Introduction to Microcomputer Systems Addressing modes

Size: px
Start display at page:

Download "Introduction to Microcomputer Systems Addressing modes"

Transcription

1 Dept. of Computer Science and Engineering Introduction to Microcomputer Systems Overview Addressing mode Source form Abbreviation Description Inherent INST (no externally supplied operands) INH Immediate INST #opr8i or INST #opr16i IMM Operands (if any) are in CPU registers Operand is included in instruction steam; 8-bit or 16- bit size implemented by context Direct INST opr8a DIR Operand in the lower 8-bits of an adress in tghe range $ $00FF Extended INST opr16a EXT Operand is a 16-bit address Relative (5-bit offset) (predecrement) (preincrement) INST rel8 or INST rel16 REL Effective address is the value in PC plus an 8-bit or 16-bit relative offset value INST oprx5,xysp IDX Effective adress is the value in X, Y, SP or PC plus a 5- bit signed constant value INST oprx3,-xys IDX Effective adress is the value in X, Y or SP autodecremented by 1 to 8 INST oprx3,+xys IDX Effective adress is the value in X, Y or SP autoincremented by 1 to 8 CHALMERS UNIVERSITY OF TECHNOLOGY Campus Lindholmen Sida 1 Dept. Of Computer Science and Engineering Visiting address: Hörselgången 11, house Jupiter 4:th floor P.O.Box 8873 SE Göteborg

2 Addressing mode Source form Abbreviation Description (postdecrement) INST oprx3,xys- IDX Effective adress is the value in X, Y or SP. The value is postdecremented by 1 to 8 (postincrement) (accumulator offset) (9-bit offset) (16-bit offset) - indirect (16-bit offset) - indirect (D accumulator offset) INST oprx3,xys+ IDX Effective adress is the value in X, Y or SP. The value is postincremented by 1 to 8 INST abd,xysp IDX Effective adress is the value in X, Y, SP or PC plus thye value in A, B or D INST oprx9,xysp IDX1 Effective adress is the value in X, Y, SP or PC plus a 9- bit signed constant value INST opr16,xysp IDX2 Effective adress is the value in X, Y, SP or PC plus a 16- bit constant value INST [oprx16,xysp] [IDX2] The value in X, Y, SP or PC plus a 16-bit constant offset points to the effective address INST [D,sysp] [D,IDX] The value in X, Y, SP or PC plus the value in D points to the effective address Inherent addressing mode The instructions have no operand or all operands are in the internal registers. The CPU does not need to access any memory locations NOP INX; ;this instruction has no operand ;operand is in CPU register Immediate addressing mode The operands are included in the instruction stream. The pound symbol (#) is used to indicate an immediate addressing mode LDAA #$55 LDX #2034 Direct addressing mode The addressing mode is sometimes called zero-page addressing because it uses a 8-bit address to access addresses in the range $0000 to $00FF LDAA $55 ;load accumulator A from address $0055 page 2

3 STX $AC ;store the value in index register X in address $AC and $AD (since the value in index register X is 16 bits Extended addressing mode In this addressing mode the full 16-bit address of the memory location is used LDAA $1055 ;load accumulator A from address $1055 STX $25AC ;store the value in index register X in address $25AC and $25AD (since the value in index register X is 16 bits Relative addressing mode This mode is used only by branch instructions. Short and long conditional branch instructions use relative addressing mode exclusively, but branching versions of bit manipulation instructions use multiple addressing modes, including relative mode. Short branch instruction contain a signed 8-bit offset (branch step). Long branch instructions contain a signed 16-bit offset (long branch step) BEQ label ;branch to the program line marked by label if zero flag is set, continue with the next instruction otherwise addressing modes There are a number of indexed addressing modes that can be split into the following groups. addressing modes with fixed offset The effective address is the value in the X, Y, SP or PC register plus a 5-, 9- or 16-bit signed constant value contained in the instruction. The instruction does not change the value in the index register. The only difference between the variants is the total size of the opcode for the instruction. The 5-bit version give a range of -16 to +15 from the value in the base index register. The 9-bit version give a range of -256 to +255 from the value in the base index register. The 16-bit version give access to any address in the 64-Kbyte address space. Since the address bus and the offset are both 16 bits it does not matter if the offset value is considered to be signed or unsigned LDAA 0,X STAB -3,Y LDX $20,X ;load accumulator A from the address contained in X ;store accumulator B in the address contained in X minus 3 addresses ;load index register X from the address contained in index register X plus 64 ($20) addresses and from the next consecutive address ((X)+$20):(X)+$20+1) page 3

