Read-Out Driver (ROD) and Data Challenges

Size: px
Start display at page:

Download "Read-Out Driver (ROD) and Data Challenges"

Transcription

1 Read-Out Driver (ROD) and Data Challenges SLUO LHC Workshop 17 July, 2009 SLAC

2 Outline The slhc Data Challenge Generic DAQ Building Blocks Current Installation RCE Training Workshop Looking Ahead Reconfigurable Cluster Element (RCE) Cluster Interconnect (CI) The ATCA Packaging Standard The RCE/CIM Test Platform ATLAS Read-Out Bandwidth Requirements for the Phase II Upgrade A Hypothetical 48-Channel Read Out Module Bandwidth Projections Summary 2

3 Upgrade Read-Out Challenge Super LHC (slhc) The ATLAS Phase-II Upgrade Implies: All-new detector front-end electronics All-new Read-Out System... Read-Out Demands are Formidable... Aims at 10x luminosity increase to 1035 cm-2s-1 Expect 400 interactions per bunch crossing (every 50 ns) All-silicon tracker will have 2x the area and 18x the data rate compared to current system LAr and Tile Calorimeter aim to read out every bunch crossing... but the Concrete Path is yet far from Clear 3

4 DAQ Upgrade R&D One R&D path towards a significantly improved DAQ readout architecture and bandwidth has started at SLAC Based on experience from other experiments Developed by Mike Huffer and colleagues Uses a modular design of three fundamental building blocks May replace and combine existing ROD+ROS functionality LSST, LCLS, PetaCache Also addresses concern with many flavors of RODs We aim to leverage on this generic high-performance DAQ research to explore future DAQ architectures for the ATLAS Phase-II upgrade 4

5 Example: the LAr Challenge ROS For each L1 accept, samples of the signal (between 3 and 32) are digitized in the FEB and transmitted to the ROD The ROD calculates energy using optimal filtering coefficients E = ai (Si pedestal) i=1..5 If E>threshold, also time and pulse quality 5 samples 0.5" 5

6 Current LAr Bandwidth Present System There are 192 ROD boards in 16 crates Each ROD is connected to 8 Front-End Boards (FEB) by optical fibers (160 MB/s S-Link) Each FEB processes 128 detector channels Input Input link of 160 MB/s allows 5 samples at 100 khz L1 rate Total ROD input bandwidth is ~ 1560 Gb/s 128 channels x 16 bits x 5 samples x 100 khz = 128 MB/s 1524 FEB x 128 MB/s per FEB = 195 GB/s Output Calculation for 5 samples is done in < 10 us, so no limitation 4 output links of 160 MB/s connect each ROD to the Read-OutSystem downstream (1 output for 2 inputs) Data needs to be reduced by a factor of 2 to sustain input rate 6

7 Upgraded LAr Front-End New LAr Front-End Board would digitize and transmit data of every bunch crossing from its 128 channels at 40 MHz 128 channels x 40 MHz x 16 bits/channel = 82 Gb/s Gb/s with 8b/10b encoding overhead Entire LAr: 1524 FEB * Gb/s > 150 Tb/s Energy calculation and L1 trigger sums would be performed at bunch crossing rate This bandwidth is the equivalent of streaming 40,000 uncompressed HDTV movies at once Analog trigger towers to be replaced with digital computation Finer granularity, added flexibility from decoupling L1 and FEB Such an approach will require (Extremely) high-bandwidth I/O, low latency Computational capability Interconnect capability 7

8 Generic DAQ Building Blocks 8

9 Three Building Block Concepts Computational Elements System-On-Chip technology Virtex 4, 5 & 6 Mechanism to Connect Together these Elements Must be low-cost $$$, footprint, power Must support variety of computational models Must have both flexible and performant I/O The Reconfigurable Cluster Element (RCE) based on: The Must be low-cost The Cluster Must provide low-latency/high bandwidth I/O Interconnect (CI) Must be based on commodity (industry) protocol based on: 10 Gb Ethernet Must support a variety of interconnect topologies switching Hierarchical, peer-to-peer, fan-in & fan-out Packaging Solution for Both Element and Interconnect Must provide high availability Must allow scaling Must support different physical I/O interfaces Preferably based on a commercial standard ATCA: Crate based Serial backplane 9

10 (Reconfigurable) Cluster Element (RCE) Combinatoric Logic reset & bootstrap options MGTs DSP tiles DX Ports DSP tiles Core Boot Options 450 MHZ PPC-405 Cross-Bar Processor Combinatoric Logic DSP tiles Memory Subsystem 512 MByte RLDRAM-II Combinatoric Logic Configuration 32 MByte Flash DX Ports Resources Combinatoric Logic MGTs DSP tiles 10

11 Software & Development Cross-Development GNU cross-development environment (C & C++) Remote (network) GDB debugger Network console Operating System Support Bootstrap loader Open-Source Real-Time Kernel (RTEMS) POSIX-compliant interfaces Standard IP network stack Exception handling support Object-Oriented Emphasis Class libraries (C++) Plug-in support Configuration interface 11

12 Resources Multi-Gigabit Transceivers (MGTs) Up to 12 channels of Each channel can operate up to 6.5 Gb/s Channels may be bound together for greater aggregate speed Combinatoric Logic SER/DES Input/output buffering Clock recovery 8b/10b encoder/decoder 64b/66b encoder/decoder Gates Flip-flops (block RAM) I/O pins DSP Support Contains up to 192 Multiple-Accumulate-Add (MAC) units 12

13 Plug-ins PGP plug-in (3.125 Gb/s) Ethernet MAC plug-in XAUI (4 x Gb/s) Boot Options 450 MHZ PPC-405 Processor Cross-Bar Memory Subsystem 512 MByte RLDRAM-II Configuration 32 MByte Flash 13 14

