EE115C Digital Electronic Circuits. Tutorial 2: Hierarchical Schematic and Simulation

Size: px
Start display at page:

Download "EE115C Digital Electronic Circuits. Tutorial 2: Hierarchical Schematic and Simulation"

Transcription

1 EE115C Digital Electronic Circuits Tutorial 2: Hierarchical Schematic and Simulation The objectives are to become familiar with Virtuoso schematic editor, learn how to create the symbol view of basic primitives, compose symbols hierarchically, and verify the design through simulation. In order to achieve these objectives, CMOS inverter in a fanout-of-four (FO4) and ring oscillator configurations is considered. These configurations are widely used as formalism for technology characterization: to estimate the speed of technology in terms of gate delay. The numbers obtained here will thus become essential tool in estimating delays of complex circuits. Startup Cadence tool and open Library Manager window. If you don t remember all the steps, review Starting up Cadence and Entering Design Schematic from Tutorials 1.1 and 1.2. Entering Design Schematic We are going to create the inverter sized for unit drive strength (typically indicated as INVX1). In the Library Manager, click to select ee115c library and then click File > New > Cell view to create schematic view for the new cell. Type INVX1 in the Cell Name field as illustrated. Click OK. After you click OK, Virtouso Schematic Editing window will pop up. Note: If you are asked to check the license for Virtuoso_Schematic_Editor_XL, choose Yes or Always. (See Below). Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 1

2 Instantiate NMOS and PMOS transistors as described in Tutorial 1.2, Entering Design Schematic. The unit (INVX1) inverter has Wp/Wn ratio of around 2, where Wn is 2x the minimum width. In our technology, Wmin = 120nm, so the unit inverter is Wp/Wn = 480nm/240nm. Your schematic editor window should look like this: Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 2

3 Next, we are going to add input and output pins, which are needed to describe connectivity information for the symbol view. To instantiate a pin, type p in the schematic editor and following dialog will show up: Type A VDD GND under Pin Names to define input pins, click Hide and place the pins in the schematic (in the order you specified). Follow the same procedure to place output pin Z. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 3

4 Wire up the schematic (reminder: press w to enter wiring mode / Esc to exit). The final schematic should look like this (type f to fit the drawing to page): Click Check and Save button ( ) or type Shift+X to check and save the design. Watch the CDS.log window for any potential warnings. In the log window, you should see following messages: Schematic check completed with no errors. ee115c INVX1 schematic saved. Creating Symbol View The symbol view can be created directly from the schematic view of the cell. In Virtuoso schematic editor, click on the Create menu and choose Cellview > From Cellview You should see the following window pop-up. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 4

5 Choose schematic in From View Name field, and make sure symbol is typed in the To View Name. Also make sure your Library Name and Cell Name correspond to your current cell. (They should already) After you click OK, the following window will appear indicating that input pins A, GND and VDD will be placed on the left and that output pin Z will be placed on the right: Click OK and the default box-shaped symbol view is created as shown below: Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 5

6 Next, we are going to modify the shape of this symbol view in order to represent the inverter with the familiar shape (triangle + bubble) used by digital designers. In the Virtuoso Symbol Editing window, go to Create menu and select Shape > Line to add lines (you can also find a short-cut to this feature along the menu bar. For example to create a line you can use the button in the menu bar), or Shape > Circle to create the bubble at the output of the inverter. You can also drag the pins around to position VDD and GND to top and bottom, respectively, and move labels and lines around to modify the symbol. Your final symbol view should look something like this: Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 6

7 Edit properties (reminder: select the object and press q ) of the [@partname] label and specify justification to centerleft as shown in the dialog box below. This will ensure that the INVX1 label is nicely aligned within the shape (as you are going to see in the next section). When you save the final version, make sure it is bug-free. As in the sqchematic entry, check the CDS.log window. It should display following message for the correctly designed symbol view: Cross View Check completed with no errors. ee115c INVX1 symbol saved. Now we can instantiate this symbol to build other circuits such as ring oscillator and fanout-offour (FO4) test circuit. Hierarchical Design: Ring Oscillator By now you are already an expert in creating new cells, so let s make another one. Go to the Library Manager window and add Ring_OSC cell to your ee115c library. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 7

8 We are going to create a 15-stage ring oscillator in order to measure the delay of the 1x inverter. In the Virtuoso Schematic Editor window, now instantiate INVX1 cell (symbol view) from your ee115c library. Furthermore, we are going to place the 15 inverters in three rows, 5 in each row, to make the schematic easily readable. To place the first row of cells, in the Array field specify 5 columns (meaning you want to place 5 instances in a column-like fashion). Click Hide (or press Enter) and place the first instance. Then move the mouse pointer over to the right to define the location for other instances. You should see yellow fly lines as follows: Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 8

9 The first row of instances should look something like this: For easy routing of global signals VDD and GND, we are going to flip and rotate the second row of cells. In the Add Instance menu, specify again 5 columns, but also click once on Sideways and Upside Down buttons. Finally, create the third row in the same way the first row was created and place the third row below the second row. The final placement should look like this: Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 9

10 Instantiate vdd and gnd cells from analoglib and wire up the schematic (reminder: press w to enter wiring mode / Esc to exit). Also label one of the points in the ring, this point will be used as a test point to measure the delay. You can either execute Create > Wire Name from the drop down menu or press l (small L ) to add the label. Add label named TP and place it at the output of the last inverter in the first row. The final schematic should look like this: Ring Oscillator Delay Simulation Invoke simulation environment by choosing Launch > ADE L from the Virtuoso schematic editor window. (review Spectre Simulation section of Tutorial 1.2 if needed). In addition to the setup in Tutorial 1.2, we also need to set up global source such as vdd!. In the Analog Design Environment, Click Setup > Stimuli... Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 10

11 Click on Global Sources Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 11

12 The following dialog window will pop up. Make sure vdd! is hightlighted. Click on Enabled. Set function to dc. Make sure Type is Voltage. Enter 1.0 in DC voltage. Then Click the Change botton. Click OK. Set up the models, select transient analysis with duration of 1.5ns and moderate accuracy. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 12