4 16-bit constant indirect indexed addressing The addressing mode adds a 16-bit instruction-supplied offset to the address in the base index register to form the address of a memory location that contains a pointer to the memory location affected by the instruction. The instruction itself does not point to the address of the memory location to be acted on, but rather to the location of a pointer to the address to be acted on. The square brackets distinguish this addressing mode from 16-bit constant offset indexing LDAA [10,X] ;the instruction first adds the value 10 to the value in X and then a pointer to the memory location to be acted on is fetched memory location pointed at by this sum addressing modes pre-/post decrement/increment In this addressing mode the index register can be automatically decremented or incremented before or after the indexing takes place. The pre-decrement and pre-increment versions adjust the value of the index register before accessing the memory location affected by the instruction. The index register retains the changed value after the instruction executes. Post-decrement and post-increment versions of the addressing mode use the initial value in the index register to access the memory location affected by the instruction, then change the value of the index register. The index register can be decremented or incremented by any integer value in the ranges -8 through -1 or 1 through 8 LDAA 1,-X STX 3,SP+ ;decrement the value in X by one then load accumulator A from the new address in X ;store the value in X at the address pointed at by the stack pointer, and the next address since X is 16 bits, then increase the value of the stack pointer SP by 3 Accumulator offset indexed addressing In this addressing mode the effective address is the sum of the value in the base index register and the unsigned offset in one of the accumulators. The value in the index register itself is not changed. The index register can be X, Y, SP or PC and the accumulator can be either of the 8-bit accumulators (A or B) or the 16-bit D accumulator LDAA B,X ;load accumulator A from the new address formed by the sum of the value in index register X and the value in accumulator B Accumulator D indirect indexed addressing In this addressing mode the value in the D accumulator is added to the value in the base index register to form the address of a memory location that contains a pointer to the mem- page 4

5 ory location affected by the instruction. The instruction operand does not point to the address of the memory location to be acted on, but rather to the location of a pointer to the address to be acted on. The square brackets distinguish this addressing mode from 16-bit constant offset indexing JMP [D,X] ;jump to the address that is stored at the memory location pointed at by the sum of the value in D and the value in X page 5

N bit is set if result of operation in negative (MSB = 1) Z bit is set if result of operation is zero (All bits = 0)

N bit is set if result of operation in negative (MSB = 1) Z bit is set if result of operation is zero (All bits = 0) Addition and Subtraction of Hexadecimal Numbers. Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) bits How the C, V, N and Z bits of the CCR are changed Condition Code Register Bits N, Z,

More information

S12CPUV2. Reference Manual HCS12. Microcontrollers. S12CPUV2/D Rev. 0 7/2003 MOTOROLA.COM/SEMICONDUCTORS

S12CPUV2. Reference Manual HCS12. Microcontrollers. S12CPUV2/D Rev. 0 7/2003 MOTOROLA.COM/SEMICONDUCTORS HCS12 Microcontrollers /D Rev. 0 7/2003 MOTOROLA.COM/SEMICONDUCTORS To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed

More information

A Simple MC9S12 Program

A Simple MC9S12 Program A Simple MC9S12 Program All programs and data must be placed in memory between address 0x1000 and 0x3BFF. For our programs we will put the first instruction at 0x2000, and the first data byte at 0x1000

More information

CPU12 REFERENCE MANUAL

CPU12 REFERENCE MANUAL CPU12 REFERENCE MANUAL Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its

More information

Most of the HC12 s instructions access data in memory There are several ways for the HC12 to determine which address to access

Most of the HC12 s instructions access data in memory There are several ways for the HC12 to determine which address to access HC12 Addressing Modes Instruction coding and execution o Inherent, Extended, Direct, Immediate, Indexed, and Relative Modes o Summary of MC9S12 Addressing Modes o Using X and Y registers as pointers o

More information

Exam I Review February 2017

Exam I Review February 2017 Exam I Review February 2017 Binary Number Representations Conversion of binary to hexadecimal and decimal. Convert binary number 1000 1101 to hexadecimal: Make groups of 4 bits to convert to hexadecimal,

More information

MIGRATING TO THE 68HC12 IN C

MIGRATING TO THE 68HC12 IN C MIGRATING TO THE 68HC12 IN C by Jean-Pierre Lavandier (Cosmic Software) and Greg Viot (Motorola) INTRODUCTION An important design goal of the 68HC12 was to maintain software compatibility with the 68HC11

More information

Addition and Subtraction of Hexadecimal Numbers Simple assembly language programming

