A Bit-Parallel, General Integer-Scoring Sequence Alignment Algorithm

Size: px
Start display at page:

Download "A Bit-Parallel, General Integer-Scoring Sequence Alignment Algorithm"

Transcription

1 A Bit-Parallel, General Integer-Scoring Sequence Alignment Algorithm GARY BENSON, YOZEN HERNANDEZ, & JOSHUA LOVING B I O I N F O R M A T I C S P R O G R A M B O S T O N U N I V E R S I T Y J L O V I N B U. E D U

2 Introduction: Problem Description Input: Sequences X and Y Integer weights M; I; G match; mismatch; indel or gap that define a similarity or distance scoring function S Output: Calculate the global alignment score for X and Y

3 Sequence Y Introduction Global Alignment Needleman-Wunsch Alignment Scoring Matrix Sequence X A G T C A A

4 Introduction A G T C A A Integer Scores

5 Introduction Penalty from beginning A G T C A A

6 Introduction No initial Penalty A G T C A A

7 Needleman-Wunsch Alignment A -5 G -10 T -15 C -20 A -25 A -30

8 Needleman-Wunsch Alignment A -5 2 G -10 T -15 C -20 A -25 A -30

9 Needleman-Wunsch Alignment A G -10 T -15 C -20 A -25 A -30

10 Needleman-Wunsch Alignment A G -10 T -15 C -20 A -25 A -30

11 Needleman-Wunsch Alignment A G -10 T -15 C -20 A -25 A -30

12 Needleman-Wunsch Alignment A G -10 T -15 C -20 A -25 A -30

13 Needleman-Wunsch Alignment A G -10 T -15 C -20 A -25 A -30

14 Needleman-Wunsch Alignment A G -10 T -15 C -20 A -25 A -30

15 Needleman-Wunsch Alignment A G T -15 C -20 A -25 A -30

16 Needleman-Wunsch Alignment A G T -15 C -20 A -25 A -30

17 Needleman-Wunsch Alignment A G T -15 C -20 A -25 A -30

18 Needleman-Wunsch Alignment A G T -15 C -20 A -25 A -30

19 Needleman-Wunsch Alignment A G T -15 C -20 A -25 A -30

20 Needleman-Wunsch Alignment A G T -15 C -20 A -25 A -30

21 Needleman-Wunsch Alignment A G T -15 C -20 A -25 A -30

22 Bit-parallel alignment A -5 G -10 T -15 C -20 A -25 A -30 Integer Scores

23 Bit-parallel alignment A G -10 T -15 C -20 A -25 A -30 Integer Scores

24 Bit-parallel alignment A G T -15 C -20 A -25 A -30 Integer Scores

25 Bit-parallel alignment A G T C -20 A -25 A -30 Integer Scores

26 Bit-parallel alignment A G T C A -25 A -30 Integer Scores

27 Bit-parallel alignment A G T C A A -30 Integer Scores

28 Bit-parallel alignment A G T C A A Integer Scores

29 Cheaper sequencing of DNA means that larger datasets are being generated Motivation Sequence analysis of such large datasets can be accelerated by faster alignment algorithms Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: Accessed June 10, 2013.

30 Earlier Bit-parallel Pattern Matching Algorithms Longest Common Subsequence (LCS) (Allison & Dix, 1986; Crochemore et al, 2001; Hyyro, 2004) Unit-cost edit-distance (Myers, 99; Hyyro et al, 2005) K-differences (agrep; Wu-Manber, 92) Regular expression search (Navarro, 04) Arbitrary weights edit-distance (Bergeron&Hamel, 02)

31 Algorithm Foundation A G T C A A

32 Algorithm Foundation -3-8 A G T C A A

33 Algorithm Foundation A G T C A A

34 Algorithm Foundation H A G V V-21 T NEXT -19 C A A H NEXT

35 Algorithm Foundation Input H H A G V V-21 T V NEXT -19 C A A H NEXT Output

36 Function Table V NEXT output values given V and H input values

37 What is the range of differences?

38 What is the range of differences? Match = 2, Mismatch = -3, Indel = -5

39 What is the range of differences? Match = 2, Mismatch = -3, Indel = -5 Minimum Value = Indel = -5 Maximum Value = Match Indel = 2 - (- 5) = 7

40 Generalized Function Table M = match score I = mismatch score G = indel (gap) penalty

41 Zones in Example Function Table

42 Bit-parallel Representation Bit-vectors: computer words 64 bits long A bit-vector for each possible difference, both horizontally and vertically ( V and H) A set of Match vectors (MatchA, MatchC, MatchG, MatchT in the DNA case) We keep track of match positions because they are a special case in the function table.