13 Select TP as the output to be plotted. At this point you can simulate your design by netlisting and running the simulation. (by pressing or using Simulation > Netlist and Run). Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 13

14 You should get the following graph as the simulation result. Now, let s calculate the oscillation period. Click on calculator button as highlighted above. In the Calculator window (shown below), select vt under Selection choices. Then choose delay from the Function Panel. At this point you can select your signal (in this case TP by clicking on it from your graph (Virtuoso Visualization window), or your schematic (Schematic Editor window). Go back to the Calculator window. Under delay functions, choose buffer for Signal1 and Signal2 (this will input whatever is in the buffer in these fields; in this case our buffer is VT( /TP ) ). Both Signal1 and Signal2 fields should read VT( /TP ). Set Threshold Value 1 to 0.5 (VDD/2=0.5V) and Edge Number 1 to rising (falling is also OK). Set the remaining parameters so that your final calculator setup looks like the following: Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 14

15 Click OK, the following window will appear. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 15

16 Click Eval button (as shown above) to evaluate the delay expression highlighted above. The expression evaluates to 400.4ps as shown below. This is the period of oscillation. In terms of gate delay, period T has a total of 15 low-to-high and 15 high-to-low transitions. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 16

17 T = N (tplh + tphl), where N is the number of stages (N=15) Gate delay = tp = (tplh+tphl)/2 Therefore: tp = T/2N For N = 15: tp = 400.4/30 = 13.35ps This is the delay of an inverter which output is loaded with an identically sized inverter. This is also called the delay of a fanout-of-one (FO1) inverter. In circuits optimized for speed, typical fanout is about 4, so designers often times use fanout-of-four (FO4) inverter as normalization unit to compare the quality of their designs. It is therefore of interest to evaluate FO4 delay for our technology. Note: it is a good idea to save the simulation settings in a state file. (reference: check Spectre Simulation section of Tutorial 1.2 on how to do this) Save the state in file: state_ring_osc. Hierarchical Design: FO4 Inverter The FO4 test circuit example will use two levels of hierarchy: the circuit will be composed of three stages, each stage being composed of inverters and capacitors. To save time and also learn how to port over cells from other libraries, we are going to copy over FO4_inv_stage cell from ee115c public repository. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 17

18 Position yourself in the following directory: <disk_path><user_name>/ee115c/ee115c (Example: /w/fac.01/ee/sinabk/ee115c/ee115c) (Note: in this folder you should have a directory for each of your cells in ee115c library. For example you should have directories named INVX1 and Ring_OSC for the cells you created earlier in this tutorial. You can check the content of any location by typing ls ) Create new folder for the new cell: > mkdir FO4_inv_stage Copy cell FO4_inv_stage from the directory link below into your local folder: > cp -R /w/class.1/ee/ee115v/ee115vta/ee115c_tutorial/fo4_inv_stage/* FO4_inv_stage/ (there is a space after *) In the Library Manager window, select View > Refresh. The following window will pop up: Click None because you don t want to contaminate your library with what someone else did. We are going to be cautious and fix the missing links later. Click OK and you will see that cell FO4_inv_stage is now part of your ee115c library. Let s now try to open schematic view. The following window will pop up: This tells us that the INVX1 cell used to create FO4_inv_stage cell was referenced from some other library, in this case this library was named ee115c_lab1. Click Close. The following schematic will appear (notice broken links for the INVX1 instances). Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 18

19 We are now to substitute INVX1 cells with the INVX1 cell that we designed earlier in this tutorial. Edit properties for all the invalid objects and change Library Name from ee115c_lab1 (as shown below) to ee115c. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 19

20 After some touch-up re-positioning and re-wiring of objects, the schematics should look like this: (you can also open symbol view to see how it looks or wait until a bit later - we are going to use it soon anyway) Details of this circuit are explained in class. Now, let s create FO4_inv cell to simulate the delay of FO4 inverter for this technology. (reference: Entering Design Schematic of this tutorial explains how to create a new cell) Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 20

21 Instantiate three instances of FO4_inv_stage cell (you are already a master of hierarchical design, so remember to use Array property when adding instances) and connect them together. Also instantiate the following cells from the analoglib and specify their properties as follows: vdd: connect to VDD pins. vddd: connect to VDDLD pins (supply voltage for the loading gates). gnd: connect to GND pins. cap: output load, set value to 100f. vpulse: (input pulse voltage source) Voltage 1 = 0, Voltage 2 = VD, Delay time = 100p, Rise time = 10p, Fall time = 10p, Pulse width = 200ps, Period = 400ps. After placing and wiring components, labeling in and out, your schematic should look like this: FO4 Inverter Delay Simulation Invoke simulation environment by choosing Launch > ADE L from the Virtuoso schematic editor window. (review Spectre Simulation in Tutorial 1.2 if needed). Perform following steps to setup the simulation environment: set up the models define VD as variable with initial value of 1.0 set the value of global sources stimuli vdd and vddd to VD choose transient analysis with duration of 1ns and moderate accuracy choose in and out as the outputs to be plotted By now you have learned to save the state. Save this state in file: ~/ee115c/cadence-labs/.artist_states/state_fo4_inv Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 21

22 Netlist and run, the simulation will produce the following waveforms (review Tutorial 1.2 for instructions about adding labels): You can also save this graph using the menu bar... Now, we can measure the low-to-high and high-to-low delay values. Remember (as discussed in class) that, by convention, the low-to-high or high-to-low delays are defined with respect to the output transition. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 22

23 Low-to-high transition (i.e. in falling, out rising) Invoke Calculator (refer to the Ring_OSC example in this tutorial on how to do this) and specify parameters as shown below: Click OK button, the delay expression will appear: Evaluate this expression: Therefore: tplh = 37.1ps Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 23

24 High-to-low transition (i.e. in rising, out falling) In the Calculator window, we can simply type in the expression for tphl (refer to the tplh calculator expression and swap rising and falling ). By evaluating this expression we get: tphl = 30.5ps Therefore: t p = (t plh + t phl )/2 = 33.8ps = FO4 delay Schematic Editor: Zooming In There are several methods for zooming found in the View menu. One easy way to zoom to the exact region you want is by using the zoom hot key. Type z. This puts you in zoom mode. Note that the cursor has changed. Next hold down the left mouse button and "drag" out a box which surrounds the region you wish to zoom to. When you release the mouse the screen will zoom to where your box was. If you mess up don't panic. Remember, f will always zoom to fit. The hotkey ] can be used to zoom out by a factor of two. The hotkey [ can be used to zoom in by a factor of two. Cadence 6 Tutorial 2: Hierarchical Schematic and Simulation 24

