Embedded Systems. October 2, 2017

Size: px
Start display at page:

Download "Embedded Systems. October 2, 2017"

Transcription

1 Embedded Systems October 2, 2017

2 Announcements Read pages

3 The Plan! Timers and Counter Interrupts

4 A little review of timers How do we keep track of seconds using a timer? We have several different ways one way is: Wait for a roll over Calculate time taken for one complete roll over Count number of roll overs Calculate how many roll overs make 1 second

5 Timer flowchart Timer Init COUNT BIT = 1 Yes No Timer rolls over every seconds Around 5 rolls = 1 second Clear Timer Count If counter is 5, its been 1 second, set counter to 0

6 Is the fraction important? What fraction do we lose every second? seconds How much do we lose every hour? 175 seconds Everyday? 70 minutes

7 How can we get the fraction back? Bus clock is 80MHz / COUNT is set every seconds To keep seconds we increment every 4 or 5 roll overs We can used fixed point to keep fractions Keep a 64 bit long (long current_time;) Upper 32 bits are the seconds Lower 32 bits are the fractions of seconds Each count of the lower bit is 1/2 32 seconds = For each COUNT set add / = fractional seconds COUNT is set then current_time += ; Seconds are current_time >> 32

8 Timing Accurary After 1000 seconds, what is our accuracy? COUNT has been set: 1000 * / = 4768 times fractional seconds added 4768 times * 4768 = = 0x3E7EC0CFB20 Top 32 bits are $3E7= 999 seconds Accuracy 999/1000

9 On to Interrupts Keeping track of timer COUNT bit was tricky Interrupts are better approach Extremely important to understand how interrupts work for systems development

10 Interrupts a concept It would be nice if, instead of continually checking (polling), we are notified of (interrupted for) a condition Examples: Wristwatch Check every 5 minutes Alarm ring at the end of class Cell phone Check for message Message alert Making Tea Polling to check if the water is boiling A whistling tea kettle

11 Interrupts Two kinds of interrupts Hardware Software Hardware Interrupt CPU triggers interrupt based on some condition Finish the current instruction Save current state of the CPU on the stack Execute Interrupt Service Routine Acknowledge the interrupts Resume execution of the main program Software Interrupt Instruction within code causes an interrupt

12 Hardware Interrupt Some piece of hardware generates an interrupt CPU executes an interrupt instruction Execute Interrupt handing software (ISR) Return from ISR Resume normal operation

13 What generates an interrupt Source:

14 Back to our Timer Example Polled Example: Loop until TCNT rolls over count the number of rolls C Implementation for( ; ; ) { } Wait for COUNT flag to be set timer_count += <fraction_value>;

15 Interrupt driven approach C implementation for (;;) { } Do whatever you want to do timer_count is the number of sec ISR keeps track of COUNT flag set ISR will increment timer_count by fractional value How do we execute ISR when timer counts down to 0?

16 Configuring SysTick Timer Three main registers NVIC_ST_CTRL_R Count 1 means SysTick timer has counted to 0 CLK_SRC 0 PIOSC divided by 4 (16MHz/4) 1 System clock (80Mhz) INTEN Interrupts enabled (later) ENABLE Enable this timer

17 C Program with interrupts unsigned long timer_val=0; // extern so ISR can see symbol void main(void) { NVIC_ST_CTRL_R = 9; NVIC_ST_RELOAD_R = 0x00FFFFFF; NVIC_ST_CURRENT_R = 0; NVIC_ST_CTRL_R = 0x ; for(;;) { // code goes here to copy (timer_val>>16) to display } /* loop forever */ }

18 How do I set the Vector Table to call my ISR? tm4c123gh6pm_startup_ccs.c // To be added by user extern void SysTickHandler(void); #pragma DATA_SECTION(g_pfnVectors, ".intvecs") void (* const g_pfnvectors[])(void) = { (void (*)(void))((uint32_t)& STACK_TOP), // The initial stack pointer ResetISR, // The reset handler NmiSR, // The NMI handler FaultISR, // The hard fault handler IntDefaultHandler, // The MPU fault handler IntDefaultHandler, // The bus fault handler IntDefaultHandler, // The usage fault handler 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved IntDefaultHandler, // SVCall handler IntDefaultHandler, // Debug monitor handler 0, // Reserved IntDefaultHandler, // The PendSV handler SysTickHandler, // The SysTick handler IntDefaultHandler, // GPIO Port A IntDefaultHandler, // GPIO Port B IntDefaultHandler, // GPIO Port C IntDefaultHandler, // GPIO Port D IntDefaultHandler, // GPIO Port E

19 ISR for timer overflow void SysTickHandler() { timer_val += ; }

20 What happens at an Interrupt? When an interrupt occurs: The current instruction is finished Eight registers PSR, PC, LR, R12, R3, R2, R1, R0 are pushed on the stack The Address for ISR is loaded in the PC IPSR register holds the Interrupt number Top 24 bits of LR are set to 0xFFFFFF indicating ISR mode Next 7 bits specify how to return from interrupt 0xF1 Return to another interrupt (Handler mode) 0xF9 Return to normal execution (Thread mode)