43 Example H Bit-vector Storage H values C H Bit-Vectors

44 Example Match Vectors A G T C A A Match Vectors MatchesA MatchesC MatchesT MatchesG

45 Algorithm Start with H values Compute V values Then compute the new H values

46 Algorithm: Example H values C V values A

47 Time Complexity O zn m w where n = Sequence Y m = Sequence X w = length of computer word z = (M 2G + 1)2 (I 2G) 2 2

48 Implementation Python script that generates C code based on input parameters (M; I; G) Will eventually have web page for download of code

49 Experimental Analysis Compared BHL with Wu-Manber K-differences algorithm Unit cost edit distance bit-parallel algorithm Longest Common Subsequence bit-parallel algorithm Needleman-Wunsch dynamic programming algorithm Computed 25 million alignments with each program Each DNA sequence was 63 bases long All programs compiled using GCC, optimization level O3 Computation done on a typical desktop computer

50 Results: Comparison to NW algorithm

51 Results: comparison to bit-parallel algorithms

52 Current and Future Work Implementation for sequences longer than one word Single Instruction Multiple Data (SIMD) implementation BLOSUM and PAM type substitution matrix support General Purpose Graphics Processing Unit (GPGPU) implementation New bit-parallel representations for greater speed and compactness of data

53 Acknowledgements My advisor, Dr. Gary Benson Lab members Yevgeniy Gelfand Yozen Hernandez Funded by the National Science Foundation (NSF)

54 Questions

Fast Parallel Longest Common Subsequence with General Integer Scoring Support

Fast Parallel Longest Common Subsequence with General Integer Scoring Support Fast Parallel Longest Common Subsequence with General Integer Scoring Support Adnan Ozsoy, Arun Chauhan, Martin Swany School of Informatics and Computing Indiana University, Bloomington, USA 1 Fast Parallel

More information

Sequence Comparison: Dynamic Programming. Genome 373 Genomic Informatics Elhanan Borenstein

Sequence Comparison: Dynamic Programming. Genome 373 Genomic Informatics Elhanan Borenstein Sequence omparison: Dynamic Programming Genome 373 Genomic Informatics Elhanan Borenstein quick review: hallenges Find the best global alignment of two sequences Find the best global alignment of multiple

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics Find the best alignment between 2 sequences with lengths n and m, respectively Best alignment is very dependent upon the substitution matrix and gap penalties The Global Alignment Problem tries to find

More information

Programming assignment for the course Sequence Analysis (2006)

Programming assignment for the course Sequence Analysis (2006) Programming assignment for the course Sequence Analysis (2006) Original text by John W. Romein, adapted by Bart van Houte (bart@cs.vu.nl) Introduction Please note: This assignment is only obligatory for

More information

Algorithmic Approaches for Biological Data, Lecture #20

Algorithmic Approaches for Biological Data, Lecture #20 Algorithmic Approaches for Biological Data, Lecture #20 Katherine St. John City University of New York American Museum of Natural History 20 April 2016 Outline Aligning with Gaps and Substitution Matrices

More information

BLAST MCDB 187. Friday, February 8, 13

BLAST MCDB 187. Friday, February 8, 13 BLAST MCDB 187 BLAST Basic Local Alignment Sequence Tool Uses shortcut to compute alignments of a sequence against a database very quickly Typically takes about a minute to align a sequence against a database

More information

Lecture 10. Sequence alignments

Lecture 10. Sequence alignments Lecture 10 Sequence alignments Alignment algorithms: Overview Given a scoring system, we need to have an algorithm for finding an optimal alignment for a pair of sequences. We want to maximize the score

More information

Today s Lecture. Edit graph & alignment algorithms. Local vs global Computational complexity of pairwise alignment Multiple sequence alignment

Today s Lecture. Edit graph & alignment algorithms. Local vs global Computational complexity of pairwise alignment Multiple sequence alignment Today s Lecture Edit graph & alignment algorithms Smith-Waterman algorithm Needleman-Wunsch algorithm Local vs global Computational complexity of pairwise alignment Multiple sequence alignment 1 Sequence

More information

Quiz section 10. June 1, 2018

Quiz section 10. June 1, 2018 Quiz section 10 June 1, 2018 Logistics Bring: 1 page cheat-sheet, simple calculator Any last logistics questions about the final? Logistics Bring: 1 page cheat-sheet, simple calculator Any last logistics

More information

The implementation of bit-parallelism for DNA sequence alignment

The implementation of bit-parallelism for DNA sequence alignment Journal of Physics: Conference Series PPER OPE CCESS The implementation of bit-parallelism for D sequence alignment To cite this article: Setyorini et al 27 J. Phys.: Conf. Ser. 835 24 View the article

More information

Global Alignment Scoring Matrices Local Alignment Alignment with Affine Gap Penalties

Global Alignment Scoring Matrices Local Alignment Alignment with Affine Gap Penalties Global Alignment Scoring Matrices Local Alignment Alignment with Affine Gap Penalties From LCS to Alignment: Change the Scoring The Longest Common Subsequence (LCS) problem the simplest form of sequence

