Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory

Size: px
Start display at page:

Download "Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory"

Transcription

1 Background EECS. Operatng System Fundamentals No. Vrtual Memory Prof. Hu Jang Department of Electrcal Engneerng and Computer Scence, York Unversty Memory-management methods normally requres the entre process to be n memory before the process can execute. Better not to load the whole process n memory for executon: Programs often have code to handle unusual error condtons. Arrays, lsts, and tables are often allocated more memory than they actually need. Certan optons and features of a program may be used rarely. Even all codes are needed, they may not all be needed at the same tme. Our goal: partally load a process. No longer be constraned by the amount of physcal memory. Each process takes less memory CPU utlzaton and throughput up. Less I/O to load program run faster. Logcal Memory Space (revew) Vrtual Memory: concept Physcal Memory (8M) Logcal Memory (>G) Dsk (>G) Vrtual Memory Vrtual memory can be mplemented va: Demand pagng Demand segmentaton Hard snce segments have varable sze Demand Pagng() Demand pagng: A pagng system wth a lazy page swapper. A lazy swapper: never swap a page nto memory unless the page wll be used. In demand pagng: When a process s executed, The pager guess whch pages are needed. (optonal) The pager brngs only these necessary pages nto memory. (optonal) When referrng a page not n a memory, the pager brng t n as needed and possbly replace an old page when no more free space. Hardware support: to dstngush those pages n memory and those pages n dsk. Use vald-nvald bt.

2 An example: Demand Pagng Handle a page fault A B C D E F G H Logcal Memory v v 9 v 8 9 A C F D E F A B C pagetable Physcal memory Dsk Handle a Page Fault The nterrupt handler program to handle page fault n vrtual memory: Check an nternal table to see f the reference was a vald or nvald memory access. If nvald, termnate the process; If vald, ths page s on dsk. Need page t nto memory. Fnd a free frame from the free-frame lst. (f no free frame, need replace an old page) Schedule a dsk operaton to read the desred page nto the newly allocated frame. When the dsk read s complete, modfy the nternal table and page table to set the bt as vald to ndcate ths page s now n memory. Restart the nstructon that was nterrupted. The process can now access the page as though t had always been n memory Handle a Page Fault (more detals) Trap to the OS Save the user regsters and process status. Determne the nterrupt was a page fault. Determne the locaton of the page on the dsk. Fnd a free frame from the free-frame lst. If no free frame, page replacement. Issue a read from the dsk to the free frame: Wat n a queue for the dsk untl servced. Wat for the dsk seek and latency tme. Begn the transfer of the page to the free frame. Whle watng, allocate the CPU to other process. Interrupt from the dsk (I/O completed). Save the regsters and process state for other runnng process. Determne the nterrupt was from the dsk. Handle a Page Fault (more detals) (cont d) Pure Demand Pagng vs. Pre-pagng Correct the page table and other tables to show the desred page s now n memory. Wake up the orgnal watng process. Wat for the CPU to be allocated to ths process agan. Restore the user regsters and process state and new page table. Resume the nterrupted nstructon. Pure Demand Pagng: Never brng a page nto memory untl t s referred. Start executng a process wth no pages n memory OS set nstructon ponter to the frst nstructon Once run, t causes a page fault to load the frst page Faultng as necessary untl every page s n memory Pre-pagng: To prevent hgh page-fault rate at the begnnng. Try to brng more pages at once based on predcton.

3 Some Archtecture Concerns n demand pagng Straghtforward n most cases: ADD A,B,C. Fetch and decode ADD. Fetch A. Fetch B. Add A and B. Store the sum to C But some nstructons whch may modfy somethng are not easy to handle: IBM /: MVC (move bytes) PDP-: auto-decrement or auto-ncrement addressng mode mov (R)++, --(R) Performance of Demand Pagng To servce a page fault s very tme-consumng: Servce the page-fault nterrupt. Read n the page. Restart the process. Effectve access tme for a demand-paged system: Effectve Access Tme = (-p) * ma + p * page fault tme One example: memory access nanosecond page fault mllsecond Effectve Access Tme = +,999,9 * p If p=/, EAT = mcrosecond ( slow down a factor of ) If requrng only % slow down, p</,, (one out of. mllon) How to acheve low page fault rate?? Handlng Swap Space on Dsk For fast speed: Use swap space, not fle system. Swap space: n larger blocks, no fle lookup and ndrect allocaton. Copyng an entre fle mage nto swap space at process startup and then perform demand pagng from the swap space. Or frst load pages from fle system, then wrte to swap space. Page Replacement() In demand pagng, when ncreasng multprogrammng level, t s possble to run out of all free frames. How about f a page fault occurs when no free frame s avalable? Stop the process. Swap out another process to free some frames. Page replacement: Replacng n page level. Page Replacement() If no frame s free, fnd one frame that s not currently beng used and free t. Wrte the page nto swap space and change pagetable to ndcate that ths page s no longer n memory. Use the freed frame to hold the page for whch the process faulted. Page Replacement Use a page-replacement algorthm to select a vctm frame. In ths case, two dsk accesses are requred (one wrte one read).