21 When you return from an interrupt ISR executes BX LR Since top 24 bits are 0xFFFFFF, processor knows that code is returning from an interrupt Pops the eight registers Returns to thread mode or Handler mode depending on bits 1-7 of LR

22 Interrupt Priority You can set the priority of an interrupt Priority registers Each register holds 8 bits for each interrupt priority Priority is between 0 and 7 depending on which bit is set 0 highest, 7 lowest High priority interrupts, interrupt ISR for low priority interrupts

23 Next topic Input capture Read pages:

24 Some Background Frequency Shift Keying: A frequency modulation scheme where data is encoded and transmitted by changing the frequency of a carrier channel

25 FSK An Example: Image Source - Wikipedia

26 Decoding FSK Lets say we have a means of converting Analog signal to digital data?

27 Decoding FSK If we can measure the pulse width, we can tell if the data is 1 or

28 TV remotes

29 Input Capture Used to measure Pulse width Pulse Period An external signal is connected to IC pin IC an generate an interrupt at Rising edge at IC pin Falling edge at IC pin Both edges The current value of Timer (16 or 24 bit) is saved in IC register during the interrupt event

30 Uses of Input Capture Request an ISR based on an external signal Calculate period of a pulse by interrupting on rising edge and subtracting the two timer values Calculate pulse width by interrupting first on rising edge and then on falling edge

31 Input Capture Pins Timer 0-5, each with two channels T0CCP0 PF0 T0CCP1 PB7 T1CCP0 PF1 T1CCP1 PF3 T2CCP0 PF4 T2CCP1 PB1 T3CCP0 PB2 T3CCP1 PB3 T4CCP0 PD4 T4CCP1 PD5 T5CCP0 PD6 T5CCP1 PD7

32 IO Ain PA2 Port SSI0Clk PA3 Port SSI0Fss PA4 Port SSI0Rx PA5 Port SSI0Tx PA6 Port I 2 C1SCL M1PWM2 PA7 Port I 2 C1SDA M1PWM3 PB0 Port U1Rx T2CCP0 PB1 Port U1Tx T2CCP1 PB2 Port I 2 C0SCL T3CCP0 PB3 Port I 2 C0SDA T3CCP1 PB4 Ain10 Port SSI2Clk M0PWM2 T1CCP0 CAN0Rx PB5 Ain11 Port SSI2Fss M0PWM3 T1CCP1 CAN0Tx PB6 Port SSI2Rx M0PWM0 T0CCP0 PB7 Port SSI2Tx M0PWM1 T0CCP1 PC4 C1- Port U4Rx U1Rx M0PWM6 IDX1 WT0CCP0 U1RTS PC5 C1+ Port U4Tx U1Tx M0PWM7 PhA1 WT0CCP1 U1CTS PC6 C0+ Port U3Rx PhB1 WT1CCP0 USB0epen PC7 C0- Port U3Tx WT1CCP1 USB0pflt PD0 Ain7 Port SSI3Clk SSI1Clk I 2 C3SCL M0PWM6 M1PWM0 WT2CCP0 PD1 Ain6 Port SSI3Fss SSI1Fss I 2 C3SDA M0PWM7 M1PWM1 WT2CCP1 PD2 Ain5 Port SSI3Rx SSI1Rx M0Fault0 WT3CCP0 USB0epen PD3 Ain4 Port SSI3Tx SSI1Tx IDX0 WT3CCP1 USB0pflt PD6 Port U2Rx M0Fault0 PhA0 WT5CCP0 PD7 Port U2Tx PhB0 WT5CCP1 NMI PE0 Ain3 Port U7Rx PE1 Ain2 Port U7Tx PE2 Ain1 Port PE3 Ain0 Port PE4 Ain9 Port U5Rx I 2 C2SCL M0PWM4 M1PWM2 CAN0Rx PE5 Ain8 Port U5Tx I 2 C2SDA M0PWM5 M1PWM3 CAN0Tx PF0 Port U1RTS SSI1Rx CAN0Rx M1PWM4 PhA0 T0CCP0 NMI C0o PF1 Port U1CTS SSI1Tx M1PWM5 PhB0 T0CCP1 C1o TRD1 PF2 Port SSI1Clk M0Fault0 M1PWM6 T1CCP0 TRD0 PF3 Port SSI1Fss CAN0Tx M1PWM7 T1CCP1 TRCLK PF4 Port M1Fault0 IDX0 T2CCP0 USB0epen

33 Input Capture Registers SYSCTL_RCGCTIMER_R - 1 bit for each timer TIMER0_CTL_R Enable/Disable a timer TIMER0_CFG_R Configure 16/24 bit timer TIMER0_TAMR_R Enable Capture TIMER0_CTL_R Rising/Falling Edge, Enable timer TIMER0_TAILR_R Start value 24 bits TIMER0_TAPR_R TIMER0_IMR_R Enable capture match interrupt TIMER0_ICR_R Flag to clear to ack interrupt

34 What generates an interrupt Source:

35 In the interrupt TImer0A_Handler: Acknowledge the interrupt Write 1 to bit 2 of TIMER0_ICR_R TIMER0_TAR_R hold the timer at which interrupt occured