More information

NextGenMap and the impact of hhighly polymorphic regions. Arndt von Haeseler

NextGenMap and the impact of hhighly polymorphic regions. Arndt von Haeseler NextGenMap and the impact of hhighly polymorphic regions Arndt von Haeseler Joint work with: The Technological Revolution Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program

More information

Principles of Bioinformatics. BIO540/STA569/CSI660 Fall 2010

Principles of Bioinformatics. BIO540/STA569/CSI660 Fall 2010 Principles of Bioinformatics BIO540/STA569/CSI660 Fall 2010 Lecture 11 Multiple Sequence Alignment I Administrivia Administrivia The midterm examination will be Monday, October 18 th, in class. Closed

More information

Fast Sequence Alignment Method Using CUDA-enabled GPU

Fast Sequence Alignment Method Using CUDA-enabled GPU Fast Sequence Alignment Method Using CUDA-enabled GPU Yeim-Kuan Chang Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan ykchang@mail.ncku.edu.tw De-Yu

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 04: Variations of sequence alignments http://www.pitt.edu/~mcs2/teaching/biocomp/tutorials/global.html Slides adapted from Dr. Shaojie Zhang (University

More information

Today s Lecture. Multiple sequence alignment. Improved scoring of pairwise alignments. Affine gap penalties Profiles

Today s Lecture. Multiple sequence alignment. Improved scoring of pairwise alignments. Affine gap penalties Profiles Today s Lecture Multiple sequence alignment Improved scoring of pairwise alignments Affine gap penalties Profiles 1 The Edit Graph for a Pair of Sequences G A C G T T G A A T G A C C C A C A T G A C G

More information

Bioinformatics for Biologists

Bioinformatics for Biologists Bioinformatics for Biologists Sequence Analysis: Part I. Pairwise alignment and database searching Fran Lewitter, Ph.D. Director Bioinformatics & Research Computing Whitehead Institute Topics to Cover

More information

On the Efficacy of Haskell for High Performance Computational Biology

On the Efficacy of Haskell for High Performance Computational Biology On the Efficacy of Haskell for High Performance Computational Biology Jacqueline Addesa Academic Advisors: Jeremy Archuleta, Wu chun Feng 1. Problem and Motivation Biologists can leverage the power of

More information

Pairwise alignment II

Pairwise alignment II Pairwise alignment II Agenda - Previous Lesson: Minhala + Introduction - Review Dynamic Programming - Pariwise Alignment Biological Motivation Today: - Quick Review: Sequence Alignment (Global, Local,

More information

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT Asif Ali Khan*, Laiq Hassan*, Salim Ullah* ABSTRACT: In bioinformatics, sequence alignment is a common and insistent task. Biologists align

More information

Acceleration of the Smith-Waterman algorithm for DNA sequence alignment using an FPGA platform

Acceleration of the Smith-Waterman algorithm for DNA sequence alignment using an FPGA platform Acceleration of the Smith-Waterman algorithm for DNA sequence alignment using an FPGA platform Barry Strengholt Matthijs Brobbel Delft University of Technology Faculty of Electrical Engineering, Mathematics

More information

Sequence alignment algorithms

Sequence alignment algorithms Sequence alignment algorithms Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 23 rd 27 After this lecture, you can decide when to use local and global sequence alignments

More information

LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA

LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA Michael Brudno, Chuong B. Do, Gregory M. Cooper, et al. Presented by Xuebei Yang About Alignments Pairwise Alignments

More information

Bioinformatics explained: Smith-Waterman

Bioinformatics explained: Smith-Waterman Bioinformatics Explained Bioinformatics explained: Smith-Waterman May 1, 2007 CLC bio Gustav Wieds Vej 10 8000 Aarhus C Denmark Telephone: +45 70 22 55 09 Fax: +45 70 22 55 19 www.clcbio.com info@clcbio.com

More information

Alignment of Long Sequences

Alignment of Long Sequences Alignment of Long Sequences BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2009 Mark Craven craven@biostat.wisc.edu Pairwise Whole Genome Alignment: Task Definition Given a pair of genomes (or other large-scale

More information

Computational Molecular Biology

Computational Molecular Biology Computational Molecular Biology Erwin M. Bakker Lecture 2 Materials used from R. Shamir [2] and H.J. Hoogeboom [4]. 1 Molecular Biology Sequences DNA A, T, C, G RNA A, U, C, G Protein A, R, D, N, C E,

More information

BLAST: Basic Local Alignment Search Tool Altschul et al. J. Mol Bio CS 466 Saurabh Sinha