CS755 CAD TOOL TUTORIAL

CS755 CAD TOOL TUTORIAL CS755 CAD TOOL TUTORIAL CREATING SCHEMATIC IN CADENCE Shi-Ting Zhou shi-ting@cs.wisc.edu After you have figured out what you want to design, and drafted some pictures and diagrams, it s time to input schematics

More information

EE115C Digital Electronic Circuits. Tutorial 4: Schematic-driven Layout (Virtuoso XL)

EE115C Digital Electronic Circuits. Tutorial 4: Schematic-driven Layout (Virtuoso XL) EE115C Digital Electronic Circuits Tutorial 4: Schematic-driven Layout (Virtuoso XL) This tutorial will demonstrate schematic-driven layout on the example of a 2-input NAND gate. Simple Layout (that won

More information

DOWNLOAD PDF CADENCE WAVEFORM CALCULATOR USER GUIDE

DOWNLOAD PDF CADENCE WAVEFORM CALCULATOR USER GUIDE Chapter 1 : CSE / Cadence Tutorial The Cadence Design Communities support Cadence users and technologists interacting to exchange ideas, news, technical information, and best practices to solve problems

More information

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Andrew Mason and the AMSaC lab group.

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Andrew Mason and the AMSaC lab group. Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Andrew Mason and the AMSaC lab group. Revision Notes: Aug. 2003 update and edit A. Mason add intro/revision/contents

More information

Revision Notes: July2004 Generate tutorial for single transistor analysis. Based on existing schematic entry tutorial developed for ECE410

Revision Notes: July2004 Generate tutorial for single transistor analysis. Based on existing schematic entry tutorial developed for ECE410 Cadence Analog Tutorial 1: Schematic Entry and Transistor Characterization Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revision Notes: July2004 Generate tutorial for

More information

Cadence Schematic Tutorial. EEE5320/EEE4306 Fall 2015 University of Florida ECE

Cadence Schematic Tutorial. EEE5320/EEE4306 Fall 2015 University of Florida ECE Cadence Schematic Tutorial EEE5320/EEE4306 Fall 2015 University of Florida ECE 1 Remote access You may access the Linux server directly from the NEB Computer Lab using your GatorLink username and password.

More information

Cadence Tutorial: Schematic Entry and Circuit Simulation of a CMOS Inverter

Cadence Tutorial: Schematic Entry and Circuit Simulation of a CMOS Inverter Cadence Tutorial: Schematic Entry and Circuit Simulation of a CMOS Inverter Introduction This tutorial describes the steps involved in the design and simulation of a CMOS inverter using the Cadence Virtuoso

More information

Introduction to laboratory exercises in Digital IC Design.

Introduction to laboratory exercises in Digital IC Design. Introduction to laboratory exercises in Digital IC Design. A digital ASIC typically consists of four parts: Controller, datapath, memory, and I/O. The digital ASIC below, which is an FFT/IFFT co-processor,

More information

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group.

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revision Notes: Jan. 2006 Updated for use with spectre simulator

More information

LTSPICE MANUAL. For Teaching Module EE4415 ZHENG HAUN QUN. December 2016

LTSPICE MANUAL. For Teaching Module EE4415 ZHENG HAUN QUN. December 2016 LTSPICE MANUAL For Teaching Module EE4415 ZHENG HAUN QUN December 2016 DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINNERING NATIONAL UNIVERSITY OF SINGAPORE Contents 1. Introduction... 2 1.1 Installation...

More information

S Exercise 1C Testing the Ring Oscillator

S Exercise 1C Testing the Ring Oscillator S-87.3148 Exercise 1C Testing the Ring Oscillator Aalto University School of Electrical Engineering Department of Micro- and Nanosciences (ECDL) 10.9.2014 1 1 Building the test bench In this exercise,

More information

VLSI Lab Tutorial 1. Cadence Virtuoso Schematic Composer Introduction

VLSI Lab Tutorial 1. Cadence Virtuoso Schematic Composer Introduction VLSI Lab Tutorial 1 Cadence Virtuoso Schematic Composer Introduction 1.0 Introduction The purpose of the first lab tutorial is to help you become familiar with the schematic editor, Virtuoso Schematic

More information

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #2, Schematic Capture, DC Analysis, Transient Analysis (Inverter, NAND2)

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #2, Schematic Capture, DC Analysis, Transient Analysis (Inverter, NAND2) CPE/EE 427, CPE 527, VLSI Design I: Tutorial #2, Schematic Capture, DC Analysis, Transient Analysis (Inverter, NAND2) Joel Wilder, Aleksandar Milenkovic, ECE Dept., The University of Alabama in Huntsville

More information

Virtuoso Schematic Composer

Virtuoso Schematic Composer is a schematic design tool from Cadence. In this tutorial you will learn how to put electrical components, make wire connections, insert pins and check for connection error. Start Cadence Custom IC Design

More information

EE 330 Spring 2018 Laboratory 2: Basic Boolean Circuits

EE 330 Spring 2018 Laboratory 2: Basic Boolean Circuits EE 330 Spring 2018 Laboratory 2: Basic Boolean Circuits Contents Objective:... 2 Part 1: Introduction... 2 Part 2 Simulation of a CMOS Inverter... 3 Part 2.1 Attaching technology information... 3 Part

More information

Cadence Virtuoso Schematic Design and Circuit Simulation Tutorial

Cadence Virtuoso Schematic Design and Circuit Simulation Tutorial Cadence Virtuoso Schematic Design and Circuit Simulation Tutorial Introduction This tutorial is an introduction to schematic capture and circuit simulation for ENGN1600 using Cadence Virtuoso. These courses

More information

Laboratory 3. EE 342 (VLSI Circuit Design) - Using Spectre netlist and Calculator for simulation