4 Page Replacement() Use a modfy bt (drty bt) to reduce overhead: Each frame has a modfy bt assocated n hardware. Any wrte n page wll set ths bt by hardware. In page replacement, f the bt s not set, no need to wrte back to dsk. For read-only pages, always no need to wrte back. Wth page replacement, we can run a large program n a small memory. Thrashng Thrashng: a process s spendng a sgnfcant tme n pagng. Thrashng results n severe performance problem. The process s spendng more tme n pagng than executng. Cause of thrashng: The process s not allocated enough frames to hold all the pages currently n actve use. Two mportant ssues: Page-replacement algorthm: how to select the frame to be replaced? Frame-allocaton algorthm: how many frames to allocate to each process? Localty Model of Programs A localty s a set of pages that are currently n an actve use by process. A process moves from localty to localty. A program s generally composed of several dfferent localtes. The localtes are defned by the program structure and ts data structures. Localty model s the basc prncple for cachng as well as demand pagng. We only need a small number of frames to hold all pages n the current localty n order to avod further page faults. Workng-set Model The model defne a workng-set wndow, say Δ page references, e.g.,, page references. The set of all referenced pages n the most recent Δ page references s the workng set. How to choose the wndow? f Δ too small wll not encompass entre localty. f Δ too large wll encompass several localtes. If Δ = wll encompass entre program. If WSS = workng-set sze of process P D = WSS : total demand frames f D > m (m: total avalable frames) Thrashng. Polcy: CPU montors workng sets of all processes and allocate enough frames for the current workng set. f D > m, then suspend one of the processes. Workng-Set Model Keepng Track of the Workng Set Approxmate wth nterval tmer + a reference bt. Example: Λ =, references Tmer nterrupts after every references. Keep n memory bts for each page. Whenever a tmer nterrupts, copy and sets the values of all reference bts to. If one of the bts n memory = page n workng set. The cost to servce these frequent nterrupts s hgh.

5 Page-Fault Frequency Other Consderatons n demand-pagng Establsh acceptable page-fault rate. If actual rate too low, process loses frame. If actual rate too hgh, process gans frame. Page sze: n powers of (** *) Small page sze large page-table. Small page sze less nternal fragmentaton. Small page sze more I/O overhead n pagng. Small page sze more page-faults. Small page sze less I/O amount (better resoluton) and less total allocated memory. A hstorcal trend s toward larger page szes. Other Consderatons n demand-pagng Program structure: a careful selecton of data structure and programmng structure To ncrease localty and hence lower the page-fault rate. To reduce total number of memory access. To reduce total number of pages touched. Also compler and loader can mprove. Example: Array A[][] of nteger Each row s stored n one page Program for j = to do for = to do A[][j] = ; x page faults Program for = to do for j = to do A[][j] = ; page faults

If you miss a key. Chapter 6: Demand Paging Source:

If you miss a key. Chapter 6: Demand Paging Source: ADRIAN PERRIG & TORSTEN HOEFLER ( -6- ) Networks and Operatng Systems Chapter 6: Demand Pagng Source: http://redmne.replcant.us/projects/replcant/wk/samsunggalaxybackdoor If you mss a key after yesterday

More information

ADRIAN PERRIG & TORSTEN HOEFLER ( -6- ) Networks and Operatng Systems Chapter 6: Demand Pagng Page Table Structures Page table structures Page table structures Problem: smple lnear table s too bg Problem:

More information

#4 Inverted page table. The need for more bookkeeping. Inverted page table architecture. Today. Our Small Quiz

#4 Inverted page table. The need for more bookkeeping. Inverted page table architecture. Today. Our Small Quiz ADRIAN PERRIG & TORSTEN HOEFLER Networks and Operatng Systems (-6-) Chapter 6: Demand Pagng http://redmne.replcant.us/projects/replcant/wk/samsunggalaxybackdoor () # Inverted table One system-wde table