BLAST: Basic Local Alignment Search Tool Altschul et al. J. Mol Bio CS 466 Saurabh Sinha BLAST: Basic Local Alignment Search Tool Altschul et al. J. Mol Bio. 1990. CS 466 Saurabh Sinha Motivation Sequence homology to a known protein suggest function of newly sequenced protein Bioinformatics

More information

DNA Alignment With Affine Gap Penalties

DNA Alignment With Affine Gap Penalties DNA Alignment With Affine Gap Penalties Laurel Schuster Why Use Affine Gap Penalties? When aligning two DNA sequences, one goal may be to infer the mutations that made them different. Though it s impossible

More information

Comparison of Sequence Similarity Measures for Distant Evolutionary Relationships

Comparison of Sequence Similarity Measures for Distant Evolutionary Relationships Comparison of Sequence Similarity Measures for Distant Evolutionary Relationships Abhishek Majumdar, Peter Z. Revesz Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln,

More information

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic programming is a group of mathematical methods used to sequentially split a complicated problem into

More information

Mouse, Human, Chimpanzee

Mouse, Human, Chimpanzee More Alignments 1 Mouse, Human, Chimpanzee Mouse to Human Chimpanzee to Human 2 Mouse v.s. Human Chromosome X of Mouse to Human 3 Local Alignment Given: two sequences S and T Find: substrings of S and

More information

Pairwise Sequence Alignment: Dynamic Programming Algorithms. COMP Spring 2015 Luay Nakhleh, Rice University

Pairwise Sequence Alignment: Dynamic Programming Algorithms. COMP Spring 2015 Luay Nakhleh, Rice University Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 - Spring 2015 Luay Nakhleh, Rice University DP Algorithms for Pairwise Alignment The number of all possible pairwise alignments (if

More information

.. Fall 2011 CSC 570: Bioinformatics Alexander Dekhtyar..

.. Fall 2011 CSC 570: Bioinformatics Alexander Dekhtyar.. .. Fall 2011 CSC 570: Bioinformatics Alexander Dekhtyar.. PAM and BLOSUM Matrices Prepared by: Jason Banich and Chris Hoover Background As DNA sequences change and evolve, certain amino acids are more

More information

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations:

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations: Lecture Overview Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating

More information

GPU Accelerated API for Alignment of Genomics Sequencing Data

GPU Accelerated API for Alignment of Genomics Sequencing Data GPU Accelerated API for Alignment of Genomics Sequencing Data Nauman Ahmed, Hamid Mushtaq, Koen Bertels and Zaid Al-Ars Computer Engineering Laboratory, Delft University of Technology, Delft, The Netherlands

More information

B L A S T! BLAST: Basic local alignment search tool. Copyright notice. February 6, Pairwise alignment: key points. Outline of tonight s lecture

B L A S T! BLAST: Basic local alignment search tool. Copyright notice. February 6, Pairwise alignment: key points. Outline of tonight s lecture February 6, 2008 BLAST: Basic local alignment search tool B L A S T! Jonathan Pevsner, Ph.D. Introduction to Bioinformatics pevsner@jhmi.edu 4.633.0 Copyright notice Many of the images in this powerpoint

More information

Sequence Alignment & Search

Sequence Alignment & Search Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating the first version

More information

Accelerating Smith Waterman (SW) Algorithm on Altera Cyclone II Field Programmable Gate Array

Accelerating Smith Waterman (SW) Algorithm on Altera Cyclone II Field Programmable Gate Array Accelerating Smith Waterman (SW) Algorithm on Altera yclone II Field Programmable Gate Array NUR DALILAH AHMAD SABRI, NUR FARAH AIN SALIMAN, SYED ABDUL MUALIB AL JUNID, ABDUL KARIMI HALIM Faculty Electrical

More information

Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 Luay Nakhleh, Rice University

Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 Luay Nakhleh, Rice University 1 Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 Luay Nakhleh, Rice University DP Algorithms for Pairwise Alignment 2 The number of all possible pairwise alignments (if gaps are allowed)

More information

Biological Sequence Matching Using Fuzzy Logic

Biological Sequence Matching Using Fuzzy Logic International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 1 Biological Sequence Matching Using Fuzzy Logic Nivit Gill, Shailendra Singh Abstract: Sequence alignment is the

More information

Sequence comparison: Local alignment

Sequence comparison: Local alignment Sequence comparison: Local alignment Genome 559: Introuction to Statistical an Computational Genomics Prof. James H. Thomas http://faculty.washington.eu/jht/gs559_217/ Review global alignment en traceback

More information

Notes on Dynamic-Programming Sequence Alignment

Notes on Dynamic-Programming Sequence Alignment Notes on Dynamic-Programming Sequence Alignment Introduction. Following its introduction by Needleman and Wunsch (1970), dynamic programming has become the method of choice for rigorous alignment of DNA

More information

Rochester Institute of Technology. Making personalized education scalable using Sequence Alignment Algorithm