14 The Cluster Interconnect (CI) Q0 Even side Q1 10-GE L2 switch Management bus 10-GE L2 switch Odd side RCE Q2 Q3 Based on two Fulcrum FM224s 24-port 10-GE switch Is an ASIC (packaging in 1433-ball BGA) 10-GE XAUI interface, however, supports multiple speeds 100-BaseT, 1-GE, and 2.5 Gb/s Less than 24 Watts at full capacity Cut-through architecture (packet ingress/egress < 200 ns) Full Layer-2 functionality (VLAN, multiple spanning tree etc.) Configuration can be managed or unmanaged 14

15 RCE Board + RTM (Block Diagram) P3 RCE MFD slice0 slice1 E0 slice2 fabric slice3 E1 flash memory Fiber-optic transceivers P2 slice4 E1 slice5 base slice6 E0 slice7 MFD RCE P3 Payload RTM 15

16 RCE Board + RTM transceivers RTM Zone 1 (power) Zone 2 RCE Zone 3 Media Slice controller Media Carrier with flash (1 TB) 16

17 Cluster Interconnect Board + RTM P3 XFP XFP XFP (fabric) 1-GE 10-GE XFP Q0 CI 10-GE (base) XFP P2 base 1-GE (base) 10-GE (fabric) XFP Q2 fabric MFD 10-GE XFP Q1 Q3 XFP XFP XFP P3 Payload RTM 17

18 CIM Board and RTM RTM XFP Zone 1 10 GE switch Zone 3 1 GE CI RCE XFP 18

19 RCE Development Lab 19

20 Networking Setup Two isolated Networks One public/one private Infrastructure server and all development servers are dual-homed ATCA crates only visible on private subnet 20

21 RCE/CIM Development Platform CERN Bldg 32 Development/Test Machines RCE/CIM ATCA Crates 2x 1-GE NIC DAQ Switch 48x1GE + 2x10GE 2x Dual-3GHz Xeon GPN Switch 48x1GE Infrastructure Server for DHCP, DDNS NFS, NTP HP ProCurve 3500yl 2x 10GE X2 SR PowerEdge

22 RCE Training Workshop Took place at CERN on June 15 & 16 Tutorials, Demonstrations Discussion Towards Future Collaborations Hands-On Session 33 participants 18 people requested accounts Everyone learned to program and execute Hello World! Some learned quite a bit more than that... After the Workshop Accounts are still in use 12 RCEs can be used independently Contact me if you are interested in using one This training focused specifically on software Will hold a future workshop on FPGA firmware 22

23 Case Study: Pixel FE Calibration Current ATLAS Setup Martin Kocian's Setup Pixel FE Digital Test was ported from Pixel ROD to the RCE Modified DSP code runs on PowerPC processor Controlled by a linux host that communicates with the RCE Front-end communication through fiber at Gb/s Runs successfully... 23

24 Pixel FE Digital Test on the RCE Pixel Digital Test runs on the RCE Martin ran his setup in front of the workshop audience This is a concrete example of replacing the BOC/ROD/SBC(VME) chain with RTM/RCE/CIM(ATCA) and a Linux host The original DSP code could be ported without major changes finished running... One major complication was byteswapping between PowerPC (bigendian) and DSP (little-endian) This example focused on preserving functionality Future test cases will explore & compare bandwidth 24

25 More Information RCE Training Workshop Page Links to workshop presentations on e.g. (cross-)development cycle, RTEMS, class libraries and APIs, code examples RCE Lab TWiki Description and setup of the RCE lab infrastructure, host names, instructions, external material, e.g., ATCA manuals etc. RCE High Lumi Mailing List Discussions on Phase II upgrade studies using the RCE platform, announcements of future workshops 25

26 A Hypothetical 48-Channel Read-Out Module for ATLAS 26

27 Hypothetical 48-Channel Read-Out Module From detector FEE SNAP-12 xmt rcv gb/s x4 xmt rcv xmt rcv xmt GBT plug-in rcv Rear Transition Module P3 Cluster Elements x 12 Ethernet MAC plug-in 10-GE XAUI TTC fanout CIM switch management Synchronization clock interface Rainer Bartoldus Introduction and Overview fabric 10-GE x 4 ROM P2 ROC backplane base 1-GE x

28 Hypothetical Read-Out Crate (ROC) To L2 & Event Building To monitoring/control 10-GE x 12 From CTP Base Fabric Fabric Base Rear Transition Module Rear Transition Module P3 P3 SNAP-12 CIM TTC fanout TTC fanout switch management switch management CIM Backplane 10-GE x2 ROMs 1-GE Shelf Management SLUO To LHC Workshop, 17 July 2009 monitoring & control 28 28

29 Current (Future) RCE Bandwidth Future ROM Board Assume to be able to host 12 RCEs in 6 FPGAs RTM Back Panel (ATCA board: 322mm high) Going from XFP to Snap-12 (~15 mm) should fit 2x8x12 fibers, pairs of one up and one down, or 96 detector channels GBT at 5 GHz delivers 3.2 Gb/s usable bandwidth (at 10 GHz may hope for 6.4 Gb/s?) ATCA Zone 3 Connector 307 Gb/s (614 Gb/s) per RTM Can go up to 400x2 pairs and run 3 Gb/s per pair today (possibly 10 Gb/s in the future) so not a bottleneck RCE/ROM Input Four MGT lanes per RCE, 6.8 Gb/s today (10 Gb/s in the future) 27 Gb/s (40 Gb/s) per RCE 326 Gb/s (480 Gb/s) per ROM Matches today's GBT rates (would be limiting factor in the future) 29