More information

ELEC 377 Operating Systems. Week 6 Class 3

ELEC 377 Operating Systems. Week 6 Class 3 ELEC 377 Operatng Systems Week 6 Class 3 Last Class Memory Management Memory Pagng Pagng Structure ELEC 377 Operatng Systems Today Pagng Szes Vrtual Memory Concept Demand Pagng ELEC 377 Operatng Systems

More information

Nachos Project 3. Speaker: Sheng-Wei Cheng 2010/12/16

Nachos Project 3. Speaker: Sheng-Wei Cheng 2010/12/16 Nachos Project Speaker: Sheng-We Cheng //6 Agenda Motvaton User Programs n Nachos Related Nachos Code for User Programs Project Assgnment Bonus Submsson Agenda Motvaton User Programs n Nachos Related Nachos

More information

Cache Performance 3/28/17. Agenda. Cache Abstraction and Metrics. Direct-Mapped Cache: Placement and Access

Cache Performance 3/28/17. Agenda. Cache Abstraction and Metrics. Direct-Mapped Cache: Placement and Access Agenda Cache Performance Samra Khan March 28, 217 Revew from last lecture Cache access Assocatvty Replacement Cache Performance Cache Abstracton and Metrcs Address Tag Store (s the address n the cache?

More information

Assembler. Building a Modern Computer From First Principles.

Assembler. Building a Modern Computer From First Principles. Assembler Buldng a Modern Computer From Frst Prncples www.nand2tetrs.org Elements of Computng Systems, Nsan & Schocken, MIT Press, www.nand2tetrs.org, Chapter 6: Assembler slde Where we are at: Human Thought

More information

4/11/17. Agenda. Princeton University Computer Science 217: Introduction to Programming Systems. Goals of this Lecture. Storage Management.

4/11/17. Agenda. Princeton University Computer Science 217: Introduction to Programming Systems. Goals of this Lecture. Storage Management. //7 Prnceton Unversty Computer Scence 7: Introducton to Programmng Systems Goals of ths Lecture Storage Management Help you learn about: Localty and cachng Typcal storage herarchy Vrtual memory How the

More information

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Memory and I/O Organization

Memory and I/O Organization Memory and I/O Organzaton 8-1 Prncple of Localty Localty small proporton of memory accounts for most run tme Rule of thumb For 9% of run tme next nstructon/data wll come from 1% of program/data closest

More information

Chapter 9: Virtual-Memory

Chapter 9: Virtual-Memory Chapter 9: Virtual-Memory Management Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation of Frames Thrashing Other Considerations Silberschatz, Galvin and Gagne 2013

More information

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS : OPERATNG SYSTEMS [VRTUAL MEMORY] Shrideep Pallickara Computer Science Colorado State University Multi-level paging: How many levels deep?

More information

CMPS 10 Introduction to Computer Science Lecture Notes

CMPS 10 Introduction to Computer Science Lecture Notes CPS 0 Introducton to Computer Scence Lecture Notes Chapter : Algorthm Desgn How should we present algorthms? Natural languages lke Englsh, Spansh, or French whch are rch n nterpretaton and meanng are not

More information

Real-Time Guarantees. Traffic Characteristics. Flow Control

Real-Time Guarantees. Traffic Characteristics. Flow Control Real-Tme Guarantees Requrements on RT communcaton protocols: delay (response s) small jtter small throughput hgh error detecton at recever (and sender) small error detecton latency no thrashng under peak

More information

Assembler. Shimon Schocken. Spring Elements of Computing Systems 1 Assembler (Ch. 6) Compiler. abstract interface.

Assembler. Shimon Schocken. Spring Elements of Computing Systems 1 Assembler (Ch. 6) Compiler. abstract interface. IDC Herzlya Shmon Schocken Assembler Shmon Schocken Sprng 2005 Elements of Computng Systems 1 Assembler (Ch. 6) Where we are at: Human Thought Abstract desgn Chapters 9, 12 abstract nterface H.L. Language

More information

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE 1 ata Structures and Algorthms Chapter 4: Trees BST Text: Read Wess, 4.3 Izmr Unversty of Economcs 1 The Search Tree AT Bnary Search Trees An mportant applcaton of bnary trees s n searchng. Let us assume

More information

Chapter 8: Virtual Memory. Operating System Concepts

Chapter 8: Virtual Memory. Operating System Concepts Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2009 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some materal adapted from Mohamed Youns, UMBC CMSC 611 Spr 2003 course sldes Some materal adapted from Hennessy & Patterson / 2003 Elsever Scence Performance = 1 Executon tme Speedup = Performance (B)