Rochester Institute of Technology. Making personalized education scalable using Sequence Alignment Algorithm Rochester Institute of Technology Making personalized education scalable using Sequence Alignment Algorithm Submitted by: Lakhan Bhojwani Advisor: Dr. Carlos Rivero 1 1. Abstract There are many ways proposed

More information

Biostrings. Martin Morgan Bioconductor / Fred Hutchinson Cancer Research Center Seattle, WA, USA June 2009

Biostrings. Martin Morgan Bioconductor / Fred Hutchinson Cancer Research Center Seattle, WA, USA June 2009 Biostrings Martin Morgan Bioconductor / Fred Hutchinson Cancer Research Center Seattle, WA, USA 15-19 June 2009 Biostrings Representation DNA, RNA, amino acid, and general biological strings Manipulation

More information

Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence or library of DNA.

Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence or library of DNA. Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence or library of DNA. Fasta is used to compare a protein or DNA sequence to all of the

More information

Brief review from last class

Brief review from last class Sequence Alignment Brief review from last class DNA is has direction, we will use only one (5 -> 3 ) and generate the opposite strand as needed. DNA is a 3D object (see lecture 1) but we will model it

More information

BGGN 213 Foundations of Bioinformatics Barry Grant

BGGN 213 Foundations of Bioinformatics Barry Grant BGGN 213 Foundations of Bioinformatics Barry Grant http://thegrantlab.org/bggn213 Recap From Last Time: 25 Responses: https://tinyurl.com/bggn213-02-f17 Why ALIGNMENT FOUNDATIONS Why compare biological

More information

TCCAGGTG-GAT TGCAAGTGCG-T. Local Sequence Alignment & Heuristic Local Aligners. Review: Probabilistic Interpretation. Chance or true homology?

TCCAGGTG-GAT TGCAAGTGCG-T. Local Sequence Alignment & Heuristic Local Aligners. Review: Probabilistic Interpretation. Chance or true homology? Local Sequence Alignment & Heuristic Local Aligners Lectures 18 Nov 28, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20 Johnson Hall

More information

EECS 4425: Introductory Computational Bioinformatics Fall Suprakash Datta

EECS 4425: Introductory Computational Bioinformatics Fall Suprakash Datta EECS 4425: Introductory Computational Bioinformatics Fall 2018 Suprakash Datta datta [at] cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/4425 Many

More information

Cache and Energy Efficient Alignment of Very Long Sequences

Cache and Energy Efficient Alignment of Very Long Sequences Cache and Energy Efficient Alignment of Very Long Sequences Chunchun Zhao Department of Computer and Information Science and Engineering University of Florida Email: czhao@cise.ufl.edu Sartaj Sahni Department

More information

One report (in pdf format) addressing each of following questions.

One report (in pdf format) addressing each of following questions. MSCBIO 2070/02-710: Computational Genomics, Spring 2016 HW1: Sequence alignment and Evolution Due: 24:00 EST, Feb 15, 2016 by autolab Your goals in this assignment are to 1. Complete a genome assembler

More information

A Comparison of Seed-and-Extend Techniques in Modern DNA Read Alignment Algorithms

A Comparison of Seed-and-Extend Techniques in Modern DNA Read Alignment Algorithms Delft University of Technology A Comparison of Seed-and-Extend Techniques in Modern DNA Read Alignment Algorithms Ahmed, Nauman; Bertels, Koen; Al-Ars, Zaid DOI 10.1109/BIBM.2016.7822731 Publication date

More information

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota Marina Sirota MOTIVATION: PROTEIN MULTIPLE ALIGNMENT To study evolution on the genetic level across a wide range of organisms, biologists need accurate tools for multiple sequence alignment of protein

More information

Basics of Multiple Sequence Alignment

Basics of Multiple Sequence Alignment Basics of Multiple Sequence Alignment Tandy Warnow February 10, 2018 Basics of Multiple Sequence Alignment Tandy Warnow Basic issues What is a multiple sequence alignment? Evolutionary processes operating

More information

Sequence analysis Pairwise sequence alignment

Sequence analysis Pairwise sequence alignment UMF11 Introduction to bioinformatics, 25 Sequence analysis Pairwise sequence alignment 1. Sequence alignment Lecturer: Marina lexandersson 12 September, 25 here are two types of sequence alignments, global

More information

Dynamic Programming Part I: Examples. Bioinfo I (Institut Pasteur de Montevideo) Dynamic Programming -class4- July 25th, / 77

Dynamic Programming Part I: Examples. Bioinfo I (Institut Pasteur de Montevideo) Dynamic Programming -class4- July 25th, / 77 Dynamic Programming Part I: Examples Bioinfo I (Institut Pasteur de Montevideo) Dynamic Programming -class4- July 25th, 2011 1 / 77 Dynamic Programming Recall: the Change Problem Other problems: Manhattan