Addition and Subtraction of Hexadecimal Numbers Simple assembly language programming Addition and Subtraction of Hexadecimal Numbers Simple assembly language programming o A simple Assembly Language Program o Assembling an Assembly Language Program o Simple 9S12 programs o Hex code generated

More information

Lecture #3 Microcontroller Instruction Set Embedded System Engineering Philip Koopman Wednesday, 20-Jan-2015

Lecture #3 Microcontroller Instruction Set Embedded System Engineering Philip Koopman Wednesday, 20-Jan-2015 Lecture #3 Microcontroller Instruction Set 18-348 Embedded System Engineering Philip Koopman Wednesday, 20-Jan-2015 Electrical& Computer ENGINEERING Copyright 2006-2015, Philip Koopman, All Rights Reserved

More information

Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers

Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers o How to disassemble an MC9S12 instruction sequence o Binary numbers are a code and represent what the programmer intends for the

More information

Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers

Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers o How to disassemble an MC9S12 instruction sequence o Binary numbers are a code and represent what the programmer intends for the

More information

2. Arithmetic Instructions addition, subtraction, multiplication, divison (HCS12 Core Users Guide, Sections 4.3.4, and ).

2. Arithmetic Instructions addition, subtraction, multiplication, divison (HCS12 Core Users Guide, Sections 4.3.4, and ). AS12 Assembler Directives A Summary of 9S12 instructions Disassembly of 9S12 op codes Huang Section 1.8, Chapter 2 MC9S12 V1.5 Core User Guide Version 1.2, Section 12 o A labels is a name assigned the

More information

MC9S12 Assembler Directives A Summary of MC9S12 Instructions Disassembly of MC9S12 op codes. Summary of HCS12 addressing modes ADDRESSING MODES

MC9S12 Assembler Directives A Summary of MC9S12 Instructions Disassembly of MC9S12 op codes. Summary of HCS12 addressing modes ADDRESSING MODES MC9S12 Assembler Directives A Summary of MC9S12 Instructions Disassembly of MC9S12 op codes o Review of Addressing Modes o Which branch instruction to use (signed vs unsigned) o Using X and Y registers

More information

Addressing Mode Description Addressing Mode Source Format Abbrev. Description

Addressing Mode Description Addressing Mode Source Format Abbrev. Description Addressing Mode Description Addressing Mode Source Format Abbrev. Description Inherent INST (no operands) INH Operands (if any) are in CPU registers Immediate INST #opr8i or INST #opr16i IMM Operand is

More information

ME4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 7

ME4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 7 ME4447/6405 Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics Instructor: Professor Charles Ume LECTURE 7 Reading Assignments Reading assignments for this week and next

More information

Addition and Subtraction of Hexadecimal Numbers Simple assembly language programming

Addition and Subtraction of Hexadecimal Numbers Simple assembly language programming Addition and Subtraction of Hexadecimal Numbers Simple assembly language programming o A simple Assembly Language Program o Assembling an Assembly Language Program o Simple 9S12 programs o Hex code generated

More information

Cmpt 150 The Freescale CPU12 March, The Freescale HC12

Cmpt 150 The Freescale CPU12 March, The Freescale HC12 The Freescale HC12 The instruction set architecture that we will use for assembly language programming is the HC12 ISA. Most recently, Freescale Semiconductor manufactured many System on Chip (SoC) implementations

More information

EE 308 Spring The HCS12 has 6 addressing modes

EE 308 Spring The HCS12 has 6 addressing modes The HCS12 has 6 addressing modes Most of the HC12 s instructions access data in memory There are several ways for the HC12 to determine which address to access Effective Address: Memory address used by

More information

Introduction to Programming

Introduction to Programming Introduction to Programming Chapter 2 Microcontrollers Objectives Describe the difference between source code and machine code. Define opcode, operand, and address of an operand. Explain the purpose of

More information

Introduction to Embedded Systems and Chapter 1: Introduction to HCS12/MC9S12. EE383: Introduction to Embedded Systems University of Kentucky

Introduction to Embedded Systems and Chapter 1: Introduction to HCS12/MC9S12. EE383: Introduction to Embedded Systems University of Kentucky Introduction to Embedded Systems and Chapter 1: Introduction to HCS12/MC9S12 EE383: Introduction to Embedded Systems University of Kentucky Samir Rawashdeh With slides based on material by H. Huang Delmar

More information

Computer Organization

Computer Organization Computer Organization (Instruction set Architecture & Assembly Language Programming) KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science

More information

What is an Addressing Mode?

What is an Addressing Mode? Addressing Modes 1 2 What is an Addressing Mode? An addressing mode is a way in which an operand is specified in an instruction. There are different ways in which an operand may be specified in an instruction.