More information

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

More information

An Efficient Garbage Collection for Flash Memory-Based Virtual Memory Systems

An Efficient Garbage Collection for Flash Memory-Based Virtual Memory Systems S. J and D. Shn: An Effcent Garbage Collecton for Flash Memory-Based Vrtual Memory Systems 2355 An Effcent Garbage Collecton for Flash Memory-Based Vrtual Memory Systems Seunggu J and Dongkun Shn, Member,

More information

Agenda & Reading. Simple If. Decision-Making Statements. COMPSCI 280 S1C Applications Programming. Programming Fundamentals

Agenda & Reading. Simple If. Decision-Making Statements. COMPSCI 280 S1C Applications Programming. Programming Fundamentals Agenda & Readng COMPSCI 8 SC Applcatons Programmng Programmng Fundamentals Control Flow Agenda: Decsonmakng statements: Smple If, Ifelse, nested felse, Select Case s Whle, DoWhle/Untl, For, For Each, Nested

More information

kccvoip.com basic voip training NAT/PAT extract 2008

kccvoip.com basic voip training NAT/PAT extract 2008 kccvop.com basc vop tranng NAT/PAT extract 28 As we have seen n the prevous sldes, SIP and H2 both use addressng nsde ther packets to rely nformaton. Thnk of an envelope where we place the addresses of

More information

CSE 4/521 Introduction to Operating Systems. Lecture 15 Virtual Memory I (Background, Demand Paging) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 15 Virtual Memory I (Background, Demand Paging) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 15 Virtual Memory I (Background, Demand Paging) Summer 2018 Overview Objective: To describe the benefits of a virtual memory system. To explain the concept

More information

Harvard University CS 101 Fall 2005, Shimon Schocken. Assembler. Elements of Computing Systems 1 Assembler (Ch. 6)

Harvard University CS 101 Fall 2005, Shimon Schocken. Assembler. Elements of Computing Systems 1 Assembler (Ch. 6) Harvard Unversty CS 101 Fall 2005, Shmon Schocken Assembler Elements of Computng Systems 1 Assembler (Ch. 6) Why care about assemblers? Because Assemblers employ some nfty trcks Assemblers are the frst

More information

5.1 The ISR: Overvieui. chapter

5.1 The ISR: Overvieui. chapter chapter 5 The LC-3 n Chapter 4, we dscussed the basc components of a computer ts memory, ts processng unt, ncludng the assocated temporary storage (usually a set of regsters), nput and output devces, and

More information

instruction is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Two major allocation schemes

instruction is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Two major allocation schemes Allocation of Frames How should the OS distribute the frames among the various processes? Each process needs minimum number of pages - at least the minimum number of pages required for a single assembly

More information

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS ARPN Journal of Engneerng and Appled Scences 006-017 Asan Research Publshng Network (ARPN). All rghts reserved. NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS Igor Grgoryev, Svetlana

More information

VRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT-09105, Phone: (370-5) , Fax: (370-5) ,

VRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT-09105, Phone: (370-5) , Fax: (370-5) , VRT012 User s gude V0.1 Thank you for purchasng our product. We hope ths user-frendly devce wll be helpful n realsng your deas and brngng comfort to your lfe. Please take few mnutes to read ths manual

More information

Efficient Distributed File System (EDFS)

Efficient Distributed File System (EDFS) Effcent Dstrbuted Fle System (EDFS) (Sem-Centralzed) Debessay(Debsh) Fesehaye, Rahul Malk & Klara Naherstedt Unversty of Illnos-Urbana Champagn Contents Problem Statement, Related Work, EDFS Desgn Rate

More information

Quantifying Performance Models

Quantifying Performance Models Quantfyng Performance Models Prof. Danel A. Menascé Department of Computer Scence George Mason Unversty www.cs.gmu.edu/faculty/menasce.html 1 Copyrght Notce Most of the fgures n ths set of sldes come from

More information

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision SLAM Summer School 2006 Practcal 2: SLAM usng Monocular Vson Javer Cvera, Unversty of Zaragoza Andrew J. Davson, Imperal College London J.M.M Montel, Unversty of Zaragoza. josemar@unzar.es, jcvera@unzar.es,

More information

IP Camera Configuration Software Instruction Manual

IP Camera Configuration Software Instruction Manual IP Camera 9483 - Confguraton Software Instructon Manual VBD 612-4 (10.14) Dear Customer, Wth your purchase of ths IP Camera, you have chosen a qualty product manufactured by RADEMACHER. Thank you for the

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 21-23 - Virtual Memory Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian,

More information

Module 9: Virtual Memory

Module 9: Virtual Memory Module 9: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing Other Considerations Demand Segmenation 9.1 Background

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

Brave New World Pseudocode Reference

Brave New World Pseudocode Reference Brave New World Pseudocode Reference Pseudocode s a way to descrbe how to accomplsh tasks usng basc steps lke those a computer mght perform. In ths week s lab, you'll see how a form of pseudocode can be

More information

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss.

