Sales Navigator User Guide Myridas Sales Navigator User Guide Version 12 for Dynamics GP 2013 Document version: 1.0 Date: 31 st March 2013 CONTENTS Contents CONTENTS... 2 SALES NAVIGATOR... 3 SETUP... 4 1. SALES SEARCH DEFAULT SITE

More information

Isotropic Porous Media Tutorial

Isotropic Porous Media Tutorial STAR-CCM+ User Guide 3927 Isotropic Porous Media Tutorial This tutorial models flow through the catalyst geometry described in the introductory section. In the porous region, the theoretical pressure drop

More information

Radiosity. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen

Radiosity. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen Radiosity Radiosity Concept Global computation of diffuse interreflections among scene objects Diffuse lighting changes fairly slowly across a surface Break surfaces up into some number of patches Assume

More information

Table of Contents: Maxwell 2D

Table of Contents: Maxwell 2D How to use the table of contents: To see the documentation for a topic, select it from the list. To see a more detailed listing of a topic, select the Expand button beside it. To learn more about the online

More information

Introducing Virtuoso RF Designer (RFD) For RFIC Designs

Introducing Virtuoso RF Designer (RFD) For RFIC Designs A seminar on Cadence Virtuoso RF Designer is scheduled for March 5, 2008. To know more, write to Brajesh Heda at brajesh@cadence.com Introducing Virtuoso RF Designer (RFD) For RFIC Designs Introduction

More information

Antenna-Simulation of a Half-wave Dielectric Resonator filter

Antenna-Simulation of a Half-wave Dielectric Resonator filter Antenna-Simulation of a Half-wave Dielectric Resonator filter 1. Description A symmetric model of a dielectric resonator filter is analyzed using the Scattering parameters module of HFWorks to determine

More information

A rubber O-ring is pressed between two frictionless plates as shown: 12 mm mm

A rubber O-ring is pressed between two frictionless plates as shown: 12 mm mm Problem description A rubber O-ring is pressed between two frictionless plates as shown: Prescribed displacement C L 12 mm 48.65 mm A two-dimensional axisymmetric analysis is appropriate here. Data points

More information

Linear and Nonlinear Analysis of a Cantilever Beam

Linear and Nonlinear Analysis of a Cantilever Beam LESSON 1 Linear and Nonlinear Analysis of a Cantilever Beam P L Objectives: Create a beam database to be used for the specified subsequent exercises. Compare small vs. large displacement analysis. Linear

More information

Simulating Sinkage & Trim for Planing Boat Hulls. A Fluent Dynamic Mesh 6DOF Tutorial

Simulating Sinkage & Trim for Planing Boat Hulls. A Fluent Dynamic Mesh 6DOF Tutorial Simulating Sinkage & Trim for Planing Boat Hulls A Fluent Dynamic Mesh 6DOF Tutorial 1 Introduction Workshop Description This workshop describes how to perform a transient 2DOF simulation of a planing

More information

New Technologies in CST STUDIO SUITE CST COMPUTER SIMULATION TECHNOLOGY

New Technologies in CST STUDIO SUITE CST COMPUTER SIMULATION TECHNOLOGY New Technologies in CST STUDIO SUITE 2016 Outline Design Tools & Modeling Antenna Magus Filter Designer 2D/3D Modeling 3D EM Solver Technology Cable / Circuit / PCB Systems Multiphysics CST Design Tools

More information

ME 442. Marc/Mentat-2011 Tutorial-1

ME 442. Marc/Mentat-2011 Tutorial-1 ME 442 Overview Marc/Mentat-2011 Tutorial-1 The purpose of this tutorial is to introduce the new user to the MSC/MARC/MENTAT finite element program. It should take about one hour to complete. The MARC/MENTAT

More information

newfasant Periodical Structures User Guide

newfasant Periodical Structures User Guide newfasant Periodical Structures User Guide Software Version: 6.2.10 Date: February 23, 2018 Index 1. FILE MENU 2. EDIT MENU 3. VIEW MENU 4. GEOMETRY MENU 5. MATERIALS MENU 6. CELL MENU 6.1. DEFINE CELL

More information

Workshop 3: Basic Electrostatic Analysis. ANSYS Maxwell 2D V ANSYS, Inc. May 21, Release 14.5

Workshop 3: Basic Electrostatic Analysis. ANSYS Maxwell 2D V ANSYS, Inc. May 21, Release 14.5 Workshop 3: Basic Electrostatic Analysis ANSYS Maxwell 2D V16 2013 ANSYS, Inc. May 21, 2013 1 Release 14.5 About Workshop Introduction on the Electrostatic Solver This workshop introduces the Electro Static

More information

LASCAD Tutorial No. 1: Modeling a laser cavity with end pumped rod

LASCAD Tutorial No. 1: Modeling a laser cavity with end pumped rod LASCAD Tutorial No. 1: Modeling a laser cavity with end pumped rod Revised: January 15, 2009 Copyright 2006-2009 LAS-CAD GmbH Table of Contents 1 Starting LASCAD and Defining a Simple Laser Cavity...1

More information

Post Processing of Stress Results

Post Processing of Stress Results LESSON 7 Post Processing of Stress Results Objectives: To post-process stress results from MSC/NASTRAN. To use MSC/PATRAN to create fill and fringe plots to determine if the analyzed part will meet a customerdefined