More information

Instruction set of 8085

Instruction set of 8085 Instruction set of 05 /23/2016 ptkarule@rediffmail.com 1 Instruction set of 05 Instruction set is divided into various groups depending on the operations performed: 1. Data transfer 2. rithmetic 3. Logical

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-470/570: Microprocessor-Based System Design Fall 2014.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-470/570: Microprocessor-Based System Design Fall 2014. ECE-47/57: Microprocessor-Based System Design Fall 214 Notes - Unit 3 OVERVIEW OF THE HCS12 MICROCONTROLLER The HCS12 is a family of Freescale microcontrollers (MCUs) targeted to automotive and process

More information

ECE 4510/5530 Microcontroller Applications Chapter 1

ECE 4510/5530 Microcontroller Applications Chapter 1 Microcontroller Applications Chapter 1 Dr. Bradley J. Bazuin Associate Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 1 Overview Basic Computer

More information

ECE331 Handout 3- ASM Instructions, Address Modes and Directives

ECE331 Handout 3- ASM Instructions, Address Modes and Directives ECE331 Handout 3- ASM Instructions, Address Modes and Directives ASM Instructions Functional Instruction Groups Data Transfer/Manipulation Arithmetic Logic & Bit Operations Data Test Branch Function Call

More information

2. ADDRESSING METHODS

2. ADDRESSING METHODS 2 Addressing Methods STUDY MATERIALS ON COMPUTER ORGANIZATION (As per the curriculum of Third semester BSc Electronics of Mahatma Gandh Uniiversity) Compiled by Sam Kollannore U Lecturer in Electronics

More information

Assembly Language Programming of 8085

Assembly Language Programming of 8085 Assembly Language Programming of 8085 Topics 1. Introduction 2. Programming model of 8085 3. Instruction set of 8085 4. Example Programs 5. Addressing modes of 8085 6. Instruction & Data Formats of 8085

More information

ADDRESS GENERATION UNIT (AGU)

ADDRESS GENERATION UNIT (AGU) nc. SECTION 4 ADDRESS GENERATION UNIT (AGU) MOTOROLA ADDRESS GENERATION UNIT (AGU) 4-1 nc. SECTION CONTENTS 4.1 INTRODUCTION........................................ 4-3 4.2 ADDRESS REGISTER FILE (Rn)............................

More information

LECTURE #21: G-CPU & Assembly Code EEL 3701: Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz

LECTURE #21: G-CPU & Assembly Code EEL 3701: Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz LECTURE #21: G-CPU & Assembly Code EEL 3701: Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz G-CPU Important Notes (see Schwartz s lecture for a general overview) - The

More information

OSIAC Read OSIAC 5362 posted on the course website

OSIAC Read OSIAC 5362 posted on the course website OSIAC 5362 Read OSIAC 5362 posted on the course website The Basic Structure of Control Unit m CLK Run/Inhibit Control Step Counter m Preset (to any new state) Reset IR Decoder/Encoder (combinational logic)

More information

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University What is Assembly Language? Assembly language is a programming language

More information

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture)

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture) COSC 243 Instruction Sets And Addressing Modes 1 Overview This Lecture Source Chapters 12 & 13 (10 th editition) Textbook uses x86 and ARM (we use 6502) Next 2 Lectures Assembly language programming 2

More information

Microcontrollers. Microcontroller

Microcontrollers. Microcontroller Microcontrollers Microcontroller A microprocessor on a single integrated circuit intended to operate as an embedded system. As well as a CPU, a microcontroller typically includes small amounts of RAM and

More information

Accumulator and memory instructions 1. Loads, stores, and transfers 2. Arithmetic operations 3. Multiply and divide 4. Logical operations 5. Data test

Accumulator and memory instructions 1. Loads, stores, and transfers 2. Arithmetic operations 3. Multiply and divide 4. Logical operations 5. Data test HC11 Instruction Set Instruction classes 1. 2. 3. 4. Accumulator and Memory Stack and Index Register Condition Code Register Program control instructions 2 1 Accumulator and memory instructions 1. Loads,

More information

Chapter 7 Central Processor Unit (S08CPUV2)

Chapter 7 Central Processor Unit (S08CPUV2) Chapter 7 Central Processor Unit (S08CPUV2) 7.1 Introduction This section provides summary information about the registers, addressing modes, and instruction set of the CPU of the HCS08 Family. For a more

More information

HC11 Instruction Set Architecture

HC11 Instruction Set Architecture HC11 Instruction Set Architecture High-level HC11 architecture Interrupt logic MEMORY Timer and counter M8601 CPU core Serial I/O A/D converter Port A Port B Port C Port D Port E CMPE12 Summer 2009 16-2