Interrupts (Exceptions) Gary J. Minden September 11, 2014

Interrupts (Exceptions) Gary J. Minden September 11, 2014 Interrupts (Exceptions) Gary J. Minden September 11, 2014 1 Interrupts Motivation Implementation Material from Stellaris LM3S1968 Micro-controller Datasheet Sections 2.5 and 2.6 2 Motivation Our current

More information

Interrupts (Exceptions) (From LM3S1968) Gary J. Minden August 29, 2016

Interrupts (Exceptions) (From LM3S1968) Gary J. Minden August 29, 2016 Interrupts (Exceptions) (From LM3S1968) Gary J. Minden August 29, 2016 1 Interrupts Motivation Implementation Material from Stellaris LM3S1968 Micro-controller Datasheet Sections 2.5 and 2.6 2 Motivation

More information

Viewing the tm4c123gh6pm_startup_ccs.c file, the first piece of code we see after the comments is shown in Figure 1.

Viewing the tm4c123gh6pm_startup_ccs.c file, the first piece of code we see after the comments is shown in Figure 1. Viewing the tm4c123gh6pm_startup_ccs.c file, the first piece of code we see after the comments is shown in Figure 1. Figure 1 Forward declaration for the default handlers These are the forward declarations,

More information

ECE251: Thursday September 27

ECE251: Thursday September 27 ECE251: Thursday September 27 Exceptions: Interrupts and Resets Chapter in text and Lab #6. READ ALL this material! This will NOT be on the mid-term exam. Lab Practical Exam #1 Homework # due today at

More information

Universal Asynchronous Receiver/Transmitter (UART)

Universal Asynchronous Receiver/Transmitter (UART) Universal Asynchronous Receiver/Transmitter (UART) EE383: Introduction to Embedded Systems University of Kentucky James E. Lumpp Includes material from: - Jonathan Valvano, Introduction to ARM Cortex-M

More information

EE251: Tuesday October 23

EE251: Tuesday October 23 EE251: Tuesday October 23 Higher Frequency Clock via Phase Locked Loop TIMER MODULE: SysTick-Basis of next week s lab Section 12.4 and 18 in text describes our SysTick Section 2.5 of Valvano s Real Time

More information

Lab 4 Interrupt-driven operations

Lab 4 Interrupt-driven operations Lab 4 Interrupt-driven operations Interrupt handling in Cortex-M CPUs Nested Vectored Interrupt Controller (NVIC) Externally-triggered interrupts via GPIO pins Software setup for interrupt-driven applications

More information

Design and Implementation Interrupt Mechanism

Design and Implementation Interrupt Mechanism Design and Implementation Interrupt Mechanism 1 Module Overview Study processor interruption; Design and implement of an interrupt mechanism which responds to interrupts from timer and UART; Program interrupt

More information

Modes and Levels. Registers. Registers. Cortex-M3 programming

Modes and Levels. Registers. Registers. Cortex-M3 programming Modes and Levels Cortex-M3 programming Texas Instruments, www.ti.com CortexM3InstructionSet.pdf STMicroelectronics, www.st.com CortexM3Programmer.pdf PM0056 Registers Registers R0-R3 parameters R4-R11

More information

Lecture #13 Interrupts Embedded System Engineering Philip Koopman Monday, 29-Feb-2016

Lecture #13 Interrupts Embedded System Engineering Philip Koopman Monday, 29-Feb-2016 Lecture #13 Interrupts 18-348 Embedded System Engineering Philip Koopman Monday, 29-Feb-2016 Electrical& Computer ENGINEERING Copyright 2006-2016, Philip Koopman, All Rights Reserved Example: Electronic

More information

Interrupts. Why Interrupts

Interrupts. Why Interrupts Why Interrupts I/O operations Peripherals and external devices can let the processor know they are ready vs. the processor polling each device Routine tasks Updating the time Making sure the processor

More information

CprE 288 Introduction to Embedded Systems

CprE 288 Introduction to Embedded Systems CprE 288 Introduction to Embedded Systems Instructors: Dr. Phillip Jones http://class.ece.iastate.edu/cpre288 1 Overview Announcements Bitwise Operations Set, clear, toggle and invert bits Shift bits Test

More information

COEN-4720 Embedded Systems Design Lecture 4 Interrupts (Part 1) Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University

COEN-4720 Embedded Systems Design Lecture 4 Interrupts (Part 1) Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University COEN-4720 Embedded Systems Design Lecture 4 Interrupts (Part 1) Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University Outline Introduction NVIC and Interrupt Control Interrupt

More information

(5) Question 2. Give the two most important factors for effective debugging. Jonathan W. Valvano

(5) Question 2. Give the two most important factors for effective debugging. Jonathan W. Valvano EE445M/EE380L Quiz 1 Spring 2013 Page 1 of 5 First Name: Last Name: March 1, 2013, 10:00 to 10:50am Quiz 1 is a closed book exam. You may have one 8.5 by 11 inch sheet of hand-written crib notes, but no