More information

Profiles and Multiple Alignments. COMP 571 Luay Nakhleh, Rice University

Profiles and Multiple Alignments. COMP 571 Luay Nakhleh, Rice University Profiles and Multiple Alignments COMP 571 Luay Nakhleh, Rice University Outline Profiles and sequence logos Profile hidden Markov models Aligning profiles Multiple sequence alignment by gradual sequence

More information

Distributed Protein Sequence Alignment

Distributed Protein Sequence Alignment Distributed Protein Sequence Alignment ABSTRACT J. Michael Meehan meehan@wwu.edu James Hearne hearne@wwu.edu Given the explosive growth of biological sequence databases and the computational complexity

More information

An Efficient Parallel Algorithm for Longest Common Subsequence Problem on GPUs

An Efficient Parallel Algorithm for Longest Common Subsequence Problem on GPUs , June 30 - July 2, 2010, London, U.K. An Efficient Parallel Algorithm for Longest Common Subsequence Problem on GPUs Jiaoyun Yang, Yun Xu*, Yi Shang* Abstract Sequence alignment is an important problem

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 16 Dynamic Programming Least Common Subsequence Saving space Adam Smith Least Common Subsequence A.k.a. sequence alignment edit distance Longest Common Subsequence

More information

Bit-Parallel LCS-length Computation Revisited

Bit-Parallel LCS-length Computation Revisited Bit-Parallel LCS-length Computation Revisited Heikki Hyyrö Abstract The longest common subsequence (LCS) is a classic and well-studied measure of similarity between two strings A and B. This problem has

More information

CMSC 423 Fall 2009: Project Specification

CMSC 423 Fall 2009: Project Specification CMSC 423 Fall 2009: Project Specification Introduction The project will consist of four components due throughout the semester (see below for timeline). Basic rules: You are allowed to work in teams of

More information

TABLE OF CONTENTS PAGE TITLE NO.

TABLE OF CONTENTS PAGE TITLE NO. TABLE OF CONTENTS CHAPTER PAGE TITLE ABSTRACT iv LIST OF TABLES xi LIST OF FIGURES xii LIST OF ABBREVIATIONS & SYMBOLS xiv 1. INTRODUCTION 1 2. LITERATURE SURVEY 14 3. MOTIVATIONS & OBJECTIVES OF THIS

More information

DynamicProgramming. September 17, 2018

DynamicProgramming. September 17, 2018 DynamicProgramming September 17, 2018 1 Lecture 11: Dynamic Programming CBIO (CSCI) 4835/6835: Introduction to Computational Biology 1.1 Overview and Objectives We ve so far discussed sequence alignment

More information

Inexact Pattern Matching Algorithms via Automata 1

Inexact Pattern Matching Algorithms via Automata 1 Inexact Pattern Matching Algorithms via Automata 1 1. Introduction Chung W. Ng BioChem 218 March 19, 2007 Pattern matching occurs in various applications, ranging from simple text searching in word processors

More information

ICB Fall G4120: Introduction to Computational Biology. Oliver Jovanovic, Ph.D. Columbia University Department of Microbiology

ICB Fall G4120: Introduction to Computational Biology. Oliver Jovanovic, Ph.D. Columbia University Department of Microbiology ICB Fall 2008 G4120: Computational Biology Oliver Jovanovic, Ph.D. Columbia University Department of Microbiology Copyright 2008 Oliver Jovanovic, All Rights Reserved. The Digital Language of Computers

More information

A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances 1

A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances 1 A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances 1 Heikki Hyyrö Department of Computer and Information Sciences 33014 University of Tampere Finland e-mail: Heikki.Hyyro@uta.fi

More information

SEASHORE / SARUMAN. Short Read Matching using GPU Programming. Tobias Jakobi

SEASHORE / SARUMAN. Short Read Matching using GPU Programming. Tobias Jakobi SEASHORE SARUMAN Summary 1 / 24 SEASHORE / SARUMAN Short Read Matching using GPU Programming Tobias Jakobi Center for Biotechnology (CeBiTec) Bioinformatics Resource Facility (BRF) Bielefeld University

More information

Central Issues in Biological Sequence Comparison

Central Issues in Biological Sequence Comparison Central Issues in Biological Sequence Comparison Definitions: What is one trying to find or optimize? Algorithms: Can one find the proposed object optimally or in reasonable time optimize? Statistics:

More information

Dynamic Programming & Smith-Waterman algorithm

Dynamic Programming & Smith-Waterman algorithm m m Seminar: Classical Papers in Bioinformatics May 3rd, 2010 m m 1 2 3 m m Introduction m Definition is a method of solving problems by breaking them down into simpler steps problem need to contain overlapping

More information

24 Grundlagen der Bioinformatik, SS 10, D. Huson, April 26, This lecture is based on the following papers, which are all recommended reading:

24 Grundlagen der Bioinformatik, SS 10, D. Huson, April 26, This lecture is based on the following papers, which are all recommended reading: 24 Grundlagen der Bioinformatik, SS 10, D. Huson, April 26, 2010 3 BLAST and FASTA This lecture is based on the following papers, which are all recommended reading: D.J. Lipman and W.R. Pearson, Rapid

More information

Pairwise Sequence alignment Basic Algorithms

Pairwise Sequence alignment Basic Algorithms Pairwise Sequence alignment Basic Algorithms Agenda - Previous Lesson: Minhala - + Biological Story on Biomolecular Sequences - + General Overview of Problems in Computational Biology - Reminder: Dynamic

More information

A Design of a Hybrid System for DNA Sequence Alignment

A Design of a Hybrid System for DNA Sequence Alignment IMECS 2008, 9-2 March, 2008, Hong Kong A Design of a Hybrid System for DNA Sequence Alignment Heba Khaled, Hossam M. Faheem, Tayseer Hasan, Saeed Ghoneimy Abstract This paper describes a parallel algorithm

More information

EBI services. Jennifer McDowall EMBL-EBI

EBI services. Jennifer McDowall EMBL-EBI EBI services Jennifer McDowall EMBL-EBI The SLING project is funded by the European Commission within Research Infrastructures of the FP7 Capacities Specific Programme, grant agreement number 226073 (Integrating

More information

As of August 15, 2008, GenBank contained bases from reported sequences. The search procedure should be

As of August 15, 2008, GenBank contained bases from reported sequences. The search procedure should be 48 Bioinformatics I, WS 09-10, S. Henz (script by D. Huson) November 26, 2009 4 BLAST and BLAT Outline of the chapter: 1. Heuristics for the pairwise local alignment of two sequences 2. BLAST: search and

More information

An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST

An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST Alexander Chan 5075504 Biochemistry 218 Final Project An Analysis of Pairwise

More information

Keywords -Bioinformatics, sequence alignment, Smith- waterman (SW) algorithm, GPU, CUDA

Keywords -Bioinformatics, sequence alignment, Smith- waterman (SW) algorithm, GPU, CUDA Volume 5, Issue 5, May 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Accelerating Smith-Waterman

More information

Computational Molecular Biology

Computational Molecular Biology Computational Molecular Biology Erwin M. Bakker Lecture 3, mainly from material by R. Shamir [2] and H.J. Hoogeboom [4]. 1 Pairwise Sequence Alignment Biological Motivation Algorithmic Aspect Recursive

More information

FASTA. Besides that, FASTA package provides SSEARCH, an implementation of the optimal Smith- Waterman algorithm.

FASTA. Besides that, FASTA package provides SSEARCH, an implementation of the optimal Smith- Waterman algorithm. FASTA INTRODUCTION Definition (by David J. Lipman and William R. Pearson in 1985) - Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence

More information

CS313 Exercise 4 Cover Page Fall 2017

CS313 Exercise 4 Cover Page Fall 2017 CS313 Exercise 4 Cover Page Fall 2017 Due by the start of class on Thursday, October 12, 2017. Name(s): In the TIME column, please estimate the time you spent on the parts of this exercise. Please try

More information

Heuristic methods for pairwise alignment:

Heuristic methods for pairwise alignment: Bi03c_1 Unit 03c: Heuristic methods for pairwise alignment: k-tuple-methods k-tuple-methods for alignment of pairs of sequences Bi03c_2 dynamic programming is too slow for large databases Use heuristic

More information

Accelerating InDel Detection on Modern Multi-Core SIMD CPU Architecture

Accelerating InDel Detection on Modern Multi-Core SIMD CPU Architecture Accelerating InDel Detection on Modern Multi-Core SIMD CPU Architecture Da Zhang Collaborators: Hao Wang, Kaixi Hou, Jing Zhang Advisor: Wu-chun Feng Evolution of Genome Sequencing1 In 20032: 1 human genome

More information

GSNAP: Fast and SNP-tolerant detection of complex variants and splicing in short reads by Thomas D. Wu and Serban Nacu

GSNAP: Fast and SNP-tolerant detection of complex variants and splicing in short reads by Thomas D. Wu and Serban Nacu GSNAP: Fast and SNP-tolerant detection of complex variants and splicing in short reads by Thomas D. Wu and Serban Nacu Matt Huska Freie Universität Berlin Computational Methods for High-Throughput Omics

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Sequence Alignment. part 2

Sequence Alignment. part 2 Sequence Alignment part 2 Dynamic programming with more realistic scoring scheme Using the same initial sequences, we ll look at a dynamic programming example with a scoring scheme that selects for matches

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2015 1 Sequence Alignment Dannie Durand Pairwise Sequence Alignment The goal of pairwise sequence alignment is to establish a correspondence between the