Laboratory 3. EE 342 (VLSI Circuit Design) - Using Spectre netlist and Calculator for simulation EE 342 (VLSI Circuit Design) Laboratory 3 - Using Spectre netlist and Calculator for simulation By Mulong Li, 2013 1 Background knowledge Spectre: is a SPICE-class circuit simulator. It provides the basic

More information

Tutorial on getting started in Cadence. Advanced Analog Circuits Spring 2015 Instructor: Prof. Harish Krishnaswamy TA: Jahnavi Sharma

Tutorial on getting started in Cadence. Advanced Analog Circuits Spring 2015 Instructor: Prof. Harish Krishnaswamy TA: Jahnavi Sharma Tutorial on getting started in Cadence Advanced Analog Circuits Spring 2015 Instructor: Prof. Harish Krishnaswamy TA: Jahnavi Sharma Getting Started Start Cadence from the terminal by using the command

More information

Virtuoso Layout Editor

Virtuoso Layout Editor This tutorial will cover the basic steps involved in using the Cadence layout editor called Virtuoso, extracting layout, and running simulation on the layout. The inverter layout is used as an example

More information

Select the technology library: NCSU_TechLib_ami06, then press OK.

Select the technology library: NCSU_TechLib_ami06, then press OK. ECE 126 Inverter Tutorial: Schematic & Symbol Creation Created for GWU by Anis Nurashikin Nordin & Thomas Farmer Tutorial adapted from: http://www.ee.ttu.edu/ee/cadence/commondirectory/final%20tutorials/digitalcircuitsimulationusingvirtuoso.doc

More information

Cadence Tutorial. Introduction to Cadence 0.18um, Implementation and Simulation of an inverter. A. Moradi, A. Miled et M. Sawan

Cadence Tutorial. Introduction to Cadence 0.18um, Implementation and Simulation of an inverter. A. Moradi, A. Miled et M. Sawan Cadence Tutorial Introduction to Cadence 0.18um, Implementation and Simulation of an inverter A. Moradi, A. Miled et M. Sawan Section 1: Introduction to Cadence You will see how to create a new library

More information

CS/EE 5720/6720 Analog IC Design Tutorial for Schematic Design and Analysis using Spectre

CS/EE 5720/6720 Analog IC Design Tutorial for Schematic Design and Analysis using Spectre CS/EE 5720/6720 Analog IC Design Tutorial for Schematic Design and Analysis using Spectre Introduction to Cadence EDA: The Cadence toolset is a complete microchip EDA (Electronic Design Automation) system,

More information

Cadence IC Design Manual

Cadence IC Design Manual Cadence IC Design Manual For EE5518 ZHENG Huan Qun Lin Long Yang Revised on May 2017 Department of Electrical & Computer Engineering National University of Singapore 1 P age Contents 1 INTRODUCTION...

More information

EECE 285 VLSI Design. Cadence Tutorial EECE 285 VLSI. By: Kevin Dick Co-author: Jeff Kauppila Co-author: Dr. Arthur Witulski

EECE 285 VLSI Design. Cadence Tutorial EECE 285 VLSI. By: Kevin Dick Co-author: Jeff Kauppila Co-author: Dr. Arthur Witulski Cadence Tutorial EECE 285 VLSI By: Kevin Dick Co-author: Jeff Kauppila Co-author: Dr. Arthur Witulski 1 Table of Contents Purpose of Cadence 1) The Purpose of Cadence pg. 4 Linux 1) The Purpose of Linux

More information

EE4111 Advanced Analog Electronics Design. Spring 2009 Experiment #4 April 6 ~ April 17

EE4111 Advanced Analog Electronics Design. Spring 2009 Experiment #4 April 6 ~ April 17 EE4111 Advanced Analog Electronics Design Spring 2009 Experiment #4 April 6 ~ April 17 Setup Cadence in VLSI Lab 1) Copy files $ cp r /home/grads/ee4111ta ~/ 2) Edit your.cshrc file -- Include the following

More information

This is a brief tutorial about building a Symbol for a Schematic in Cadence IC design tool environment for hierarchical design of schematics.

This is a brief tutorial about building a Symbol for a Schematic in Cadence IC design tool environment for hierarchical design of schematics. This is a brief tutorial about building a Symbol for a Schematic in Cadence IC design tool environment for hierarchical design of schematics. 1. > cd work035 2. > cadsetup ams035 3. > virtuoso& IMPORTANT:

More information

Figure 1: ADE Test Editor

Figure 1: ADE Test Editor Due to some issues that ADE GXL simulation environment has (probably because of inappropriate setup), we will run simulations in the ADE L design environment, which includes all the necessary tools that

More information

CADENCE SETUP. ECE4430-Analog IC Design

CADENCE SETUP. ECE4430-Analog IC Design CADENCE SETUP This short tutorial shows how to configure Cadence to use the NCSU Cadence Design Kit (CDK) with access to the ON Semiconductor C5 0.5-µm and the TSMC 0.35-µm CMOS processes libraries. In

More information

The original document link is

The original document link is Tutorial:Analog Artist with HSPICE The original document link is http://www.eda.ncsu.edu/wiki/tutorial:analog_artist_with_hspice This tutorial will introduce you to the Cadence Environment: specifically

More information

ECE 331: Electronics Principles I Fall 2014

ECE 331: Electronics Principles I Fall 2014 ECE 331: Electronics Principles I Fall 2014 Lab #0: Introduction to Computer Modeling and Laboratory Measurements Report due at your registered lab period on the week of Sept. 8-12 Week 1 Accessing Linux

More information

Using Cadence Virtuoso, a UNIX based OrCAD PSpice like program, Remotely on a Windows Machine

Using Cadence Virtuoso, a UNIX based OrCAD PSpice like program, Remotely on a Windows Machine Using Cadence Virtuoso, a UNIX based OrCAD PSpice like program, Remotely on a Windows Machine A. Launch PuTTY. 1. Load the Saved Session that has Enable X11 forwarding and the Host Name is cvl.ece.vt.edu.