More information

CprE 288 Introduction to Embedded Systems (Timers/Input Capture) Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems (Timers/Input Capture) Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems (Timers/Input Capture) Instructors: Dr. Phillip Jones 1 Announcements HW 4, Due Wed 6/13 Quiz 5 (15 min): Wed 6/13, Textbook reading: Section 9.1, 9.2 (your one-side

More information

// middle priority ISR Status.flag = 1; Status.y = 6;

// middle priority ISR Status.flag = 1; Status.y = 6; EE445L Spring 2018 Quiz 1A Page 1 of 6 Jonathan W. Valvano First: Last: March 1, 2018, 3:30pm-4:45pm. This is a closed book exam, with one 8.5 by 11-inch crib sheet. You have 75 minutes, so please allocate

More information

Interrupts and Using Them in C

Interrupts and Using Them in C Interrupts and Using Them in C Lecture 10 Embedded Systems 10-1 In These Notes... Interrupts How they work Creating and debugging C interrupt routines Sources M16C Hardware Manual P&P 8.1 and 8.5 Readings

More information

ARM PROGRAMMING. When use assembly

ARM PROGRAMMING. When use assembly ARM PROGRAMMING Bùi Quốc Bảo When use assembly Functions that cannot be implemented in C, such as special register accesses and exclusive accesses Timing-critical routines Tight memory requirements, causing

More information

Interrupts and Low Power Features

Interrupts and Low Power Features ARM University Program 1 Copyright ARM Ltd 2013 Interrupts and Low Power Features Module Syllabus Interrupts What are interrupts? Why use interrupts? Interrupts Entering an Exception Handler Exiting an

More information

ARM Interrupts. EE383: Introduction to Embedded Systems University of Kentucky. James E. Lumpp

ARM Interrupts. EE383: Introduction to Embedded Systems University of Kentucky. James E. Lumpp ARM Interrupts EE383: Introduction to Embedded Systems University of Kentucky James E. Lumpp Includes material from: - Jonathan Valvano, Introduction to ARM Cortex-M Microcontrollers, Volume 1 Ebook, EE

More information

What happens when an HC12 gets in unmasked interrupt:

What happens when an HC12 gets in unmasked interrupt: What happens when an HC12 gets in unmasked interrupt: 1. Completes current instruction 2. Clears instruction queue 3. Calculates return address 4. Stacks return address and contents of CPU registers 5.

More information

Real Time Operating Systems

Real Time Operating Systems Real Time Operating Systems Terminology uc/os-iii, The Real-Time Kernel, or a High Performance, Scalable, ROMable, Preemptive, Multitasking Kernel for Microprocessors, Microcontrollers & DSPs, Book & Board

More information

The ARM Cortex-M0 Processor Architecture Part-1

The ARM Cortex-M0 Processor Architecture Part-1 The ARM Cortex-M0 Processor Architecture Part-1 1 Module Syllabus ARM Architectures and Processors What is ARM Architecture ARM Processors Families ARM Cortex-M Series Family Cortex-M0 Processor ARM Processor

More information

These three counters can be programmed for either binary or BCD count.

These three counters can be programmed for either binary or BCD count. S5 KTU 1 PROGRAMMABLE TIMER 8254/8253 The Intel 8253 and 8254 are Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.

More information

Exceptions and Interrupts ARM Cortex M3

Exceptions and Interrupts ARM Cortex M3 Exceptions and Interrupts ARM Cortex M3 ผศ.ดร. ส ร นทร ก ตต ธรก ล และ อ.สรย ทธ กลมกล อม 1 Introduction! Exception are events! They occur during the execution of the program! ARM exceptions! Exceptions

More information

ARM Cortex core microcontrollers

ARM Cortex core microcontrollers ARM Cortex core microcontrollers 2 nd Cortex-M3 core Balázs Scherer Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2016 The Cortex-M3 core BME-MIT

More information

original M68K requests/priorities Interrupts to execute important code interrupts (n will always be I) I-bits bits in SR accomplish this

original M68K requests/priorities Interrupts to execute important code interrupts (n will always be I) I-bits bits in SR accomplish this Coldfire / M68K Interrupts EE 5 Unit 1b Interrupts Timers Coldfire interrupt architecture is based on original M68K -bit input (IPL[2:]) indicating interrupt requests/priorities = No interrupt t 1-111

More information

Input and Output. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna

Input and Output. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna IIT Patna 1 Input and Output Arijit Mondal Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in Things to consider IIT Patna 2 Mechanical and electrical properties

More information

Interrupt-Driven Input/Output

Interrupt-Driven Input/Output Interrupt-Driven Input/Output Textbook: Chapter 11 (Interrupts) ARM Cortex-M4 User Guide (Interrupts, exceptions, NVIC) Sections 2.1.4, 2.3 Exceptions and interrupts Section 4.2 Nested Vectored Interrupt

More information

Mark Redekopp, All rights reserved. EE 357 Unit 10b. Interrupts Timers

Mark Redekopp, All rights reserved. EE 357 Unit 10b. Interrupts Timers EE 357 Unit 10b Interrupts Timers IPL bits Coldfire / M68K Interrupts Coldfire interrupt architecture is based on original M68K 3-bit input (IPL[2:0]) indicating interrupt requests/priorities 000 = No