More information

HC11 Instruction Set Architecture

HC11 Instruction Set Architecture HC11 Instruction Set Architecture Summer 2008 High-level HC11 architecture Interrupt logic MEMORY Timer and counter M8601 CPU core Serial I/O A/D converter Port A Port B Port C Port D Port E CMPE12 Summer

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats William Stallings Computer Organization and Architecture 8 th Edition Chapter 11 Instruction Sets: Addressing Modes and Formats Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement

More information

MOXSYN. General Description. Features. Symbol

MOXSYN. General Description. Features. Symbol MOXSYN C68MX11 CPU General Description The C68MX11 CPU core is based on the Motorola M68HC11 microcontroller controller, but has an enhanced full 16 bit architecture, thus requiring less clock cycles for

More information

Grundlagen Microcontroller Processor Core. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Processor Core. Günther Gridling Bettina Weiss Grundlagen Microcontroller Processor Core Günther Gridling Bettina Weiss 1 Processor Core Architecture Instruction Set Lecture Overview 2 Processor Core Architecture Computes things > ALU (Arithmetic Logic

More information

We briefly explain an instruction cycle now, before proceeding with the details of addressing modes.

We briefly explain an instruction cycle now, before proceeding with the details of addressing modes. Addressing Modes This is an important feature of computers. We start with the known fact that many instructions have to include addresses; the instructions should be short, but addresses tend to be long.

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

8085 INSTRUCTION SET INSTRUCTION DETAILS

8085 INSTRUCTION SET INSTRUCTION DETAILS 8085 INSTRUCTION SET INSTRUCTION DETAILS DATA TRANSFER INSTRUCTIONS MOV Rd, Rs Copy from source to destination This instruction copies the contents of the source register Rs into the destination register

More information

538 Lecture Notes Week 2

538 Lecture Notes Week 2 538 Lecture Notes Week 2 (Sept. 13, 2017) 1/15 Announcements 538 Lecture Notes Week 2 Labs begin this week. Lab 1 is a one-week lab. Lab 2 (starting next week) is a two-week lab. 1 Answers to last week's

More information

CS/ECE 5780/6780: Embedded System Design

CS/ECE 5780/6780: Embedded System Design CS/ECE 5780/6780: Embedded System Design John Regehr Lecture 2: 68HC12 Architecture & Lab 1 Introduction Duff s Device void foo (int x, int *y, int *z) { switch (x % 8) { case 0: do { *y++ = *z++; case

More information

SECTION 5 ADDRESS GENERATION UNIT AND ADDRESSING MODES

SECTION 5 ADDRESS GENERATION UNIT AND ADDRESSING MODES SECTION 5 ADDRESS GENERATION UNIT AND ADDRESSING MODES This section contains three major subsections. The first subsection describes the hardware architecture of the address generation unit (AGU); the

More information

CHAPTER 8: Central Processing Unit (CPU)

CHAPTER 8: Central Processing Unit (CPU) CS 224: Computer Organization S.KHABET CHAPTER 8: Central Processing Unit (CPU) Outline Introduction General Register Organization Stack Organization Instruction Formats Addressing Modes 1 Major Components

More information

instruction 1 Fri Oct 13 13:05:

instruction 1 Fri Oct 13 13:05: instruction Fri Oct :0:0. Introduction SECTION INSTRUCTION SET This section describes the aressing modes and instruction types.. Aressing Modes The CPU uses eight aressing modes for flexibility in accessing

More information

UNIT-II. Part-2: CENTRAL PROCESSING UNIT

UNIT-II. Part-2: CENTRAL PROCESSING UNIT Page1 UNIT-II Part-2: CENTRAL PROCESSING UNIT Stack Organization Instruction Formats Addressing Modes Data Transfer And Manipulation Program Control Reduced Instruction Set Computer (RISC) Introduction:

More information

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1 CSIS1120A 10. Instruction Set & Addressing Mode CSIS1120A 10. Instruction Set & Addressing Mode 1 Elements of a Machine Instruction Operation Code specifies the operation to be performed, e.g. ADD, SUB

More information

SECTION 6 CENTRAL PROCESSING UNIT

SECTION 6 CENTRAL PROCESSING UNIT SECTION 6 CENTRAL PROCESSING UNIT This section discusses the M68HC11 central processing unit (CPU), which is responsible for executing all software instructions in their programmed sequence. The M68HC11