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss. Today s Outlne Sortng Chapter 7 n Wess CSE 26 Data Structures Ruth Anderson Announcements Wrtten Homework #6 due Frday 2/26 at the begnnng of lecture Proect Code due Mon March 1 by 11pm Today s Topcs:

More information

Sorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions

Sorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions Sortng Revew Introducton to Algorthms Qucksort CSE 680 Prof. Roger Crawfs Inserton Sort T(n) = Θ(n 2 ) In-place Merge Sort T(n) = Θ(n lg(n)) Not n-place Selecton Sort (from homework) T(n) = Θ(n 2 ) In-place

More information

Background. Virtual Memory (2/2) Demand Paging Example. First-In-First-Out (FIFO) Algorithm. Page Replacement Algorithms. Performance of Demand Paging

Background. Virtual Memory (2/2) Demand Paging Example. First-In-First-Out (FIFO) Algorithm. Page Replacement Algorithms. Performance of Demand Paging Virtual Memory (/) Background Page Replacement Allocation of Frames Thrashing Background Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in memory

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Virtual Memory COMPSCI 386

Virtual Memory COMPSCI 386 Virtual Memory COMPSCI 386 Motivation An instruction to be executed must be in physical memory, but there may not be enough space for all ready processes. Typically the entire program is not needed. Exception

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Chapter 9: Virtual Memory Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1)

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1) Secton 1.2 Subsets and the Boolean operatons on sets If every element of the set A s an element of the set B, we say that A s a subset of B, or that A s contaned n B, or that B contans A, and we wrte A

More information

MRKOMNO. kéï=~ë=çñw= pfabufp=ud. aáöáí~ä=o~çáçöê~éüó. nìáåâ=êéñéêéååé=öìáçé==== båöäáëü

MRKOMNO. kéï=~ë=çñw= pfabufp=ud. aáöáí~ä=o~çáçöê~éüó. nìáåâ=êéñéêéååé=öìáçé==== båöäáëü kéï=~ë=çñw= MRKOMNO pfabufp=ud aáöáí~ä=o~çáçöê~éüó nìáåâ=êéñéêéååé=öìáçé==== båöäáëü 0123 Ths product bears the CE markng n accordance wth the provsons of the Councl Drectve 93/42/EEC of June 14, 1993

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

Module 9: Virtual Memory

Module 9: Virtual Memory Module 9: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing Other Considerations Demand Segmentation Operating

More information

CS 268: Lecture 8 Router Support for Congestion Control

CS 268: Lecture 8 Router Support for Congestion Control CS 268: Lecture 8 Router Support for Congeston Control Ion Stoca Computer Scence Dvson Department of Electrcal Engneerng and Computer Scences Unversty of Calforna, Berkeley Berkeley, CA 9472-1776 Router

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

Loop Transformations for Parallelism & Locality. Review. Scalar Expansion. Scalar Expansion: Motivation

Loop Transformations for Parallelism & Locality. Review. Scalar Expansion. Scalar Expansion: Motivation Loop Transformatons for Parallelsm & Localty Last week Data dependences and loops Loop transformatons Parallelzaton Loop nterchange Today Scalar expanson for removng false dependences Loop nterchange Loop

More information

Chapter 9: Virtual Memory. Chapter 9: Virtual Memory. Objectives. Background. Virtual-address address Space

Chapter 9: Virtual Memory. Chapter 9: Virtual Memory. Objectives. Background. Virtual-address address Space Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Insertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array

Insertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array Inserton Sort Dvde and Conquer Sortng CSE 6 Data Structures Lecture 18 What f frst k elements of array are already sorted? 4, 7, 1, 5, 1, 16 We can shft the tal of the sorted elements lst down and then

More information

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

ETAtouch RESTful Webservices

ETAtouch RESTful Webservices ETAtouch RESTful Webservces Verson 1.1 November 8, 2012 Contents 1 Introducton 3 2 The resource /user/ap 6 2.1 HTTP GET................................... 6 2.2 HTTP POST..................................