More information

Timers and Pulse Accumulator

Timers and Pulse Accumulator 7 7.1 Objectives: Tiva is equipped with six General Purpose Timer Modules named TIMERn. Additionally, each TIMERn consists of two 16 bit timers (A and B). Most GPIO pins can be assigned a TIMERn as an

More information

CPEG300 Embedded System Design. Lecture 6 Interrupt System

CPEG300 Embedded System Design. Lecture 6 Interrupt System CPEG300 Embedded System Design Lecture 6 Interrupt System Hamad Bin Khalifa University, Spring 2018 Correction Lecture 3, page 18: Only direct addressing mode is allowed for pushing or popping the stack:

More information

TI ARM Lab 4 Digilent Orbit Board

TI ARM Lab 4 Digilent Orbit Board TI ARM Lab 4 Digilent Orbit Board National Science Foundation Funded in part, by a grant from the National Science Foundation DUE 1068182 Acknowledgements Developed by Craig Kief, Brian Zufelt, and Jacy

More information

LM3S2D93 ROM USER S GUIDE ROM-LM3S2D93-UG-461. Copyright Texas Instruments Incorporated

LM3S2D93 ROM USER S GUIDE ROM-LM3S2D93-UG-461. Copyright Texas Instruments Incorporated LM3S2D93 ROM USER S GUIDE ROM-LM3S2D93-UG-461 Copyright 2008-2011 Texas Instruments Incorporated Copyright Copyright 2008-2011 Texas Instruments Incorporated. All rights reserved. Stellaris and StellarisWare

More information

Using Input Capture on the 9S12

Using Input Capture on the 9S12 The 9S12 Input Capture Function Huang Sections 8.1-8.5 ECT_16B8C Block User Guide o Interrupts on the 9S12 o Capturing the time of an external event o The 9S12 Input Capture Function o Registers used to

More information

Real Time Embedded Systems. Lecture 10 January 31, 2012 Interrupts

Real Time Embedded Systems.  Lecture 10 January 31, 2012 Interrupts Interrupts Real Time Embedded Systems www.atomicrhubarb.com/embedded Lecture 10 January 31, 2012 Interrupts Section Topic Where in the books Catsoulis chapter 1 (pg 10-12) Simon chapter4 Zilog UM197 (ZNEO

More information

ELC4438: Embedded System Design ARM Cortex-M Architecture II

ELC4438: Embedded System Design ARM Cortex-M Architecture II ELC4438: Embedded System Design ARM Cortex-M Architecture II Liang Dong Electrical and Computer Engineering Baylor University Memory system The memory systems in microcontrollers often contain two or more

More information

CHAPTER 11 INTERRUPTS PROGRAMMING

CHAPTER 11 INTERRUPTS PROGRAMMING CHAPTER 11 INTERRUPTS PROGRAMMING Interrupts vs. Polling An interrupt is an external or internal event that interrupts the microcontroller To inform it that a device needs its service A single microcontroller

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

AGH University of Science and Technology Cracow Department of Electronics

AGH University of Science and Technology Cracow Department of Electronics AGH University of Science and Technology Cracow Department of Electronics Microprocessors laboratory Tutorial 7 Interrupts Author: Paweł Russek http://www.fpga.agh.edu.pl/upt ver. 25/05/16 1/11 1. Introduction

More information

Grundlagen Microcontroller Interrupts. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Interrupts. Günther Gridling Bettina Weiss Grundlagen Microcontroller Interrupts Günther Gridling Bettina Weiss 1 Interrupts Lecture Overview Definition Sources ISR Priorities & Nesting 2 Definition Interrupt: reaction to (asynchronous) external

More information

Microprocessor Architecture

Microprocessor Architecture Microprocessor - 8085 Architecture 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration

More information

EE445L Fall 2014 Final Version A Page 1 of 7

EE445L Fall 2014 Final Version A Page 1 of 7 EE445L Fall 2014 Final Version A Page 1 of 7 Jonathan W. Valvano First: Last: This is the closed book section. You must put your answers in the boxes. When you are done, you turn in the closed-book part

More information

Experiment 3. Interrupts. Hazem Selmi, Ahmad Khayyat

Experiment 3. Interrupts. Hazem Selmi, Ahmad Khayyat Experiment 3 Interrupts Hazem Selmi, Ahmad Khayyat Version 162, 24 February 2017 Table of Contents 1. Objectives........................................................................................

More information

EE 308 Spring Exam 1 Feb. 27

EE 308 Spring Exam 1 Feb. 27 Exam 1 Feb. 27 You will be able to use all of the Motorola data manuals on the exam. No calculators will be allowed for the exam. Numbers Decimal to Hex (signed and unsigned) Hex to Decimal (signed and

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 3: Polling and Interrupts Programmed I/O and DMA Interrupts Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering and Computer Science

More information

11 General-Purpose Timers

11 General-Purpose Timers General-Purpose Timers General-Purpose Timers Programmable timers can be used to count or time external events that drive the Timer input pins. The TM4C23GH6PM General-Purpose Timer Module(GPTM) contains