More information

Instruction Set Instruction set of 8085 can be classified in following groups: Data Transfer Instructions These instructions can perform data transfer operations between Registers of 8085 e.g. MOV 8085

More information

Computer Architecture

Computer Architecture Computer Architecture Lecture 1: Digital logic circuits The digital computer is a digital system that performs various computational tasks. Digital computers use the binary number system, which has two

More information

8051 Overview and Instruction Set

8051 Overview and Instruction Set 8051 Overview and Instruction Set Curtis A. Nelson Engr 355 1 Microprocessors vs. Microcontrollers Microprocessors are single-chip CPUs used in microcomputers Microcontrollers and microprocessors are different

More information

Instruction-set Design Issues: what is the ML instruction format(s) ML instruction Opcode Dest. Operand Source Operand 1...

Instruction-set Design Issues: what is the ML instruction format(s) ML instruction Opcode Dest. Operand Source Operand 1... Instruction-set Design Issues: what is the format(s) Opcode Dest. Operand Source Operand 1... 1) Which instructions to include: How many? Complexity - simple ADD R1, R2, R3 complex e.g., VAX MATCHC substrlength,

More information

Lecture 04: Machine Instructions

Lecture 04: Machine Instructions CSCI2510 Computer Organization Lecture 04: Machine Instructions Ming-Chang YANG mcyang@cse.cuhk.edu.hk Reading: Chap. 2.3~2.4, 2.10~2.11 Recall: Instructions & Program A computer is governed by instructions.

More information

Understand the factors involved in instruction set

Understand the factors involved in instruction set A Closer Look at Instruction Set Architectures Objectives Understand the factors involved in instruction set architecture design. Look at different instruction formats, operand types, and memory access

More information

History of the Microprocessor. ECE/CS 5780/6780: Embedded System Design. Microcontrollers. First Microprocessors. MC9S12C32 Block Diagram

History of the Microprocessor. ECE/CS 5780/6780: Embedded System Design. Microcontrollers. First Microprocessors. MC9S12C32 Block Diagram History of the Microprocessor ECE/CS 5780/6780: Embedded System Design Chris J. Myers Lecture 1: 68HC12 In 1968, Bob Noyce and Gordon Moore left Fairchild Semiconductor and formed Integrated Electronics

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications Q. 3.9 of HW3 EE 37 Microcontroller Applications (a) (c) (b) (d) Midterm Review: Miller Chapter -3 -The Stuff That Might Be On the Exam D67 (e) (g) (h) CEC23 (i) (f) (j) (k) (l) (m) EE37/CC/Lecture-Review

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 16 Control Unit Operations Rev. 3.2 (2009-10) by Enrico Nardelli 16-1 Execution of the Instruction Cycle It has many elementary phases,

More information

Programming the Motorola MC68HC11 Microcontroller

Programming the Motorola MC68HC11 Microcontroller Programming the Motorola MC68HC11 Microcontroller COMMON PROGRAM INSTRUCTIONS WITH EXAMPLES aba Add register B to register A Similar commands are abx aby aba add the value in register B to the value in

More information

Assembly Language Programming of 8085

Assembly Language Programming of 8085 Assembly Language Programming of 8085 1. Introduction A microprocessor executes instructions given by the user Instructions should be in a language known to the microprocessor Microprocessor understands

More information

Processor Design. ELEC 418 Advanced Digital Systems Dr. Ron Hayne

Processor Design. ELEC 418 Advanced Digital Systems Dr. Ron Hayne Processor Design ELEC 418 Advanced Digital Systems Dr. Ron Hayne 68HC11 Programming Model Motorola 68HC11 Microcomputer (CISC) 7 A 0 7 B 0 8-bit Accumulators A & B 15 D 0 16-bit Double Accumulator D 15

More information

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Lecture Overview AVR ISA AVR Instructions & Programming (I) Basic construct implementation 2 Atmel AVR 8-bit RISC architecture

More information

(2) Explain the addressing mode of OR What do you mean by addressing mode? Explain diff. addressing mode for 8085 with examples.