30 Current (Future) RCE Output RCE Processing Power Implementation dependent, and on how much can be offloaded to DSPs or gates RCE Output Four lanes of Gb/s MGT for 10 Gb/s (10 GE) Gb/s per RCE or Gb/s per ROM might be a good guess, which matches the input bandwidth 1/4 to 1/3 of full input rate ROM Crate (ROC) Output ROM output is 2 x 10 Gb/s for each star 40 Gb/s per ROM on dual star 15 % of L1 rate for silicon tracker with in:out = 1:1 full L1 rate for calorimeters Each star supports up to 6 boards 240 Gb/s per ROC 30

31 Future DAQ Plant on a Napkin Balance of Real Estate and Throughput For silicon tracker may not push GBT beyond 3.2 Gb/s and RTM to full density but rather add more ROMs to scale to more than 15% L1 accepts for L2 For calorimeter, can minimize plant size while still easily serving full rate of L1 For muon system, might need to scale for computational power LAr ROMs need only Gb/s per FEB for 5 samples at 100 khz Input 1524 FEBs of 102 Gb/s each; at 6.4 Gb/s GBT this is 16 fibers per FEB or 6 FEBs per 96-channel ROM or 254 ROMs Pixel ROMs slhc Pixel has 18x data rate of current detector with ~800 fibers of 3.2 Gb/s With 48 fibers per ROM (half) one has an 18 ROMs system that could output 20% of the L1 accepts Compare that to current 134 ROD plus 12 ROS system 31

32 Summary We have started to explore a new generation DAQ platform Strategy is based on the idea of modular building blocks Architecture is now relatively mature Inexpensive computational element (the RCE) Interconnect mechanism (the CI) Industry standard packaging (ATCA) Both types of demo boards (and corresponding RTMs) functional RTEMs ported and operating Network stack fully tested and functional Performance and scaling meet expectations Documentation is a work-in-progress This technology strongly leverages off industry innovation System-On-Chip High speed serial transmission Low-cost, small footprint, high-speed switching (10 GE) Packaging standardization (serial backplanes and RTM) 32

33 Conclusions Gained experience with these innovations will itself be valuable This technology offers a ready-today vehicle to explore both alternate architectures and different performance regimes Test platforms exist at SLAC and now also at CERN with RCE/CIM building blocks mounted on prototype ATCA boards Workshop material is available that gives a tutorial of the platform with ready-to-use examples As an example, the Pixel FE test was successfully run on the RCE Back of the envelope calculations indicate that a system made of these building blocks could meet the ATLAS phase II upgrade requirements Teststands are available at SLAC and at CERN and everybody is welcome to explore! 33

34 Extra Material 34

35 Gigabit Glossary XAUI (10 Gigabit Attachment Unit Interface) - standard for extending the physical separation possible in connecting full duplex 10 GE ports on a printed circuit board XFP (10 Gigabit Small Form Factor Pluggable) hot-swappable, protocol-independent optical transceiver 10 GE 10 Gigabit (per second) Ethernet IEEE standard MGT Multi-Gigabit Transceivers GBT (Gigabit Bi-Directional Trigger and Data Link) radiation hard optical link, high-bandwidth & error correction SNAP Channel snap-on pluggable parallel optical transceiver module 35

LHC Detector Upgrades

LHC Detector Upgrades Su Dong SLAC Summer Institute Aug/2/2012 1 LHC is exceeding expectations in many ways Design lumi 1x10 34 Design pileup ~24 Rapid increase in luminosity Even more dramatic pileup challenge Z->µµ event

More information

Data Acquisition. Amedeo Perazzo. SLAC, June 9 th 2009 FAC Review. Photon Controls and Data Systems (PCDS) Group. Amedeo Perazzo

Data Acquisition. Amedeo Perazzo. SLAC, June 9 th 2009 FAC Review. Photon Controls and Data Systems (PCDS) Group. Amedeo Perazzo Data Acquisition Photon Controls and Data Systems (PCDS) Group SLAC, June 9 th 2009 FAC Review 1 Data System Architecture Detector specific Photon Control Data Systems (PCDS) L1: Acquisition Beam Line

More information

RT2016 Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

RT2016 Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters RT2016 Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters Nicolas Chevillot (LAPP/CNRS-IN2P3) on behalf of the ATLAS Liquid Argon Calorimeter Group 1 Plan Context Front-end

More information

High Bandwidth Electronics

High Bandwidth Electronics DOE BES Neutron & Photon Detectors Workshop, August 1-3, 2012 Ryan Herbst System Overview What are the standard components in a detector system? Detector/Amplifier & ADC Digital front end - Configure and

More information

The new detector readout system for the ATLAS experiment

The new detector readout system for the ATLAS experiment LInk exange The new detector readout system for the ATLAS experiment Soo Ryu Argonne National Laboratory On behalf of the ATLAS Collaboration ATLAS DAQ for LHC Run2 (2015-2018) 40MHz L1 trigger 100kHz

More information

High Bandwidth DAQ R&D for ATLAS Upgrade

High Bandwidth DAQ R&D for ATLAS Upgrade High Bandwidth DAQ R&D for ATLAS Upgrade Version: V1-3-0 Updated: 11 February 2011 Authors: Rainer Bartoldus, Ric Claus, Andy Haas, Gunther Haller, Ryan Herbst, Michael Huffer, Martin Kocian, Emanuel Strauss,

More information

The FTK to Level-2 Interface Card (FLIC)

The FTK to Level-2 Interface Card (FLIC) The FTK to Level-2 Interface Card (FLIC) J. Anderson, B. Auerbach, R. Blair, G. Drake, A. Kreps, J. Love, J. Proudfoot, M. Oberling, R. Wang, J. Zhang November 5th, 2015 2015 IEEE Nuclear Science Symposium