More information

Sorting. Sorted Original. index. index

Sorting. Sorted Original. index. index 1 Unt 16 Sortng 2 Sortng Sortng requres us to move data around wthn an array Allows users to see and organze data more effcently Behnd the scenes t allows more effectve searchng of data There are MANY

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

More information

Concurrent Apriori Data Mining Algorithms

Concurrent Apriori Data Mining Algorithms Concurrent Apror Data Mnng Algorthms Vassl Halatchev Department of Electrcal Engneerng and Computer Scence York Unversty, Toronto October 8, 2015 Outlne Why t s mportant Introducton to Assocaton Rule Mnng

More information

Internet Traffic Managers

Internet Traffic Managers Internet Traffc Managers Ibrahm Matta matta@cs.bu.edu www.cs.bu.edu/faculty/matta Computer Scence Department Boston Unversty Boston, MA 225 Jont work wth members of the WING group: Azer Bestavros, John

More information

High level vs Low Level. What is a Computer Program? What does gcc do for you? Program = Instructions + Data. Basic Computer Organization

High level vs Low Level. What is a Computer Program? What does gcc do for you? Program = Instructions + Data. Basic Computer Organization What s a Computer Program? Descrpton of algorthms and data structures to acheve a specfc ojectve Could e done n any language, even a natural language lke Englsh Programmng language: A Standard notaton

More information

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005 Exercses (Part 4) Introducton to R UCLA/CCPR John Fox, February 2005 1. A challengng problem: Iterated weghted least squares (IWLS) s a standard method of fttng generalzed lnear models to data. As descrbed

More information

OPERATING SYSTEM. Chapter 9: Virtual Memory

OPERATING SYSTEM. Chapter 9: Virtual Memory OPERATING SYSTEM Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory

More information

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n gvng your own lectures. Feel free to use these sldes verbatm, or to modfy them to ft your

More information

Solving Planted Motif Problem on GPU

Solving Planted Motif Problem on GPU Solvng Planted Motf Problem on GPU Naga Shalaja Dasar Old Domnon Unversty Norfolk, VA, USA ndasar@cs.odu.edu Ranjan Desh Old Domnon Unversty Norfolk, VA, USA dranjan@cs.odu.edu Zubar M Old Domnon Unversty

More information

Chapter 10: Virtual Memory

Chapter 10: Virtual Memory Chapter 10: Virtual Memory Chapter 10: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 9: Virtual Memory. Operating System Concepts 9th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9th Edition Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Motivation. EE 457 Unit 4. Throughput vs. Latency. Performance Depends on View Point?! Computer System Performance. An individual user wants to:

Motivation. EE 457 Unit 4. Throughput vs. Latency. Performance Depends on View Point?! Computer System Performance. An individual user wants to: 4.1 4.2 Motvaton EE 457 Unt 4 Computer System Performance An ndvdual user wants to: Mnmze sngle program executon tme A datacenter owner wants to: Maxmze number of Mnmze ( ) http://e-tellgentnternetmarketng.com/webste/frustrated-computer-user-2/

More information

Solution Brief: Creating a Secure Base in a Virtual World

Solution Brief: Creating a Secure Base in a Virtual World Soluton Bref: Creatng a Secure Base n a Vrtual World Soluton Bref: Creatng a Secure Base n a Vrtual World Abstract The adopton rate of Vrtual Machnes has exploded at most organzatons, drven by the mproved

More information

Operating System Concepts 9 th Edition

Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Intro. Iterators. 1. Access

Intro. Iterators. 1. Access Intro Ths mornng I d lke to talk a lttle bt about s and s. We wll start out wth smlartes and dfferences, then we wll see how to draw them n envronment dagrams, and we wll fnsh wth some examples. Happy

More information

News. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example

News. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example Unversty of Brtsh Columba CPSC, Intro to Computaton Jan-Apr Tamara Munzner News Assgnment correctons to ASCIIArtste.java posted defntely read WebCT bboards Arrays Lecture, Tue Feb based on sldes by Kurt

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desgn and Analyss of Algorthms Heaps and Heapsort Reference: CLRS Chapter 6 Topcs: Heaps Heapsort Prorty queue Huo Hongwe Recap and overvew The story so far... Inserton sort runnng tme of Θ(n 2 ); sorts

More information

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour 6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