(2) Explain the addressing mode of OR What do you mean by addressing mode? Explain diff. addressing mode for 8085 with examples. (1) Explain instruction format and Opcode format of 8085 μp with example. OR With help of examples, explain the formation of opcodes of 8085 OR What is an instruction? List type of instruction based on

More information

3. (3) Convert the following CUSP instruction into the appropriate bit pattern: ADS+! $103

3. (3) Convert the following CUSP instruction into the appropriate bit pattern: ADS+! $103 1. Given the binary bit string 1 0 1 0 1 1 1 (1) What is the Octal representation of this number? (1) What is the Hex representation of this number? What decimal number does it represent if it is: (1)

More information

Chapter 3 Structured Program Development in C Part II

Chapter 3 Structured Program Development in C Part II Chapter 3 Structured Program Development in C Part II C How to Program, 8/e, GE 2016 Pearson Education, Ltd. All rights reserved. 1 3.7 The while Iteration Statement An iteration statement (also called

More information

Lecture 6 Assembly Programming: Branch & Iteration

Lecture 6 Assembly Programming: Branch & Iteration CPE 390: Microprocessor Systems Spring 2018 Lecture 6 Assembly Programming: Branch & Iteration Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ

More information

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Lecture Overview AVR ISA AVR Instructions & Programming (I) Basic construct implementation 2 Atmel AVR 8-bit RISC architecture

More information

TYPES OF INTERRUPTS: -

TYPES OF INTERRUPTS: - There are 3 types of interrupts. TYPES OF INTERRUPTS: - External Interrupts. Internal Interrupts. Software interrupts. Hardware Interrupts (1) External interrupts come from I/O devices, from a timing device

More information

CSCE 5610: Computer Architecture

CSCE 5610: Computer Architecture HW #1 1.3, 1.5, 1.9, 1.12 Due: Sept 12, 2018 Review: Execution time of a program Arithmetic Average, Weighted Arithmetic Average Geometric Mean Benchmarks, kernels and synthetic benchmarks Computing CPI

More information

INSTRUCTION SET OF 8085

INSTRUCTION SET OF 8085 INSTRUCTION SET OF 8085 Instruction Set of 8085 An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The entire group of instructions that a microprocessor

More information

Introduction to Embedded Systems. Some Nagging

Introduction to Embedded Systems. Some Nagging Introduction to Embedded Systems CS/ECE 6780/5780 Al Davis Today s topics: some logistics nagging assembly language programming 1 CS 5780 Some Nagging Apparently necessary several students do not yet have

More information

Microprocessors 1. The 8051 Instruction Set. Microprocessors 1 1. Msc. Ivan A. Escobar Broitman

Microprocessors 1. The 8051 Instruction Set. Microprocessors 1 1. Msc. Ivan A. Escobar Broitman Microprocessors 1 The 8051 Instruction Set Microprocessors 1 1 Instruction Groups The 8051 has 255 instructions Every 8-bit opcode from 00 to FF is used except for A5. The instructions are grouped into

More information

Microcontroller Intel [Instruction Set]

Microcontroller Intel [Instruction Set] Microcontroller Intel 8051 [Instruction Set] Structure of Assembly Language [ label: ] mnemonic [operands] [ ;comment ] Example: MOV R1, #25H ; load data 25H into R1 2 8051 Assembly Language Registers

More information

EXPERIMENT NO. 1 THE MKT 8085 MICROPROCESSOR TRAINER

EXPERIMENT NO. 1 THE MKT 8085 MICROPROCESSOR TRAINER OBJECT: EXPERIMENT NO. 1 THE MKT 8085 MICROPROCESSOR TRAINER To understand the structure and operating instruction of the microprocessor trainer. INTRODUCTION: The MKT 8085 is a single-board microcomputer,

More information

AVR ISA & AVR Programming (I)

AVR ISA & AVR Programming (I) AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo Week 1 1 Lecture Overview AVR ISA AVR Instructions & Programming (I) Basic construct implementation Week 1 2 1 Atmel AVR 8-bit

More information

Computer System Architecture

Computer System Architecture CSC 203 1.5 Computer System Architecture Department of Statistics and Computer Science University of Sri Jayewardenepura Addressing 2 Addressing Subject of specifying where the operands (addresses) are

More information

68HC11 PROGRAMMER'S MODEL

68HC11 PROGRAMMER'S MODEL 8H11 PROGRMMER'S MODEL s (,, and D) s and are general-purpose 8-bit accumulators used to hold operands and results of arithmetic calculations or data manipulations. Some instructions treat the combination

More information

Computer Architecture and Organization. Instruction Sets: Addressing Modes and Formats

Computer Architecture and Organization. Instruction Sets: Addressing Modes and Formats Computer Architecture and Organization Instruction Sets: Addressing Modes and Formats Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack Immediate Addressing

More information

Mark II Aiken Relay Calculator

Mark II Aiken Relay Calculator Introduction to Embedded Microcomputer Systems Lecture 6.1 Mark II Aiken Relay Calculator 2.12. Tutorial 2. Arithmetic and logical operations format descriptions examples h 8-bit unsigned hexadecimal $00

More information

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller of 8085 microprocessor 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration 8-bit

More information

CS401 - Computer Architecture and Assembly Language Programming Glossary By

CS401 - Computer Architecture and Assembly Language Programming Glossary By CS401 - Computer Architecture and Assembly Language Programming Glossary By absolute address : A virtual (not physical) address within the process address space that is computed as an absolute number.