More information

Improving Packet Processing Performance of a Memory- Bounded Application

Improving Packet Processing Performance of a Memory- Bounded Application Improving Packet Processing Performance of a Memory- Bounded Application Jörn Schumacher CERN / University of Paderborn, Germany jorn.schumacher@cern.ch On behalf of the ATLAS FELIX Developer Team LHCb

More information

FELI. : the detector readout upgrade of the ATLAS experiment. Soo Ryu. Argonne National Laboratory, (on behalf of the FELIX group)

FELI. : the detector readout upgrade of the ATLAS experiment. Soo Ryu. Argonne National Laboratory, (on behalf of the FELIX group) LI : the detector readout upgrade of the ATLAS experiment Soo Ryu Argonne National Laboratory, sryu@anl.gov (on behalf of the LIX group) LIX group John Anderson, Soo Ryu, Jinlong Zhang Hucheng Chen, Kai

More information

CMX (Common Merger extension module) Y. Ermoline for CMX collaboration Preliminary Design Review, Stockholm, 29 June 2011

CMX (Common Merger extension module) Y. Ermoline for CMX collaboration Preliminary Design Review, Stockholm, 29 June 2011 (Common Merger extension module) Y. Ermoline for collaboration Preliminary Design Review, Stockholm, 29 June 2011 Outline Current L1 Calorimeter trigger system Possible improvement to maintain trigger

More information

The CMS Event Builder

The CMS Event Builder The CMS Event Builder Frans Meijers CERN/EP-CMD CMD on behalf of the CMS-DAQ group CHEP03, La Jolla, USA, March 24-28 28 2003 1. Introduction 2. Selected Results from the Technical Design Report R&D programme

More information

Module Performance Report. ATLAS Calorimeter Level-1 Trigger- Common Merger Module. Version February-2005

Module Performance Report. ATLAS Calorimeter Level-1 Trigger- Common Merger Module. Version February-2005 Module Performance Report ATLAS Calorimeter Level-1 Trigger- Common Merger Module B. M. Barnett, I. P. Brawn, C N P Gee Version 1.0 23 February-2005 Table of Contents 1 Scope...3 2 Measured Performance...3

More information

OPTIONS FOR NEXT GENERATION DIGITAL ACQUISITION SYSTEMS

OPTIONS FOR NEXT GENERATION DIGITAL ACQUISITION SYSTEMS OPTIONS FOR NEXT GENERATION DIGITAL ACQUISITION SYSTEMS A. Boccardi, CERN, Geneva, Switzerland Abstract Digital acquisition system designers have an always increasing number of options in terms of bus

More information

ROM Status Update. U. Marconi, INFN Bologna

ROM Status Update. U. Marconi, INFN Bologna ROM Status Update U. Marconi, INFN Bologna Drift Chamber ~ 35 L1 processor EMC ~ 80 L1 processor? SVT L1 processor L3 to L5 ~15 Radiation wall Clk, L1, Sync Cmds Global Level1 Trigger (GLT) Raw L1 FCTS

More information

Upgrading the ATLAS Tile Calorimeter electronics

Upgrading the ATLAS Tile Calorimeter electronics ITIM Upgrading the ATLAS Tile Calorimeter electronics Gabriel Popeneciu, on behalf of the ATLAS Tile Calorimeter System INCDTIM Cluj Napoca, Romania Gabriel Popeneciu PANIC 2014, Hamburg 26th August 2014

More information

Overview of SVT DAQ Upgrades. Per Hansson Ryan Herbst Benjamin Reese

Overview of SVT DAQ Upgrades. Per Hansson Ryan Herbst Benjamin Reese Overview of SVT DAQ Upgrades Per Hansson Ryan Herbst Benjamin Reese 1 SVT DAQ Requirements and Constraints Basic requirements for the SVT DAQ Continuous readout of 23 040 channels Low noise (S/N>20 to

More information

Update on PRad GEMs, Readout Electronics & DAQ

Update on PRad GEMs, Readout Electronics & DAQ Update on PRad GEMs, Readout Electronics & DAQ Kondo Gnanvo University of Virginia, Charlottesville, VA Outline PRad GEMs update Upgrade of SRS electronics Integration into JLab DAQ system Cosmic tests

More information

Prototyping NGC. First Light. PICNIC Array Image of ESO Messenger Front Page

Prototyping NGC. First Light. PICNIC Array Image of ESO Messenger Front Page Prototyping NGC First Light PICNIC Array Image of ESO Messenger Front Page Introduction and Key Points Constructed is a modular system with : A Back-End as 64 Bit PCI Master/Slave Interface A basic Front-end

More information

Development and test of a versatile DAQ system based on the ATCA standard

Development and test of a versatile DAQ system based on the ATCA standard Development and test of a versatile DAQ system based on the ATCA standard M.Bianco, a P.J.Loesel, b S.Martoiu, c, ad and A.Zibell e a CERN PH Department, Geneve, Switzerland b Ludwig-Maximilians-Univ.

More information

2008 JINST 3 S Online System. Chapter System decomposition and architecture. 8.2 Data Acquisition System

2008 JINST 3 S Online System. Chapter System decomposition and architecture. 8.2 Data Acquisition System Chapter 8 Online System The task of the Online system is to ensure the transfer of data from the front-end electronics to permanent storage under known and controlled conditions. This includes not only

More information

Summary of Optical Link R&D

Summary of Optical Link R&D Summary of Optical Link R&D K.K. Gan The Ohio State University November 6, 2008 K.K. Gan ATLAS Tracker Upgrade Workshop 1 Outline Introduction Plan for insertable B-layer Status of Versatile Link Project

More information

Tracker Optical Link Upgrade Options and Plans

Tracker Optical Link Upgrade Options and Plans Tracker Optical Link Upgrade Options and Plans K.K. Gan The Ohio State University July 19, 2005 K.K. Gan ATLAS Tracker Upgrade Workshop 1 Outline current pixel/strip opto-links lessons learned upgrade