More information

Notes on Organizing Java Code: Packages, Visibility, and Scope

Notes on Organizing Java Code: Packages, Visibility, and Scope Notes on Organzng Java Code: Packages, Vsblty, and Scope CS 112 Wayne Snyder Java programmng n large measure s a process of defnng enttes (.e., packages, classes, methods, or felds) by name and then usng

More information

A Sub-Critical Deficit Round-Robin Scheduler

A Sub-Critical Deficit Round-Robin Scheduler A Sub-Crtcal Defct ound-obn Scheduler Anton Kos, Sašo Tomažč Unversty of Ljubljana, Faculty of Electrcal Engneerng, Ljubljana, Slovena E-mal: anton.kos@fe.un-lj.s Abstract - A scheduler s an essental element

More information

Cache Memories. Lecture 14 Cache Memories. Inserting an L1 Cache Between the CPU and Main Memory. General Org of a Cache Memory

Cache Memories. Lecture 14 Cache Memories. Inserting an L1 Cache Between the CPU and Main Memory. General Org of a Cache Memory Topcs Lecture 4 Cache Memores Generc cache memory organzaton Drect mapped caches Set assocate caches Impact of caches on performance Cache Memores Cache memores are small, fast SRAM-based memores managed

More information

Loop Permutation. Loop Transformations for Parallelism & Locality. Legality of Loop Interchange. Loop Interchange (cont)

Loop Permutation. Loop Transformations for Parallelism & Locality. Legality of Loop Interchange. Loop Interchange (cont) Loop Transformatons for Parallelsm & Localty Prevously Data dependences and loops Loop transformatons Parallelzaton Loop nterchange Today Loop nterchange Loop transformatons and transformaton frameworks

More information

Chapter 6: Demand Paging

Chapter 6: Demand Paging ADRIAN PERRIG & TORSTEN HOEFLER ( 5-006-00 ) Networks and Operating Systems Chapter 6: Demand Paging Source: http://redmine.replicant.us/projects/replicant/wiki/samsunggalaxybackdoor If you miss a key

More information

Simulation Based Analysis of FAST TCP using OMNET++

Simulation Based Analysis of FAST TCP using OMNET++ Smulaton Based Analyss of FAST TCP usng OMNET++ Umar ul Hassan 04030038@lums.edu.pk Md Term Report CS678 Topcs n Internet Research Sprng, 2006 Introducton Internet traffc s doublng roughly every 3 months

More information

Overview. CSC 2400: Computer Systems. Pointers in C. Pointers - Variables that hold memory addresses - Using pointers to do call-by-reference in C

Overview. CSC 2400: Computer Systems. Pointers in C. Pointers - Variables that hold memory addresses - Using pointers to do call-by-reference in C CSC 2400: Comuter Systems Ponters n C Overvew Ponters - Varables that hold memory addresses - Usng onters to do call-by-reference n C Ponters vs. Arrays - Array names are constant onters Ponters and Strngs

More information

Background. Demand Paging. valid-invalid bit. Tevfik Koşar. CSC Operating Systems Spring 2007

Background. Demand Paging. valid-invalid bit. Tevfik Koşar. CSC Operating Systems Spring 2007 CSC 0 - Operating Systems Spring 007 Lecture - XIII Virtual Memory Tevfik Koşar Background Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in

More information

Computer Architecture ELEC3441

Computer Architecture ELEC3441 Causes of Cache Msses: The 3 C s Computer Archtecture ELEC3441 Lecture 9 Cache (2) Dr. Hayden Kwo-Hay So Department of Electrcal and Electronc Engneerng Compulsory: frst reference to a lne (a..a. cold

More information

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles Page Replacement page 1 Page Replacement Algorithms Want lowest page-fault rate Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number

More information

Operating System - Virtual Memory

Operating System - Virtual Memory Operating System - Virtual Memory Virtual memory is a technique that allows the execution of processes which are not completely available in memory. The main visible advantage of this scheme is that programs

More information

Computer models of motion: Iterative calculations

Computer models of motion: Iterative calculations Computer models o moton: Iteratve calculatons OBJECTIVES In ths actvty you wll learn how to: Create 3D box objects Update the poston o an object teratvely (repeatedly) to anmate ts moton Update the momentum

More information

Wightman. Mobility. Quick Reference Guide THIS SPACE INTENTIONALLY LEFT BLANK

Wightman. Mobility. Quick Reference Guide THIS SPACE INTENTIONALLY LEFT BLANK Wghtman Moblty Quck Reference Gude THIS SPACE INTENTIONALLY LEFT BLANK WIGHTMAN MOBILITY BASICS How to Set Up Your Vocemal 1. On your phone s dal screen, press and hold 1 to access your vocemal. If your