More information

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Course Curriculum (Duration: 120 Hrs.) Section I: ANSYS Mechanical APDL Chapter 1: Before you start using ANSYS a. Introduction to

More information

Just the Facts Small-Sliding Contact in ANSYS Mechanical

Just the Facts Small-Sliding Contact in ANSYS Mechanical Just the Facts Small-Sliding Contact in ANSYS Mechanical ANSYS, Inc. 2600 ANSYS Drive Canonsburg, PA 15317 29 March 2018 Although this document provides information that customers may find useful, it is

More information

November c Fluent Inc. November 8,

November c Fluent Inc. November 8, MIXSIM 2.1 Tutorial November 2006 c Fluent Inc. November 8, 2006 1 Copyright c 2006 by Fluent Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without

More information

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 009 Today Gradient domain image manipulation Introduction Gradient cut & paste Tone mapping Color-to-gray conversion Motivation Cut &

More information

Advanced Design System 1.5. Data Display

Advanced Design System 1.5. Data Display Advanced Design System 1.5 Data Display December 2000 Notice The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind with regard

More information

Organizing and Summarizing Data

Organizing and Summarizing Data Section 2.2 9 Organizing and Summarizing Data Section 2.2 C H A P T E R 2 4 Example 2 (pg. 72) A Histogram for Discrete Data To create a histogram, you have two choices: 1): enter all the individual data

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Consider the beam in the figure below. It is clamped on the left side and has a point force of 8kN acting

More information

Post Processing of Stress Results With Results

Post Processing of Stress Results With Results LESSON 10 Post Processing of Stress Results With Results Objectives: To post-process stress results from MSC/NASTRAN. To use MSC/PATRAN to create fill and fringe plots to determine if the analyzed part

More information

Simulation Advances for RF, Microwave and Antenna Applications

Simulation Advances for RF, Microwave and Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Bill McGinn Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving:

More information

Spatial Variation of Physical Properties

Spatial Variation of Physical Properties LESSON 5 Spatial Variation of Physical Properties Aluminum Steel 45 Radius 1 Radius 3 Radius 4 Objective: To model the variation of physical properties as a function of spatial coordinates. MSC/NASTRAN

More information

Polygonal Mesh. Geometric object made of vertices, edges and faces. Faces are polygons. Polyhedron. Triangular mesh Quad mesh. Pyramid Cube Sphere (?

Polygonal Mesh. Geometric object made of vertices, edges and faces. Faces are polygons. Polyhedron. Triangular mesh Quad mesh. Pyramid Cube Sphere (? 1 Mesh Modeling Polygonal Mesh Geometric object made of vertices, edges and faces Polyhedron Pyramid Cube Sphere (?) Can also be 2D (although much less interesting) Faces are polygons Triangular mesh Quad

More information

2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Bi-directional Automatic Electromagnetic-Thermal Coupling for HEV/EV Traction Motor Design Using Maxwell and ANSYS Mechanical Peng Yuan Eric Lin Zed (Zhangjun) Tang ANSYS, Inc. 2010 ANSYS, Inc. All rights

More information

Spatial Variation of Physical Properties

Spatial Variation of Physical Properties LESSON 13 Spatial Variation of Physical Properties Aluminum Steel 45 Radius 1 Radius 3 Radius 4 Objective: To model the variation of physical properties as a function of spatial coordinates. PATRAN301ExericseWorkbook-Release7.5

More information

Plane wave in free space Exercise no. 1

Plane wave in free space Exercise no. 1 Plane wave in free space Exercise no. 1 The exercise is focused on numerical modeling of plane wave propagation in ANSYS HFSS. Following aims should be met: 1. A numerical model of a plane wave propagating

More information

1 Statements and Expressions

1 Statements and Expressions ME 5241 Computer Aided Engineering Tom Chase Fall 2000 PSEUDO-CODE Pseudo-code is used to refine the logic of functions to its simplest possible form before writing the logic in any specific programming

More information

The Level Set Method THE LEVEL SET METHOD THE LEVEL SET METHOD 203

The Level Set Method THE LEVEL SET METHOD THE LEVEL SET METHOD 203 The Level Set Method Fluid flow with moving interfaces or boundaries occur in a number of different applications, such as fluid-structure interaction, multiphase flows, and flexible membranes moving in

More information

Administrivia. Next Monday is Thanksgiving holiday. Tuesday and Wednesday the lab will be open for make-up labs. Lecture as usual on Thursday.

Administrivia. Next Monday is Thanksgiving holiday. Tuesday and Wednesday the lab will be open for make-up labs. Lecture as usual on Thursday. Administrivia Next Monday is Thanksgiving holiday. Tuesday and Wednesday the lab will be open for make-up labs. Lecture as usual on Thursday. Lab notebooks will be due the week after Thanksgiving, when

More information

Introduction to Workbench Scripting & Customization ANSYS, Inc. November 29, 2012

Introduction to Workbench Scripting & Customization ANSYS, Inc. November 29, 2012 Introduction to Workbench Scripting & Customization 1 Outline Understanding the Workbench framework WB Journaling and Scripting Different Customization Methods Conclusion 2 Workbench Framework Application

More information

Viscous Hybrid Mesh Generation

Viscous Hybrid Mesh Generation Tutorial 4. Viscous Hybrid Mesh Generation Introduction In cases where you want to resolve the boundary layer, it is often more efficient to use prismatic cells in the boundary layer rather than tetrahedral

More information