More information

BLAST & Genome assembly

BLAST & Genome assembly BLAST & Genome assembly Solon P. Pissis Tomáš Flouri Heidelberg Institute for Theoretical Studies November 17, 2012 1 Introduction Introduction 2 BLAST What is BLAST? The algorithm 3 Genome assembly De

More information

More Dynamic Programming

More Dynamic Programming CS 374: Algorithms & Models of Computation, Fall 2015 More Dynamic Programming Lecture 12 October 8, 2015 Chandra & Manoj (UIUC) CS374 1 Fall 2015 1 / 43 What is the running time of the following? Consider

More information

AlignMe Manual. Version 1.1. Rene Staritzbichler, Marcus Stamm, Kamil Khafizov and Lucy R. Forrest

AlignMe Manual. Version 1.1. Rene Staritzbichler, Marcus Stamm, Kamil Khafizov and Lucy R. Forrest AlignMe Manual Version 1.1 Rene Staritzbichler, Marcus Stamm, Kamil Khafizov and Lucy R. Forrest Max Planck Institute of Biophysics Frankfurt am Main 60438 Germany 1) Introduction...3 2) Using AlignMe

More information

Long Read RNA-seq Mapper

Long Read RNA-seq Mapper UNIVERSITY OF ZAGREB FACULTY OF ELECTRICAL ENGENEERING AND COMPUTING MASTER THESIS no. 1005 Long Read RNA-seq Mapper Josip Marić Zagreb, February 2015. Table of Contents 1. Introduction... 1 2. RNA Sequencing...

More information

BLAST & Genome assembly

BLAST & Genome assembly BLAST & Genome assembly Solon P. Pissis Tomáš Flouri Heidelberg Institute for Theoretical Studies May 15, 2014 1 BLAST What is BLAST? The algorithm 2 Genome assembly De novo assembly Mapping assembly 3

More information

Sequence alignment is an essential concept for bioinformatics, as most of our data analysis and interpretation techniques make use of it.

Sequence alignment is an essential concept for bioinformatics, as most of our data analysis and interpretation techniques make use of it. Sequence Alignments Overview Sequence alignment is an essential concept for bioinformatics, as most of our data analysis and interpretation techniques make use of it. Sequence alignment means arranging

More information

CBMF W4761 Final Project Report

CBMF W4761 Final Project Report CBMF W4761 Final Project Report Christopher Fenton CBMF W4761 8/16/09 Introduction Performing large scale database searches of genomic data is one of the largest problems in computational genomics. When

More information

Highly Scalable and Accurate Seeds for Subsequence Alignment

Highly Scalable and Accurate Seeds for Subsequence Alignment Highly Scalable and Accurate Seeds for Subsequence Alignment Abhijit Pol Tamer Kahveci Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA, 32611

More information

Similarity Searches on Sequence Databases

Similarity Searches on Sequence Databases Similarity Searches on Sequence Databases Lorenza Bordoli Swiss Institute of Bioinformatics EMBnet Course, Zürich, October 2004 Swiss Institute of Bioinformatics Swiss EMBnet node Outline Importance of

More information

Dynamic Programming: Sequence alignment. CS 466 Saurabh Sinha

Dynamic Programming: Sequence alignment. CS 466 Saurabh Sinha Dynamic Programming: Sequence alignment CS 466 Saurabh Sinha DNA Sequence Comparison: First Success Story Finding sequence similarities with genes of known function is a common approach to infer a newly

More information

Parallel Characteristics of Sequence Alignment Algorithms

Parallel Characteristics of Sequence Alignment Algorithms Parallel Characteristics of Sequence Alignment Algorithms Arun I

More information

Applying SIMD Approach to Whole Genome Comparison on Commodity Hardware

Applying SIMD Approach to Whole Genome Comparison on Commodity Hardware Applying SIMD Approach to Whole Genome Comparison on Commodity Hardware Arpith Jacob 1, Marcin Paprzycki 2,3, Maria Ganzha 2,4, and Sugata Sanyal 5 1 Department of Computer Science and Engineering Vellore

More information

Row-wise tiling for the Myers bit-parallel approximate string matching algorithm

Row-wise tiling for the Myers bit-parallel approximate string matching algorithm Row-wise tiling for the Myers bit-parallel approximate string matching algorithm Kimmo Fredriksson Department of Computer Science, PO Box 111, University of Joensuu, FIN-80101 Joensuu kfredrik@cs.joensuu.fi.

More information

Diploma Thesis. Parallelization of Myers Fast Bit- Vector

Diploma Thesis. Parallelization of Myers Fast Bit- Vector Diploma Thesis Parallelization of Myers Fast Bit- Vector Algorithm using GPGPU Generic implementations of Myers Bit- Vector algorithm for approximate string matchings and parallelization using NVidia CUDA

More information