More information

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs Optimal Algorithm Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs page 1 Least Recently Used (LRU) Algorithm Reference string: 1, 2, 3,

More information

The stream cipher MICKEY-128 (version 1) Algorithm specification issue 1.0

The stream cipher MICKEY-128 (version 1) Algorithm specification issue 1.0 The stream cpher MICKEY-128 (verson 1 Algorthm specfcaton ssue 1. Steve Babbage Vodafone Group R&D, Newbury, UK steve.babbage@vodafone.com Matthew Dodd Independent consultant matthew@mdodd.net www.mdodd.net

More information

Midterms Save the Dates!

Midterms Save the Dates! Unversty of Brtsh Columba CPSC, Intro to Computaton Alan J. Hu Readngs Ths Week: Ch 6 (Ch 7 n old 2 nd ed). (Remnder: Readngs are absolutely vtal for learnng ths stuff!) Thnkng About Loops Lecture 9 Some

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory 9.1 Background 9.2 Demand Paging 9.3 Copy-on-Write 9.4 Page Replacement 9.5 Allocation of Frames 9.6 Thrashing 9.7 Memory-Mapped Files 9.8 Allocating

More information

AADL : about scheduling analysis

AADL : about scheduling analysis AADL : about schedulng analyss Schedulng analyss, what s t? Embedded real-tme crtcal systems have temporal constrants to meet (e.g. deadlne). Many systems are bult wth operatng systems provdng multtaskng

More information

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit LOOP ANALYSS The second systematic technique to determine all currents and voltages in a circuit T S DUAL TO NODE ANALYSS - T FRST DETERMNES ALL CURRENTS N A CRCUT AND THEN T USES OHM S LAW TO COMPUTE

More information

Sorting: The Big Picture. The steps of QuickSort. QuickSort Example. QuickSort Example. QuickSort Example. Recursive Quicksort

Sorting: The Big Picture. The steps of QuickSort. QuickSort Example. QuickSort Example. QuickSort Example. Recursive Quicksort Sortng: The Bg Pcture Gven n comparable elements n an array, sort them n an ncreasng (or decreasng) order. Smple algorthms: O(n ) Inserton sort Selecton sort Bubble sort Shell sort Fancer algorthms: O(n

More information

Priority-Based Scheduling Algorithm for Downlink Traffics in IEEE Networks

Priority-Based Scheduling Algorithm for Downlink Traffics in IEEE Networks Prorty-Based Schedulng Algorthm for Downlnk Traffcs n IEEE 80.6 Networks Ja-Mng Lang, Jen-Jee Chen, You-Chun Wang, Yu-Chee Tseng, and Bao-Shuh P. Ln Department of Computer Scence Natonal Chao-Tung Unversty,

More information

CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar

CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vdyanagar Faculty Name: Am D. Trved Class: SYBCA Subject: US03CBCA03 (Advanced Data & Fle Structure) *UNIT 1 (ARRAYS AND TREES) **INTRODUCTION TO ARRAYS If we want

More information

Storage Binding in RTL synthesis

Storage Binding in RTL synthesis Storage Bndng n RTL synthess Pe Zhang Danel D. Gajsk Techncal Report ICS-0-37 August 0th, 200 Center for Embedded Computer Systems Department of Informaton and Computer Scence Unersty of Calforna, Irne

More information

The Codesign Challenge

The Codesign Challenge ECE 4530 Codesgn Challenge Fall 2007 Hardware/Software Codesgn The Codesgn Challenge Objectves In the codesgn challenge, your task s to accelerate a gven software reference mplementaton as fast as possble.

More information

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe CSCI 104 Sortng Algorthms Mark Redekopp Davd Kempe Algorthm Effcency SORTING 2 Sortng If we have an unordered lst, sequental search becomes our only choce If we wll perform a lot of searches t may be benefcal

More information

Chapter 3: Virtual Memory ว ตถ ประสงค. Background สามารถอธ บายข อด ในการท ระบบใช ว ธ การจ ดการหน วยความจ าแบบเสม อนได

Chapter 3: Virtual Memory ว ตถ ประสงค. Background สามารถอธ บายข อด ในการท ระบบใช ว ธ การจ ดการหน วยความจ าแบบเสม อนได Chapter 9: Virtual Memory Chapter 3: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information