More information

Heavy Photon Search Data Acquisition

Heavy Photon Search Data Acquisition Heavy Photon Search Data Acquisition Presented by Ryan Herbst PPA Engineering 5/25/2011 1 Overview Data Output & Control 1GigE Read Out Board Ethernet Switch Processor Blade Trigger Board ATCA Crate RTM

More information

High Performance Ethernet for Grid & Cluster Applications. Adam Filby Systems Engineer, EMEA

High Performance Ethernet for Grid & Cluster Applications. Adam Filby Systems Engineer, EMEA High Performance Ethernet for Grid & Cluster Applications Adam Filby Systems Engineer, EMEA 1 Agenda Drivers & Applications The Technology Ethernet Everywhere Ethernet as a Cluster interconnect Ethernet

More information

FELIX the new detector readout system for the ATLAS experiment

FELIX the new detector readout system for the ATLAS experiment FrontEnd LInk exchange LIX the new detector readout system for the ATLAS experiment Julia Narevicius Weizmann Institute of Science on behalf of the ATLAS Collaboration Introduction to ATLAS readout: today

More information

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner RiceNIC Prototyping Network Interfaces Jeffrey Shafer Scott Rixner RiceNIC Overview Gigabit Ethernet Network Interface Card RiceNIC - Prototyping Network Interfaces 2 RiceNIC Overview Reconfigurable and

More information

Compute Node Design for DAQ and Trigger Subsystem in Giessen. Justus Liebig University in Giessen

Compute Node Design for DAQ and Trigger Subsystem in Giessen. Justus Liebig University in Giessen Compute Node Design for DAQ and Trigger Subsystem in Giessen Justus Liebig University in Giessen Outline Design goals Current work in Giessen Hardware Software Future work Justus Liebig University in Giessen,

More information

A Fast Ethernet Tester Using FPGAs and Handel-C

A Fast Ethernet Tester Using FPGAs and Handel-C A Fast Ethernet Tester Using FPGAs and Handel-C R. Beuran, R.W. Dobinson, S. Haas, M.J. LeVine, J. Lokier, B. Martin, C. Meirosu Copyright 2000 OPNET Technologies, Inc. The Large Hadron Collider at CERN

More information

I/O Choices for the ATLAS. Insertable B Layer (IBL) Abstract. Contact Person: A. Grillo

I/O Choices for the ATLAS. Insertable B Layer (IBL) Abstract. Contact Person: A. Grillo I/O Choices for the ATLAS Insertable B Layer (IBL) ATLAS Upgrade Document No: Institute Document No. Created: 14/12/2008 Page: 1 of 2 Modified: 8/01/2009 Rev. No.: 1.00 Abstract The ATLAS Pixel System

More information

Introduction to Field Programmable Gate Arrays

Introduction to Field Programmable Gate Arrays Introduction to Field Programmable Gate Arrays Lecture 1/3 CERN Accelerator School on Digital Signal Processing Sigtuna, Sweden, 31 May 9 June 2007 Javier Serrano, CERN AB-CO-HT Outline Historical introduction.

More information

Trigger and Data Acquisition at the Large Hadron Collider

Trigger and Data Acquisition at the Large Hadron Collider Trigger and Data Acquisition at the Large Hadron Collider Acknowledgments (again) This overview talk would not exist without the help of many colleagues and all the material available online I wish to

More information

Modules and Front-End Electronics Developments for the ATLAS ITk Strips Upgrade

Modules and Front-End Electronics Developments for the ATLAS ITk Strips Upgrade Modules and Front-End Electronics Developments for the ATLAS ITk Strips Upgrade Carlos García Argos, on behalf of the ATLAS ITk Collaboration University of Freiburg International Conference on Technology

More information

Signal Conversion in a Modular Open Standard Form Factor. CASPER Workshop August 2017 Saeed Karamooz, VadaTech

Signal Conversion in a Modular Open Standard Form Factor. CASPER Workshop August 2017 Saeed Karamooz, VadaTech Signal Conversion in a Modular Open Standard Form Factor CASPER Workshop August 2017 Saeed Karamooz, VadaTech At VadaTech we are technology leaders First-to-market silicon Continuous innovation Open systems

More information

Simplify System Complexity

Simplify System Complexity 1 2 Simplify System Complexity With the new high-performance CompactRIO controller Arun Veeramani Senior Program Manager National Instruments NI CompactRIO The Worlds Only Software Designed Controller

More information

Maximizing heterogeneous system performance with ARM interconnect and CCIX

Maximizing heterogeneous system performance with ARM interconnect and CCIX Maximizing heterogeneous system performance with ARM interconnect and CCIX Neil Parris, Director of product marketing Systems and software group, ARM Teratec June 2017 Intelligent flexible cloud to enable

More information

Velo readout board RB3. Common L1 board (ROB)

Velo readout board RB3. Common L1 board (ROB) Velo readout board RB3 Testing... Common L1 board (ROB) Specifying Federica Legger 10 February 2003 1 Summary LHCb Detectors Online (Trigger, DAQ) VELO (detector and Readout chain) L1 electronics for VELO

More information

Data Acquisition in Particle Physics Experiments. Ing. Giuseppe De Robertis INFN Sez. Di Bari

Data Acquisition in Particle Physics Experiments. Ing. Giuseppe De Robertis INFN Sez. Di Bari Data Acquisition in Particle Physics Experiments Ing. Giuseppe De Robertis INFN Sez. Di Bari Outline DAQ systems Theory of operation Case of a large experiment (CMS) Example of readout GEM detectors for

More information

A generic firmware core to drive the Front-End GBT-SCAs for the LHCb upgrade

A generic firmware core to drive the Front-End GBT-SCAs for the LHCb upgrade Journal of Instrumentation OPEN ACCESS A generic firmware core to drive the Front-End GBT-SCAs for the LHCb upgrade Recent citations - The Versatile Link Demo Board (VLDB) R. Martín Lesma et al To cite