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2019 HW5: Delay and Layout Sunday, February 17th Due: Friday,

More information

ECE471/571 Energy Efficient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30 am on Friday, February 2 nd, 2018

ECE471/571 Energy Efficient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30 am on Friday, February 2 nd, 2018 ECE471/571 Energy Efficient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30 am on Friday, February 2 nd, 2018 Introduction This project will first walk you through the setup

More information

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS)

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) Objective Part A: To become acquainted with Spectre (or HSpice) by simulating an inverter,

More information

Lab 1: Cadence Custom IC design tools- Setup, Schematic capture and simulation

Lab 1: Cadence Custom IC design tools- Setup, Schematic capture and simulation Lab 1: Cadence Custom IC design tools- Setup, Schematic capture and simulation Brittany Duffy EE 330- Integrated Electronics Lab Section B Professor Randy Geiger 1/24/13 Introduction The main goal of this

More information

Lab 2. Standard Cell layout.

Lab 2. Standard Cell layout. Lab 2. Standard Cell layout. The purpose of this lab is to demonstrate CMOS-standard cell design. Use the lab instructions and the cadence manual (http://www.es.lth.se/ugradcourses/cadsys/cadence.html)

More information

Introduction to Design Architect

Introduction to Design Architect SANTA CLARA UNIVERSITY Dept. of Electrical Engineering Mentor Graphics Tutorials Introduction to Design Architect Yiching Chen Sangeetha Raman S. Krishnan I. Introduction II. This document contains a step-by-step

More information

EE 330 Fall 2017 Lab 1: Cadence Custom IC design tools - Setup, Schematic capture and simulation

EE 330 Fall 2017 Lab 1: Cadence Custom IC design tools - Setup, Schematic capture and simulation EE 330 Fall 2017 Lab 1: Cadence Custom IC design tools - Setup, Schematic capture and simulation Table of Contents Objective... 2 1. Setup... 2 Set Bash Shell for the account... 2 2. Starting Cadence Custom

More information

EE 330 Spring 2018 Lab 1: Cadence Custom IC design tools Setup, Schematic capture and simulation

EE 330 Spring 2018 Lab 1: Cadence Custom IC design tools Setup, Schematic capture and simulation EE 330 Spring 2018 Lab 1: Cadence Custom IC design tools Setup, Schematic capture and simulation Table of Contents Objective... 2 1. Setup... 2 Set Bash Shell for the account... 2 2. Starting Cadence Custom

More information

Cadence Tutorial C: Simulating DC and Timing Characteristics 1

Cadence Tutorial C: Simulating DC and Timing Characteristics 1 Cadence Tutorial C: Simulating DC and Timing Characteristics Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group Last updated by Patrick O Hara SS15 Document Contents Introduction

More information

FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY LAB SHEET DIGITAL INTEGRATED CIRCUIT

FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY LAB SHEET DIGITAL INTEGRATED CIRCUIT FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY LAB SHEET DIGITAL INTEGRATED CIRCUIT DIC1: Schematic Design Entry, Simulation & Verification DIC2: Schematic Driven Layout Drawing (SDL) Design Rule Check (DRC)

More information

Microelectronica. Full-Custom Design with Cadence Tutorial

Microelectronica. Full-Custom Design with Cadence Tutorial Área Científica de Electrónica Microelectronica Full-Custom Design with Cadence Tutorial AustriaMicroSystems C35B3 (HIT-Kit 3.70) Marcelino Santos Table of contends 1. Starting Cadence... 3 Starting Cadence

More information

TUTORIAL II ECE 555 / 755 Updated on September 11 th 2006 CADENCE LAYOUT AND PARASITIC EXTRACTION

TUTORIAL II ECE 555 / 755 Updated on September 11 th 2006 CADENCE LAYOUT AND PARASITIC EXTRACTION TUTORIAL II ECE 555 / 755 Updated on September 11 th 2006 CADENCE LAYOUT AND PARASITIC EXTRACTION After finishing a schematic of your design (Tutorial-I), the next step is creating masks which are for

More information

Amplifier Simulation Tutorial. Design Kit: Cadence 0.18μm CMOS PDK (gpdk180) (Cadence Version 6.1.5)

Amplifier Simulation Tutorial. Design Kit: Cadence 0.18μm CMOS PDK (gpdk180) (Cadence Version 6.1.5) Amplifier Simulation Tutorial Design Kit: Cadence 0.18μm CMOS PDK (gpdk180) (Cadence Version 6.1.5) Yongsuk Choi, Marvin Onabajo This tutorial provides a quick introduction to the use of Cadence tools

More information

Cadence Tutorial D: Using Design Variables and Parametric Analysis Document Contents Introduction Using Design Variables Apply Apply

Cadence Tutorial D: Using Design Variables and Parametric Analysis Document Contents Introduction Using Design Variables Apply Apply Cadence Tutorial D: Using Design Variables and Parametric Analysis Created for the MSU VLSI program by Casey Wallace Last Updated by: Patrick O Hara SS15 Document Contents Introduction Using Design Variables

More information

EE 471: Transport Phenomena in Solid State Devices

EE 471: Transport Phenomena in Solid State Devices EE 471: Transport Phenomena in Solid State Devices HW7 Due: 4/17/18 For this homework, you will download a free PC version of the industry standard SPICE circuit simulator called LTspice, provided by Linear

More information

EE 330 Spring Laboratory 2: Basic Boolean Circuits

EE 330 Spring Laboratory 2: Basic Boolean Circuits EE 330 Spring 2013 Laboratory 2: Basic Boolean Circuits Objective: The objective of this experiment is to investigate methods for evaluating the performance of Boolean circuits. Emphasis will be placed

More information

Design rule illustrations for the AMI C5N process can be found at:

Design rule illustrations for the AMI C5N process can be found at: Cadence Tutorial B: Layout, DRC, Extraction, and LVS Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revised by C Young & Waqar A Qureshi -FS08 Document Contents Introduction

More information

ECE 683 OSU DIGITAL CELL LIBRARY DOCUMENTATION. Matt Silverman 12/5/2005. Timing Characterization Using Cadence