More information

CPU Structure and Function

CPU Structure and Function CPU Structure and Function Chapter 12 Lesson 17 Slide 1/36 Processor Organization CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data Lesson 17 Slide 2/36 CPU With Systems

More information

The 6502 Instruction Set

The 6502 Instruction Set The 6502 Instruction Set Load and Store Group LDA Load Accumulator N,Z LDX Load X Register N,Z LDY Load Y Register N,Z STA Store Accumulator STX Store X Register STY Store Y Register Arithmetic Group ADC

More information

Due Monday, February 21. EECC550 - Shaaban. MicroTiger executable: microtiger-student.exe Required program support DLLs:

Due Monday, February 21. EECC550 - Shaaban. MicroTiger executable: microtiger-student.exe Required program support DLLs: Microprogramming Project You are to write and submit a microprogram to interpret the following 8-bit accumulatorbased target machine instruction set (ISA) for a multicycle CPU design with a given datapath

More information

CS3350B Computer Architecture Quiz 3 March 15, 2018

CS3350B Computer Architecture Quiz 3 March 15, 2018 CS3350B Computer Architecture Quiz 3 March 15, 2018 Student ID number: Student Last Name: Question 1.1 1.2 1.3 2.1 2.2 2.3 Total Marks The quiz consists of two exercises. The expected duration is 30 minutes.

More information

Programming of 8085 microprocessor and 8051 micro controller Study material

Programming of 8085 microprocessor and 8051 micro controller Study material 8085 Demo Programs Now, let us take a look at some program demonstrations using the above instructions Adding Two 8-bit Numbers Write a program to add data at 3005H & 3006H memory location and store the

More information

Lecture 4: Instruction Set Architecture

Lecture 4: Instruction Set Architecture Lecture 4: Instruction Set Architecture ISA types, register usage, memory addressing, endian and alignment, quantitative evaluation Reading: Textbook (5 th edition) Appendix A Appendix B (4 th edition)

More information

Addressing Modes. To review data transfer instructions and applying the more advanced addressing modes.

Addressing Modes. To review data transfer instructions and applying the more advanced addressing modes. Addressing Modes Aims To review 68000 data transfer instructions and applying the more advanced addressing modes. Intended Learning Outcomes At the end of this module, students t should be able to Review

More information

Instruction Set Principles and Examples. Appendix B

Instruction Set Principles and Examples. Appendix B Instruction Set Principles and Examples Appendix B Outline What is Instruction Set Architecture? Classifying ISA Elements of ISA Programming Registers Type and Size of Operands Addressing Modes Types of

More information

The Motorola 68HC11 Instruc5on Set

The Motorola 68HC11 Instruc5on Set The Motorola 68HC11 Instruc5on Set Some Defini5ons A, B * accumulators A and B D * double accumulator (A + B) IX, IY * index registers X and Y SP * stack pointer M * some memory loca5on opr * an operand

More information

Addressing Modes. Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack

Addressing Modes. Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack Addressing Modes Addressing Modes and Formats Nizamettin AYDIN naydin@yildiz.edu.tr http://www.yildiz.edu.tr/~naydin http://akademik.bahcesehir.edu.tr/~naydin Immediate Direct Indirect Register Register

More information

SECTION 5 PROGRAM CONTROL UNIT

SECTION 5 PROGRAM CONTROL UNIT SECTION 5 PROGRAM CONTROL UNIT MOTOROLA PROGRAM CONTROL UNIT 5-1 SECTION CONTENTS SECTION 5.1 PROGRAM CONTROL UNIT... 3 SECTION 5.2 OVERVIEW... 3 SECTION 5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE...

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

Chapter 9. Programming Framework

Chapter 9. Programming Framework Chapter 9 Programming Framework Lesson 1 Registers Registers Pointers Accumulator Status General Purpose Outline CPU Registers Examples 8-bitA (Accumulator) Register 8-bit B Register 8-bitPSW (Processor

More information

A. CPU INSTRUCTION SET SUMMARY

A. CPU INSTRUCTION SET SUMMARY A. CPU INSTRUCTION SET SUMMARY This appendix summarizes the CPU instruction set. Table A-1 is a matrix of CPU instructions and addressing modes arranged by operation code. Table A-2 lists the CPU instruction

More information