More information

UBC104 Embedded Systems. Review: Introduction to Microcontrollers

UBC104 Embedded Systems. Review: Introduction to Microcontrollers UBC104 Embedded Systems Review: Introduction to Microcontrollers Processors General purpose processors: 80386 Pentium Core Duo Large number of pins External memory External peripherals * Figure from Intel

More information

PC Interrupt Structure and 8259 DMA Controllers

PC Interrupt Structure and 8259 DMA Controllers ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS 1998/99 WINTER SESSION, TERM 2 PC Interrupt Structure and 8259 DMA Controllers This lecture covers the use of interrupts and the vectored interrupt

More information

Introduction to the MC9S12 Hardware Subsystems

Introduction to the MC9S12 Hardware Subsystems Setting and clearing bits in C Using pointers in C o Program to count the number of negative numbers in an area of memory Introduction to the MC9S12 Hardware Subsystems o The MC9S12 timer subsystem Operators

More information

Topics. Interfacing chips

Topics. Interfacing chips 8086 Interfacing ICs 2 Topics Interfacing chips Programmable Communication Interface PCI (8251) Programmable Interval Timer (8253) Programmable Peripheral Interfacing - PPI (8255) Programmable DMA controller

More information

INTERRUPTS in microprocessor systems

INTERRUPTS in microprocessor systems INTERRUPTS in microprocessor systems Microcontroller Power Supply clock fx (Central Proccesor Unit) CPU Reset Hardware Interrupts system IRQ Internal address bus Internal data bus Internal control bus

More information

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5.

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5. DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6502- MICROPROCESSORS AND MICROCONTROLLERS UNIT I: 8085 PROCESSOR PART A 1. What is the need for ALE signal in

More information

Interrupt/Timer/DMA 1

Interrupt/Timer/DMA 1 Interrupt/Timer/DMA 1 Exception An exception is any condition that needs to halt normal execution of the instructions Examples - Reset - HWI - SWI 2 Interrupt Hardware interrupt Software interrupt Trap

More information

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab By the end of Class Pseudo-code for Lab 1-2 due as part of prelab Homework #5 on website due before next class Outline Introduce Lab 1-2 Counting Timers on C8051 Interrupts Laboratory Worksheet #05 Copy

More information

Embedded Systems and Software

Embedded Systems and Software Embedded Systems and Software Lecture 11 Interrupts Interrupts Slide 1 Interrupts One way to think of interrupts is that they are hardwaregenerated functions calls Internal Hardware When timer rolls over,

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 04 Timer Interrupts Goals: Learn about Timer Interrupts. Learn how to

More information

LM3S5732 ROM USER S GUIDE ROM-LM3S5732-UG-461. Copyright Texas Instruments Incorporated

LM3S5732 ROM USER S GUIDE ROM-LM3S5732-UG-461. Copyright Texas Instruments Incorporated LM3S5732 ROM USER S GUIDE ROM-LM3S5732-UG-461 Copyright 2008-2011 Texas Instruments Incorporated Copyright Copyright 2008-2011 Texas Instruments Incorporated. All rights reserved. Stellaris and StellarisWare

More information

Interrupts Peter Rounce - room 6.18

Interrupts Peter Rounce - room 6.18 Interrupts Peter Rounce - room 6.18 P.Rounce@cs.ucl.ac.uk 20/11/2006 1001 Interrupts 1 INTERRUPTS An interrupt is a signal to the CPU from hardware external to the CPU that indicates than some event has

More information

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text In this lecture embedded C program for interrupt handling

More information

ARM Cortex-M and RTOSs Are Meant for Each Other

ARM Cortex-M and RTOSs Are Meant for Each Other ARM Cortex-M and RTOSs Are Meant for Each Other FEBRUARY 2018 JEAN J. LABROSSE Introduction Author µc/os series of software and books Numerous articles and blogs Lecturer Conferences Training Entrepreneur

More information

Programming Embedded Systems

Programming Embedded Systems Programming Embedded Systems Lecture 5 Interrupts, modes of multi-tasking Wednesday Feb 1, 2012 Philipp Rümmer Uppsala University Philipp.Ruemmer@it.uu.se 1/31 Lecture outline Interrupts Internal, external,

More information

Interrupts. Table 1, Interrupt priorities if external handler is used, 0 - highest. coprocessor number 2 exception/interrupt

Interrupts. Table 1, Interrupt priorities if external handler is used, 0 - highest. coprocessor number 2 exception/interrupt Interrupts General COFFEE core currently supports connecting eight external interrupt sources directly. If coprocessors are not connected the four inputs reserved for coprocessor exception signalling can

More information

Marten van Dijk Department of Electrical & Computer Engineering University of Connecticut

Marten van Dijk Department of Electrical & Computer Engineering University of Connecticut ECE3411 Fall 2016 Lecture 4b. Review Session Marten van Dijk Department of Electrical & Computer Engineering University of Connecticut Email: marten.van_dijk@uconn.edu Copied from Lecture 4b, ECE3411 Fall

More information

EE445L Fall 2014 Final Version A solution Page 1 of 7

EE445L Fall 2014 Final Version A solution Page 1 of 7 EE445L Fall 2014 Final Version A solution Page 1 of 7 Jonathan W. Valvano Solution This is the closed book section. You must put your answers in the boxes. When you are done, you turn in the closed-book