More information

BES-III off-detector readout electronics for the GEM detector: an update

BES-III off-detector readout electronics for the GEM detector: an update BES-III off-detector readout electronics for the GEM detector: an update The CGEM off-detector collaboration ( INFN/Univ. FE, INFN LNF, Univ. Uppsala ) 1 Outline Reminder Update on development status Off-detector

More information

Challenges and performance of the frontier technology applied to an ATLAS Phase-I calorimeter trigger board dedicated to the jet identification

Challenges and performance of the frontier technology applied to an ATLAS Phase-I calorimeter trigger board dedicated to the jet identification Challenges and performance of the frontier technology applied to an ATLAS Phase-I calorimeter trigger board dedicated to the jet identification B. Bauss, A. Brogna, V. Büscher, R. Degele, H. Herr, C. Kahra*,

More information

A generic firmware core to drive the Front-End GBT-SCAs for the LHCb upgrade

A generic firmware core to drive the Front-End GBT-SCAs for the LHCb upgrade A generic firmware core to drive the Front-End GBT-SCAs for the LHCb upgrade F. Alessio 1, C. Caplan, C. Gaspar 1, R. Jacobsson 1, K. Wyllie 1 1 CERN CH-, Switzerland CBPF Rio de Janeiro, Brazil Corresponding

More information

OCP Engineering Workshop - Telco

OCP Engineering Workshop - Telco OCP Engineering Workshop - Telco Low Latency Mobile Edge Computing Trevor Hiatt Product Management, IDT IDT Company Overview Founded 1980 Workforce Approximately 1,800 employees Headquarters San Jose,

More information

Alternative Ideas for the CALICE Back-End System

Alternative Ideas for the CALICE Back-End System Alternative Ideas for the CALICE Back-End System Matthew Warren and Gordon Crone University College London 5 February 2002 5 Feb 2002 Alternative Ideas for the CALICE Backend System 1 Concept Based on

More information

AXIe : AdvancedTCA Extensions for Instrumentation and Test. Autotestcon 2016

AXIe : AdvancedTCA Extensions for Instrumentation and Test. Autotestcon 2016 AXIe : AdvancedTCA Extensions for Instrumentation and Test Autotestcon 2016 Copyright 2016 AXIe Consortium, Inc. * AdvancedTCA is a registered trademark of PICMG. AXIe is a registered trademark of the

More information

APV-25 based readout electronics for the SBS front GEM Tracker

APV-25 based readout electronics for the SBS front GEM Tracker APV-25 based readout electronics for the SBS front GEM Tracker Authors: Evaristo Cisbani, Paolo Musico Date: 26/June/2014 Version: 1.0 APV-25 based readout electronics for the SBS front GEM Tracker...

More information

An ATCA framework for the upgraded ATLAS read out electronics at the LHC

An ATCA framework for the upgraded ATLAS read out electronics at the LHC An ATCA framework for the upgraded ATLAS read out electronics at the LHC Robert Reed School of Physics, University of the Witwatersrand, Johannesburg, South Africa E-mail: robert.reed@cern.ch Abstract.

More information

COSMOS Architecture and Key Technologies. June 1 st, 2018 COSMOS Team

COSMOS Architecture and Key Technologies. June 1 st, 2018 COSMOS Team COSMOS Architecture and Key Technologies June 1 st, 2018 COSMOS Team COSMOS: System Architecture (2) System design based on three levels of SDR radio node (S,M,L) with M,L connected via fiber to optical

More information

SoLID GEM Detectors in US

SoLID GEM Detectors in US SoLID GEM Detectors in US Kondo Gnanvo University of Virginia SoLID Collaboration Meeting @ JLab, 08/26/2016 Outline Design Optimization U-V strips readout design Large GEMs for PRad in Hall B Requirements

More information

IBM Network Processor, Development Environment and LHCb Software

IBM Network Processor, Development Environment and LHCb Software IBM Network Processor, Development Environment and LHCb Software LHCb Readout Unit Internal Review July 24 th 2001 Niko Neufeld, CERN 1 Outline IBM NP4GS3 Architecture A Readout Unit based on the NP4GS3

More information

Upgrade of the ATLAS Level-1 Trigger with event topology information

Upgrade of the ATLAS Level-1 Trigger with event topology information Upgrade of the ATLAS Level-1 Trigger with event topology information E. Simioni 1, S. Artz 1, B. Bauß 1, V. Büscher 1, K. Jakobi 1, A. Kaluza 1, C. Kahra 1, M. Palka 2, A. Reiß 1, J. Schäffer 1, U. Schäfer

More information

RPC Trigger Overview

RPC Trigger Overview RPC Trigger Overview presented by Maciek Kudla, Warsaw University RPC Trigger ESR Warsaw, July 8th, 2003 RPC Trigger Task The task of RPC Muon Trigger electronics is to deliver 4 highest momentum muons

More information

Token Bit Manager for the CMS Pixel Readout

Token Bit Manager for the CMS Pixel Readout Token Bit Manager for the CMS Pixel Readout Edward Bartz Rutgers University Pixel 2002 International Workshop September 9, 2002 slide 1 TBM Overview Orchestrate the Readout of Several Pixel Chips on a

More information

Field Program mable Gate Arrays

Field Program mable Gate Arrays Field Program mable Gate Arrays M andakini Patil E H E P g r o u p D H E P T I F R SERC school NISER, Bhubaneshwar Nov 7-27 2017 Outline Digital electronics Short history of programmable logic devices

More information

Development of an ATCA IPMI controller mezzanine board to be used in the ATCA developments for the ATLAS Liquid Argon upgrade