ECE 683 OSU DIGITAL CELL LIBRARY DOCUMENTATION. Matt Silverman 12/5/2005. Timing Characterization Using Cadence ECE 683 OSU DIGITAL CELL LIBRARY DOCUMENTATION Matt Silverman 12/5/2005 Timing Characterization Using Cadence TABLE OF CONTENTS INTRODUCTION... 3 TRANSIENT ANALYSIS WITH CADENCE -------------------------------------------------------------------

More information

Lab 1: An Introduction to Cadence

Lab 1: An Introduction to Cadence GIF-4201/GEL-7016 (Micro-électronique) Lab 1: An Introduction to Cadence Schematic, simulation and layout Gabriel Gagnon-Turcotte, Mehdi Noormohammadi Khiarak and Benoit Gosselin Department of Electrical

More information

Professor Muller Fall 2016 Sameet Ramakrishnan Eric Chang Adapted from prior EE140 and EE141 labs. EE 140/240A Lab 0 Full IC Design Flow

Professor Muller Fall 2016 Sameet Ramakrishnan Eric Chang Adapted from prior EE140 and EE141 labs. EE 140/240A Lab 0 Full IC Design Flow Professor Muller Fall 2016 Sameet Ramakrishnan Eric Chang Adapted from prior EE140 and EE141 labs EE 140/240A Lab 0 Full IC Design Flow In this lab, you will walk through the full process an analog designer

More information

AMS 0.18 µm PDK Setup and Cadence Tutorial Contributors

AMS 0.18 µm PDK Setup and Cadence Tutorial Contributors AMS 0.18 µm PDK Setup and Cadence Tutorial Contributors Muhammad Ahmed, Sita Asar, and Ayman Fayed, Power Management Research Lab, https://pmrl.osu.edu, Department of Electrical and Computer Engineering,

More information

Basic Analog Simulation in Cadence

Basic Analog Simulation in Cadence York University Department of Electrical Engineering and Computer Science EMIL Tutorial Series Tutorial #1 Basic Analog Simulation in Cadence In this tutorial we step through how to start Cadence (or at

More information

Simulation with Verilog-XL

Simulation with Verilog-XL Simulation with Verilog-XL Adapted from Princeton Cadence Page (http://www.ee.princeton.edu/~cadence/usr/verilog.html) Until now, we have been using the Analog Environment to do simulations. This simulator

More information

PSpice Tutorial. Physics 160 Spring 2006

PSpice Tutorial. Physics 160 Spring 2006 PSpice Tutorial This is a tutorial designed to guide you through the simulation assignment included in the first homework set. You may either use the program as installed in the lab, or you may install

More information

Cadence Tutorial 2: Layout, DRC/LVS and Circuit Simulation with Extracted Parasitics

Cadence Tutorial 2: Layout, DRC/LVS and Circuit Simulation with Extracted Parasitics Cadence Tutorial 2: Layout, DRC/LVS and Circuit Simulation with Extracted Parasitics Introduction This tutorial describes how to generate a mask layout in the Cadence Virtuoso Layout Editor. Use of DIVA

More information

TUTORIAL 1. V1.1 Update on Sept 17, 2003 ECE 755. Part 1: Design Architect IC

TUTORIAL 1. V1.1 Update on Sept 17, 2003 ECE 755. Part 1: Design Architect IC TUTORIAL 1 V1.1 Update on Sept 17, 2003 ECE 755 Part 1: Design Architect IC DA-IC provides a design environment comprising tools to create schematics, symbols and run simulations. The schematic editor

More information

Experiment 0: Introduction to Cadence

Experiment 0: Introduction to Cadence UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 0: Introduction to Cadence Contents 1. Introduction...

More information

Cadence Analog Circuit Tutorial

Cadence Analog Circuit Tutorial Cadence Analog Circuit Tutorial Schematic Entry for Analog Designs- Passive Circuits (RLC Circuit) In this tutorial, we will build the circuit shown in figure 1 below, using the Cadence Composer tool.

More information

Cadence Virtuoso Simulation of a pixel

Cadence Virtuoso Simulation of a pixel MEMS AND MICROSENSORS 2018/2019 Cadence Virtuoso Simulation of a pixel 11/12/2018 Giorgio Mussi giorgio.mussi@polimi.it Introduction In this lab, we will use Cadence Virtuoso to simulate a sub-array of

More information

Creating the inv1 cell WITHOUT power pins

Creating the inv1 cell WITHOUT power pins Simulating with extracted parasitic Let s assume I designed the cell inv1, for which I created the views schematic, symbol and layout. Creating the inv1 cell WITHOUT power pins First, create the inverter

More information

Introduction to CCV and Cadence Virtuoso for Electronic Circuit Simulation

Introduction to CCV and Cadence Virtuoso for Electronic Circuit Simulation Introduction to CCV and Cadence Virtuoso for Electronic Circuit Simulation Introduction ENGN1600 will be using the Cadence Virtuoso software suite for its circuit design and SPICE components. Part of the

More information

EE 140/240A - Full IC Design Flow Tutorial

EE 140/240A - Full IC Design Flow Tutorial Original document by Filip Maksimovic & Mike Lorek, Spring 2015, derived from earlier EE141 lab manuals Revisions for IC6 by David Burnett & Thaibao Phan, Spring 2016 Revisions made by Nandish Mehta to

More information

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction VLSI Lab Tutorial 3 Virtuoso Layout Editing Introduction 1.0 Introduction The purpose of this lab tutorial is to guide you through the design process in creating a custom IC layout for your CMOS inverter

More information

UNIVERSITY OF WATERLOO

UNIVERSITY OF WATERLOO UNIVERSITY OF WATERLOO UW ASIC DESIGN TEAM: Cadence Tutorial Description: Part I: Layout & DRC of a CMOS inverter. Part II: Extraction & LVS of a CMOS inverter. Part III: Post-Layout Simulation. The Cadence

More information

ECE471/571 Energy Ecient VLSI Design

ECE471/571 Energy Ecient VLSI Design ECE471/571 Energy Ecient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30pm on Friday, January 30 th 2015 Introduction This project will rst walk you through the setup for