More information

HC12 Built-In Hardware

HC12 Built-In Hardware HC12 Built-In Hardware The HC12 has a number of useful pieces of hardware built into the chip. Different versions of the HC12 have slightly different pieces of hardware. We are using the MC68HC912B32 chip

More information

EE Embedded Systems Design. Lessons Exceptions - Resets and Interrupts

EE Embedded Systems Design. Lessons Exceptions - Resets and Interrupts EE4800-03 Embedded Systems Design Lessons 7-10 - Exceptions - Resets and Interrupts 1 - Exceptions - Resets and Interrupts Polling vs. Interrupts Exceptions: Resets and Interrupts 68HC12 Exceptions Resets

More information

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4 EE445M Midterm Study Guide (Spring 2017) (updated February 25, 2017): Instructions: Open book and open notes. No calculators or any electronic devices (turn cell phones off). Please be sure that your answers

More information

Fredrick M. Cady. Assembly and С Programming forthefreescalehcs12 Microcontroller. шт.

Fredrick M. Cady. Assembly and С Programming forthefreescalehcs12 Microcontroller. шт. SECOND шт. Assembly and С Programming forthefreescalehcs12 Microcontroller Fredrick M. Cady Department of Electrical and Computer Engineering Montana State University New York Oxford Oxford University

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

Marten van Dijk, Syed Kamran Haider

Marten van Dijk, Syed Kamran Haider ECE3411 Fall 2015 Lecture 3b. Timers 0, 1 & 2 Marten van Dijk, Syed Kamran Haider Department of Electrical & Computer Engineering University of Connecticut Email: vandijk, syed.haider@engr.uconn.edu Based

More information

AGH University of Science and Technology Cracow Department of Electronics

AGH University of Science and Technology Cracow Department of Electronics AGH University of Science and Technology Cracow Department of Electronics Microprocessors laboratory Tutorial 7 Interrupts Author: Paweł Russek http://www.fpga.agh.edu.pl/upt ver. 01/07/14 1/12 1. Introduction

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 03 Low Power Mode and Port Interrupts Goals: Bonus: Pre Lab Questions:

More information

ECE/CE 3720: Embedded System Design

ECE/CE 3720: Embedded System Design Basic Components of Input Capture Slide 1 ECE/CE 3720: Embedded System Design Chris J. Myers Lecture 12: Input Capture Slide 3 Basic Principles of Input Capture Basic Principles of Input Capture (cont)

More information

Types of Interrupts:

Types of Interrupts: Interrupt structure Introduction Interrupt is signals send by an external device to the processor, to request the processor to perform a particular task or work. Mainly in the microprocessor based system

More information

Interrupts and Exceptions

Interrupts and Exceptions Interrupts and Exceptions ECE 362 https://engineering.purdue.edu/ee362/ Rick Reading assignment: Reading Assignment STM32F0x1 Family Reference, Chapter 12, pages 217 228, "Interrupts and events" Your textbook,

More information

Lecture test next week

Lecture test next week Lecture test next week Write a short program in Assembler doing. You will be given the print outs of all the assembler programs from the manual You can bring any notes you want Today: Announcements General

More information

The MC9S12 Timer Output Compare Function Making an event happen at specific time on the HC12 The MC9S12 Output Compare Function

The MC9S12 Timer Output Compare Function Making an event happen at specific time on the HC12 The MC9S12 Output Compare Function The MC9S12 Timer Output Compare Function Making an event happen at specific time on the HC12 The MC9S12 Output Compare Function o Registers used to enable the output compare function o Using the MC9S12

More information

Capturing the Time of an External Event Input Capture Subsystem

Capturing the Time of an External Event Input Capture Subsystem Capturing the Time of an External Event Input Capture Subsystem One way to determine the time of an external event is to wait for the event to occur, the read the TCNT register: For example, to determine

More information

32-Bit RISC Microcontroller. TMPM3H Group(2) Reference Manual Exception (EXCEPT-M3H(2)) Revision

32-Bit RISC Microcontroller. TMPM3H Group(2) Reference Manual Exception (EXCEPT-M3H(2)) Revision 2-Bit RISC icrocontroller Reference anual (EXCEPT-(2)) Revision 2.0 2018-07 2018-07-1 1 / 99 Rev. 2.0 2017-2018 Toshiba Electronic Devices & Storage Corporation Contents Preface... 5 Related document...