Development of an ATCA IPMI controller mezzanine board to be used in the ATCA developments for the ATLAS Liquid Argon upgrade Development of an ATCA IPMI controller mezzanine board to be used in the ATCA developments for the ATLAS Liquid Argon upgrade N. Letendre To cite this version: N. Letendre. Development of an ATCA IPMI

More information

IEEE Nuclear Science Symposium San Diego, CA USA Nov. 3, 2015

IEEE Nuclear Science Symposium San Diego, CA USA Nov. 3, 2015 The New Front-End Electronics For the ATLAS Tile Calorimeter Phase 2 Upgrade Gary Drake Argonne National Laboratory, USA On behalf of the ATLAS TileCal System IEEE Nuclear Science Symposium San Diego,

More information

Ethernet Cards. 5.1 Card Overview CHAPTER

Ethernet Cards. 5.1 Card Overview CHAPTER CHAPTER 5 Note The terms "Unidirectional Path Switched Ring" and "UPSR" may appear in Cisco literature. These terms do not refer to using Cisco ONS 15xxx products in a unidirectional path switched ring

More information

Networking for Data Acquisition Systems. Fabrice Le Goff - 14/02/ ISOTDAQ

Networking for Data Acquisition Systems. Fabrice Le Goff - 14/02/ ISOTDAQ Networking for Data Acquisition Systems Fabrice Le Goff - 14/02/2018 - ISOTDAQ Outline Generalities The OSI Model Ethernet and Local Area Networks IP and Routing TCP, UDP and Transport Efficiency Networking

More information

DIGITAL SYSTEM. Technology Overview Nordco. All rights reserved. Rev C

DIGITAL SYSTEM. Technology Overview Nordco. All rights reserved. Rev C DIGITAL SYSTEM Technology Overview Rev C 01-05-2016 Insert Full Frame Product Picture Here 2015 KEY FEATURES DIGITAL PROCESSING SYSTEM FOR INDUSTRIAL & TONNE UE SYSTEM DIGITAL PROCESSING SYSTEM FOR MICRO

More information

Components of a MicroTCA System

Components of a MicroTCA System Micro TCA Overview0 Platform, chassis, backplane, and shelf manager specification, being developed through PICMG Allows AMC modules to plug directly into a backplane Fills the performance/cost gap between

More information

AdvancedTCA Backplane Tester

AdvancedTCA Backplane Tester AdvancedTCA Backplane Tester Alexandra Dana Oltean, Brian Martin POLITEHNICA University Bucharest Romania and CERN 1211Geneva 23 Switzerland Email: alexandra.oltean@cern.ch, brian.martin@cern.ch CERN-OPEN-2005-014

More information

Simplify System Complexity

Simplify System Complexity Simplify System Complexity With the new high-performance CompactRIO controller Fanie Coetzer Field Sales Engineer Northern South Africa 2 3 New control system CompactPCI MMI/Sequencing/Logging FieldPoint

More information

Version PEX Recommended only for designs migrating from PEX 8516 please use PEX 8518 for new designs

Version PEX Recommended only for designs migrating from PEX 8516 please use PEX 8518 for new designs Version 1.6 2007 PEX 8517 Recommended only for designs migrating from PEX 8516 please use PEX 8518 for new designs Version 1.6 2007 Features PEX 8517 General Features o 16-lane PCI Express switch - Integrated

More information

Programmable Logic Design Grzegorz Budzyń Lecture. 15: Advanced hardware in FPGA structures

Programmable Logic Design Grzegorz Budzyń Lecture. 15: Advanced hardware in FPGA structures Programmable Logic Design Grzegorz Budzyń Lecture 15: Advanced hardware in FPGA structures Plan Introduction PowerPC block RocketIO Introduction Introduction The larger the logical chip, the more additional

More information

CMX Hardware Status. Chip Brock, Dan Edmunds, Philippe Yuri Ermoline, Duc Bao Wojciech UBC

CMX Hardware Status. Chip Brock, Dan Edmunds, Philippe Yuri Ermoline, Duc Bao Wojciech UBC Hardware Status Chip Brock, Dan Edmunds, Philippe Laurens@MSU Yuri Ermoline, Duc Bao Ta @CERN Wojciech Fedorko @ UBC Michigan State University 25-Oct-2013 Outline Review of hardware project (Some) hardware

More information

Embedded Tech Trends 2014 Rodger H. Hosking Pentek, Inc. VPX for Rugged, Conduction-Cooled Software Radio Virtex-7 Applications

Embedded Tech Trends 2014 Rodger H. Hosking Pentek, Inc. VPX for Rugged, Conduction-Cooled Software Radio Virtex-7 Applications Embedded Tech Trends 2014 Rodger H. Hosking Pentek, Inc. VPX for Rugged, Conduction-Cooled Software Radio Virtex-7 Applications System Essentials: Rugged Software Radio Industry Standard Open Architectures

More information

THE ALFA TRIGGER SIMULATOR

THE ALFA TRIGGER SIMULATOR Vol. 46 (2015) ACTA PHYSICA POLONICA B No 7 THE ALFA TRIGGER SIMULATOR B. Dziedzic Tadeusz Kościuszko Cracow University of Technology, Institute of Physics Podchorążych 1, 30-084 Kraków, Poland K. Korcyl

More information

FPGA FIRMWARE FRAMEWORK FOR MTCA.4 AMC MODULES*

FPGA FIRMWARE FRAMEWORK FOR MTCA.4 AMC MODULES* FPGA FIRMWARE FRAMEWORK FOR MTCA.4 AMC MODULES* Lukasz Butkowski, Tomasz Kozak, Bin Yang, DESY, Hamburg, Germany Paweł Prędki, DMCS, Lodz University of Technology, Lodz, Poland Radoslaw Rybaniec, ISE,