More information

EEC 118 Spring 2011 Lab #5 Manchester Carry-Chain Adder

EEC 118 Spring 2011 Lab #5 Manchester Carry-Chain Adder EEC 118 Spring 2011 Lab #5 Manchester Carry-Chain Adder Rajeevan Amirtharajah Dept. of Electrical and Computer Engineering University of California, Davis Issued: May 9, 2011 Due: May 20, 2011, 5 PM in

More information

Logging in, starting a shell tool, and starting the Cadence Tool Suite

Logging in, starting a shell tool, and starting the Cadence Tool Suite EEE 4134 VLSI I Laboratory Lab 0 (Introductory Lab) Logging into Cadence Server, Tool Setup, Cell Library Creation, Introduction to Custom IC Design flow Objectives: To login, start a shell tool and start

More information

1. Working with PSpice:

1. Working with PSpice: Applied Electronics, Southwest Texas State University, 1, 13 1. Working with PSpice: PSpice is a circuit simulator. It uses the Kirchhoff s laws and the iv-relation of the used components to calculate

More information

ECE 425: Introduction to VLSI System Design Machine Problem 0 Due: Friday 11:59pm, Sep. 15th, 2017

ECE 425: Introduction to VLSI System Design Machine Problem 0 Due: Friday 11:59pm, Sep. 15th, 2017 ECE 425: Introduction to VLSI System Design Machine Problem 0 Due: Friday 11:59pm, Sep. 15th, 2017 You will spend most of your lab time using the Virtuoso design tools from Cadence Design Systems. Virtuoso

More information

Fall 2008: EE5323 VLSI Design I using Cadence

Fall 2008: EE5323 VLSI Design I using Cadence 1 of 23 9/17/2008 6:47 PM Fall 2008: EE5323 VLSI Design I using Cadence This tutorial has been adapted from EE5323 offered in Fall 2007. Thanks to Jie Gu, Prof. Chris Kim and Satish Sivaswamy of the University

More information

EEC 116 Fall 2011 Lab #1 Cadence Schematic Capture and Layout Tutorial

EEC 116 Fall 2011 Lab #1 Cadence Schematic Capture and Layout Tutorial EEC 116 Fall 2011 Lab #1 Cadence Schematic Capture and Layout Tutorial Dept. of Electrical and Computer Engineering University of California, Davis September 26, 2011 Reading: Rabaey Chapters 1, 2, A,

More information

Cadence Inverter Transistor Sizing Tutorial Cadence Inverter Ocean Introduction Cadence Inverter Corners Tutorial Cadence Inverter VerilogA Tutorial

Cadence Inverter Transistor Sizing Tutorial Cadence Inverter Ocean Introduction Cadence Inverter Corners Tutorial Cadence Inverter VerilogA Tutorial Cadence Inverter Transistor Sizing Tutorial Cadence Inverter Ocean Introduction Cadence Inverter Corners Tutorial Cadence Inverter VerilogA Tutorial Alfred Sargezi & Zain Ali AMS Group - San Jose State

More information

Intro to Cadence. Brady Salz. ECE483 Spring 17

Intro to Cadence. Brady Salz. ECE483 Spring 17 Intro to Cadence Brady Salz ECE483 Spring 17 What We re Doing Learn you a Cadence Learn simulation vocabulary Basic schematic guidelines Simulation results Init Before we begin, open a terminal: $ module

More information

EE 210 Lab Assignment #2: Intro to PSPICE

EE 210 Lab Assignment #2: Intro to PSPICE EE 210 Lab Assignment #2: Intro to PSPICE ITEMS REQUIRED None Non-formal Report due at the ASSIGNMENT beginning of the next lab no conclusion required Answers and results from all of the numbered, bolded

More information

APPENDIX-A INTRODUCTION TO OrCAD PSPICE

APPENDIX-A INTRODUCTION TO OrCAD PSPICE 220 APPENDIX-A INTRODUCTION TO OrCAD PSPICE 221 APPENDIX-A INTRODUCTION TO OrCAD PSPICE 1.0 INTRODUCTION Computer aided circuit analysis provides additional information about the circuit performance that

More information

Using PSpice to Simulate Transmission Lines K. A. Connor Summer 2000 Fields and Waves I

Using PSpice to Simulate Transmission Lines K. A. Connor Summer 2000 Fields and Waves I Using PSpice to Simulate Transmission Lines K. A. Connor Summer 2000 Fields and Waves I We want to produce the image shown above as a screen capture or below as the schematic of this circuit. R1 V1 25

More information

ANALOG MICROELECTRONICS ( A)

ANALOG MICROELECTRONICS ( A) ANALOG MICROELECTRONICS (304-534A) IBM 130 nm CMOS Technology An Introduction to Cadence Virtuoso Layout Tool and the Analog Simulation Environment Prepared By - Azhar A. Chowdhury Updated by Ming Yang

More information

Lesson 5: Creating Heterogeneous Parts

Lesson 5: Creating Heterogeneous Parts Lesson 5: Creating Heterogeneous Parts Lesson Objectives After you complete this lesson you will be able to: Create a Heterogeneous part Annotate a Heterogeneous part (Optional) Heterogeneous Parts A heterogeneous

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science. EECS 150 Spring 2000

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science. EECS 150 Spring 2000 University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science EECS 150 Spring 2000 Lab 1 Introduction to Xilinx Design Software 1 Objectives In this

More information

Guide to the CSE 577 Lab and Cad tools

Guide to the CSE 577 Lab and Cad tools Guide to the CSE 577 Lab and Cad tools 1. Introduction The objective of this tutorial is to give you an overview to (1) setup the Cadence and Synopsys hspice tools for your account in IST 218 Lab, (2)

More information

MENTOR GRAPHICS IC DESIGN MANUAL. Schematic & Simulation. Gun Jun K Praveen Jayakar Thomas Zheng Huan Qun

MENTOR GRAPHICS IC DESIGN MANUAL. Schematic & Simulation. Gun Jun K Praveen Jayakar Thomas Zheng Huan Qun MENTOR GRAPHICS IC DESIGN MANUAL Schematic & Simulation By Gun Jun K Praveen Jayakar Thomas Zheng Huan Qun August 2004 Signal Processing & VLSI Design Laboratory Department of Electrical & Computer Engineering