More information

ECE 362 Experiment 4: Interrupts

ECE 362 Experiment 4: Interrupts ECE 362 Experiment 4: Interrupts 1.0 Introduction Microprocessors consistently follow a straight sequence of instructions, and you have likely only worked with this kind of programming until now. In this

More information

introduction to interrupts

introduction to interrupts introduction to interrupts Geoffrey Brown Chris Haynes Bryce Himebaugh C335 Fall 2013 Overview Why interrupts? Basic interrupt processing Sources of interrupts Handling interrupts Issues with interrupt

More information

UNIT II SYSTEM BUS STRUCTURE 1. Differentiate between minimum and maximum mode 2. Give any four pin definitions for the minimum mode. 3. What are the pins that are used to indicate the type of transfer

More information

LM3S9D81 ROM USER S GUIDE ROM-LM3S9D81-UG-461. Copyright Texas Instruments Incorporated

LM3S9D81 ROM USER S GUIDE ROM-LM3S9D81-UG-461. Copyright Texas Instruments Incorporated LM3S9D81 ROM USER S GUIDE ROM-LM3S9D81-UG-461 Copyright 2008-2011 Texas Instruments Incorporated Copyright Copyright 2008-2011 Texas Instruments Incorporated. All rights reserved. Stellaris and StellarisWare

More information

The MC9S12 Input Capture Function

The MC9S12 Input Capture Function The MC9S12 Input Capture Function The MC9S12 allows you to capture the time an external event occurs on any of the eight Port T PTT pins An external event is either a rising edge or a falling edge To use

More information

Course Introduction. Purpose: Objectives: Content: 27 pages 4 questions. Learning Time: 20 minutes

Course Introduction. Purpose: Objectives: Content: 27 pages 4 questions. Learning Time: 20 minutes Course Introduction Purpose: This course provides an overview of the Direct Memory Access Controller and the Interrupt Controller on the SH-2 and SH-2A families of 32-bit RISC microcontrollers, which are

More information

Interrupts Peter Rounce

Interrupts Peter Rounce Interrupts Peter Rounce P.Rounce@cs.ucl.ac.uk 22/11/2011 11-GC03 Interrupts 1 INTERRUPTS An interrupt is a signal to the CPU from hardware external to the CPU that indicates than some event has occured,

More information

Distributed Real-Time Control Systems. Chapter 10 Real-Time Digital Control

Distributed Real-Time Control Systems. Chapter 10 Real-Time Digital Control Distributed Real-Time Control Systems Chapter 10 Real-Time Digital Control 1 Real-Time Digital Control Hardware Digital Controllers are usually designed as periodic tasks with fixed period and synchronized

More information

8051 Microcontroller Interrupts

8051 Microcontroller Interrupts 8051 Microcontroller Interrupts There are five interrupt sources for the 8051, which means that they can recognize 5 different events that can interrupt regular program execution. Each interrupt can be

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Microcontroller It is essentially a small computer on a chip Like any computer, it has memory,

More information

Input/Output Modes Chapter 8

Input/Output Modes Chapter 8 Input/Output Modes Chapter 8 Microcomputers can communicate with a variety of I/O devices This information can be either data or control Data is usually encoded in numeric or alphanumeric forms such as

More information

Topic 11: Timer ISMAIL ARIFFIN FKE UTM SKUDAI JOHOR

Topic 11: Timer ISMAIL ARIFFIN FKE UTM SKUDAI JOHOR Topic 11: Timer ISMAIL ARIFFIN FKE UTM SKUDAI JOHOR Introduction Timer s objective Timer features Timer Registers - Understand function of each bit Initialization Introduction o In micro-p, we use counter

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Stefan Kowalewski, 4. November 25 Introduction to Embedded Systems Part 2: Microcontrollers. Basics 2. Structure/elements 3. Digital I/O 4. Interrupts 5. Timers/Counters Introduction to Embedded Systems

More information

12. Interrupts and Programmable Multilevel Interrupt Controller

12. Interrupts and Programmable Multilevel Interrupt Controller 12. Interrupts and Programmable Multilevel Interrupt Controller 12.1 Features Short and predictable interrupt response time Separate interrupt configuration and vector address for each interrupt Programmable

More information

MICROPROCESSOR MICROPROCESSOR. From the above description, we can draw the following block diagram to represent a microprocessor based system: Output

MICROPROCESSOR MICROPROCESSOR. From the above description, we can draw the following block diagram to represent a microprocessor based system: Output 8085 SATISH CHANDRA What is a Microprocessor? The word comes from the combination micro and processor. Processor means a device that processes whatever. In this context, processor means a device that processes

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller The 8051, Motorola and PIC families are the 3 leading sellers in the microcontroller market. The 8051 microcontroller was originally developed by Intel in the late 1970 s. Today many

More information

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET 1 SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET Intel 8086/8088 Architecture Segmented Memory, Minimum and Maximum Modes of Operation, Timing Diagram, Addressing Modes, Instruction Set,

More information

CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing. Instructors: Dr. Phillip Jones Dr.

CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing. Instructors: Dr. Phillip Jones Dr. CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing Instructors: Dr. Phillip Jones Dr. Zhao Zhang 1 Announcements Final Projects Projects: Mandatory Demos Deadweek

More information

SECTION 5 RESETS AND INTERRUPTS

SECTION 5 RESETS AND INTERRUPTS SECTION RESETS AND INTERRUPTS Resets and interrupt operations load the program counter with a vector that points to a new location from which instructions are to be fetched. A reset immediately stops execution

More information

Lab 4 Interrupts ReadMeFirst

Lab 4 Interrupts ReadMeFirst Lab 4 Interrupts ReadMeFirst Lab Folder Content 1) ReadMeFirst 2) Interrupt Vector Table 3) Pin out Summary Objectives Understand how interrupts work Learn to program Interrupt Service Routines in C Language

More information