More information

How to Get Started. Figure 3

How to Get Started. Figure 3 Tutorial PSpice How to Get Started To start a simulation, begin by going to the Start button on the Windows toolbar, then select Engineering Tools, then OrCAD Demo. From now on the document menu selection

More information

ELEC451 Integrated Circuit Engineering Using Cadence's Virtuoso Layout Editing Tool

ELEC451 Integrated Circuit Engineering Using Cadence's Virtuoso Layout Editing Tool ELEC451 Integrated Circuit Engineering Using Cadence's Virtuoso Layout Editing Tool Contents Contents 1. General 2. Creating and Working On a Layout o 2.1 Undoing/Re-doing an Action o 2.2 Display Options

More information

ECE 546 HOMEWORK No 10 Due Thursday, April 19, yes last

ECE 546 HOMEWORK No 10 Due Thursday, April 19, yes last ECE 546 HOMEWORK No 10 Due Thursday, April 19, 2018 In this homework you will extract the pulse response of the given channel, extract the decision feedback equalization (DFE) coefficients to equalize

More information

Setting up an initial ".tcshrc" file

Setting up an initial .tcshrc file ECE445 Fall 2005 Introduction to SaberSketch The SABER simulator is a tool for computer simulation of analog systems, digital systems and mixed signal systems. SaberDesigner consists of the three tools,

More information

Introduction to Computer Engineering (E114)

Introduction to Computer Engineering (E114) Introduction to Computer Engineering (E114) Lab 1: Full Adder Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for

More information

Alfred Sargezi & Zain Ali. AMS Group - San Jose State University ams.sjsu.edu

Alfred Sargezi & Zain Ali. AMS Group - San Jose State University ams.sjsu.edu Cadence Inverter Transistor Sizing Tutorial Cadence Inverter Ocean Introduction Cadence Inverter Corners Tutorial Cadence Inverter VerilogA Tutorial Cadence Inverter Vout vs Vin Tutorial Alfred Sargezi

More information

EE261 Computer Project 1: Using Mentor Graphics for Digital Simulation

EE261 Computer Project 1: Using Mentor Graphics for Digital Simulation EE261 Computer Project 1: Using Mentor Graphics for Digital Simulation Introduction In this project, you will begin to explore the digital simulation tools of the Mentor Graphics package available on the

More information

ELEC 301 Lab 2: Cadence Basic

ELEC 301 Lab 2: Cadence Basic ELEC 301 Lab 2: Cadence Basic Revision: 2.1 Last modified: Aug. 98 Introduction In this class, you will be introduced to the Cadence suit of IC design tools. These tools are a very powerful set of tools.

More information

Creating Verilog Tutorial Netlist Release Date: 01/13/2005(Version 2)

Creating Verilog Tutorial Netlist Release Date: 01/13/2005(Version 2) Creating Verilog Tutorial 2-1 - Creating a verilog netlist for a schematic: The verilog netlist is necessary for automatic layout (placement and routing) tools. It contains information about the I/O pins

More information

CMOS Design Lab Manual

CMOS Design Lab Manual CMOS Design Lab Manual Developed By University Program Team CoreEl Technologies (I) Pvt. Ltd. 1 Objective Objective of this lab is to learn the Mentor Graphics HEP2 tools as well learn the flow of the

More information

More information can be found in the Cadence manuals Virtuoso Layout Editor User Guide and Cadence Hierarchy Editor User Guide.

More information can be found in the Cadence manuals Virtuoso Layout Editor User Guide and Cadence Hierarchy Editor User Guide. Chapter 6 Building with Layout This chapter consists of two parts. The first describes the generation of layout views and the second deals with the various tools used for verifying the layout, both physical

More information

Analog IC Schematic Capture. Mentor Graphics 2006

Analog IC Schematic Capture. Mentor Graphics 2006 Analog IC Schematic Capture Mentor Graphics 2006 Santa Clara University Department of Electrical Engineering Date of Last Revision: February 6, 2007 Table of Contents 1. Objective...3 2. Setup & Preparation...4

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Lab #2: Layout and Simulation

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Lab #2: Layout and Simulation UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Lab #2: Layout and Simulation NTU IC541CA 1 Assumed Knowledge This lab assumes use of the Electric

More information

EEC 116 Fall 2011 Lab #3: Digital Simulation Tutorial

EEC 116 Fall 2011 Lab #3: Digital Simulation Tutorial EEC 116 Fall 2011 Lab #3: Digital Simulation Tutorial Dept. of Electrical and Computer Engineering University of California, Davis Issued: October 10, 2011 Due: October 19, 2011, 4PM Reading: Rabaey Insert

More information

Orcad Tutorial: Oscillator design and Simulation Schematic Design and Simulation in Orcad Capture CIS Full Version

Orcad Tutorial: Oscillator design and Simulation Schematic Design and Simulation in Orcad Capture CIS Full Version Orcad Tutorial: Oscillator design and Simulation Prof. Law Schematic Design and Simulation in Orcad Capture CIS Full Version Notation: To simplify what one should click to perform a task, the following

More information

Mentor Graphics VLSI CAD Tutorials

Mentor Graphics VLSI CAD Tutorials VLSI Design Flow Using Mentor-Graphics Tools Mentor Graphics VLSI CAD Tutorials School of Engineering Santa Clara University Santa Clara, CA 95053 At the Design Center, School of Engineering, of Santa

More information

HOMEWORK 9 CMPEN 411 Due: 4/12/ :30pm

HOMEWORK 9 CMPEN 411 Due: 4/12/ :30pm HOMEWORK 9 CMPEN 411 Due: 4/12/2016 11:30pm Learning Objective Complete the full 8 bit RISC microprocessor chip design by placing the processor core design into the 40 pin 'tiny' chip pad frame. Do verify

More information

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #1, Full Custom VLSI (inverter layout)

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #1, Full Custom VLSI (inverter layout) CPE/EE 427, CPE 527, VLSI Design I: Tutorial #1, Full Custom VLSI (inverter layout) Joel Wilder, Aleksandar Milenkovic, ECE Dept., The University of Alabama in Huntsville Adapted from Virginia Tech, Dept.

More information