More information

InfiniBand SDR, DDR, and QDR Technology Guide

InfiniBand SDR, DDR, and QDR Technology Guide White Paper InfiniBand SDR, DDR, and QDR Technology Guide The InfiniBand standard supports single, double, and quadruple data rate that enables an InfiniBand link to transmit more data. This paper discusses

More information

Construction of the Phase I upgrade of the CMS pixel detector

Construction of the Phase I upgrade of the CMS pixel detector Forward Pixel Barrel Pixel TECHNOLOGY AND INSTRUMENTATION IN PARTICLE PHYSICS 2017, May 22-26, 2017 Construction of the Phase I upgrade of the CMS pixel detector Satoshi Hasegawa Fermi National Accelerator

More information

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions The LHCb upgrade Burkhard Schmidt for the LHCb Collaboration Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions OT IT coverage 1.9

More information

Functional Specification

Functional Specification EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ORGANISATION EUROPEENE POUR LA RECHERCHE NUCLEAIRE White Rabbit Switch Functional Specification Version: 0.c Date: September 6 of 2010. Author: J. Gabriel Ramírez

More information

The Phase-2 ATLAS ITk Pixel Upgrade

The Phase-2 ATLAS ITk Pixel Upgrade The Phase-2 ATLAS ITk Pixel Upgrade T. Flick (University of Wuppertal) - on behalf of the ATLAS collaboration 14th Topical Seminar on Innovative Particle and Radiation Detectors () 03.-06. October 2016

More information

Electronics on the detector Mechanical constraints: Fixing the module on the PM base.

Electronics on the detector Mechanical constraints: Fixing the module on the PM base. PID meeting Mechanical implementation ti Electronics architecture SNATS upgrade proposal Christophe Beigbeder PID meeting 1 Electronics is split in two parts : - one directly mounted on the PM base receiving

More information

Dominique Gigi CMS/DAQ. Siena 4th October 2006

Dominique Gigi CMS/DAQ. Siena 4th October 2006 . CMS/DAQ overview. Environment. FRL-Slink (Front-End Readout Link) - Boards - Features - Protocol with NIC & results - Production.FMM (Fast Monitoring Module) -Requirements -Implementation -Features -Production.Conclusions

More information

The CMS Global Calorimeter Trigger Hardware Design

The CMS Global Calorimeter Trigger Hardware Design The CMS Global Calorimeter Trigger Hardware Design M. Stettler, G. Iles, M. Hansen a, C. Foudas, J. Jones, A. Rose b a CERN, 1211 Geneva 2, Switzerland b Imperial College of London, UK Matthew.Stettler@cern.ch

More information

Leveraging HyperTransport for a custom high-performance cluster network

Leveraging HyperTransport for a custom high-performance cluster network Leveraging HyperTransport for a custom high-performance cluster network Mondrian Nüssle HTCE Symposium 2009 11.02.2009 Outline Background & Motivation Architecture Hardware Implementation Host Interface

More information

Level-1 Data Driver Card of the ATLAS New Small Wheel Upgrade Compatible with the Phase II 1 MHz Readout

Level-1 Data Driver Card of the ATLAS New Small Wheel Upgrade Compatible with the Phase II 1 MHz Readout Level-1 Data Driver Card of the ATLAS New Small Wheel Upgrade Compatible with the Phase II 1 MHz Readout Panagiotis Gkountoumis National Technical University of Athens Brookhaven National Laboratory On

More information

CMX Hardware Overview

CMX Hardware Overview Hardware Overview Chip Brock, Dan Edmunds, Philippe Laurens@MSU Yuri Ermoline @CERN Wojciech Fedorko @UBC Michigan State University 12-May-2014 Common Merger extended module () 12-May-2014 2 Overall project

More information

RiceNIC. A Reconfigurable Network Interface for Experimental Research and Education. Jeffrey Shafer Scott Rixner

RiceNIC. A Reconfigurable Network Interface for Experimental Research and Education. Jeffrey Shafer Scott Rixner RiceNIC A Reconfigurable Network Interface for Experimental Research and Education Jeffrey Shafer Scott Rixner Introduction Networking is critical to modern computer systems Role of the network interface

More information

Promentum MPCBL0050 PRODUCT BENEFITS. Dual-Core Intel Xeon Processor LV Dual Core Xeon processor module FEATURE SUMMARY. [Print This Datasheet]

Promentum MPCBL0050 PRODUCT BENEFITS. Dual-Core Intel Xeon Processor LV Dual Core Xeon processor module FEATURE SUMMARY. [Print This Datasheet] [Print This Datasheet] Promentum MPCBL0050 Dual Core Xeon processor module FEATURE SUMMARY High performance AdvancedTCA blade based on the Dual-Core Intel Xeon LV5138 processor that provides 4 processor

More information

How to Choose the Right Bus for Your Measurement System

How to Choose the Right Bus for Your Measurement System 1 How to Choose the Right Bus for Your Measurement System Overview When you have hundreds of different data acquisition (DAQ) devices to choose from on a wide variety of buses, it can be difficult to select

More information

MicroTCA / AMC Solutions for Real-Time Data Acquisition

MicroTCA / AMC Solutions for Real-Time Data Acquisition THE MAGAZINE OF RECORD FOR THE EMBEDDED COMPUTING INDUSTRY May 2013 TECHNOLOGY IN SYSTEMS MicroTCA / AMC Solutions for Real-Time Data Acquisition MicroTCA has evolved out of the world of ATCA to become

More information

AMC516 Virtex-7 FPGA Carrier for FMC, AMC

AMC516 Virtex-7 FPGA Carrier for FMC, AMC KEY FEATURES Virtex-7 FPGA Carrier AMC FPGA carrier for FMC per VITA-57 Xilinx Virtex-7 690T FPGA in FFG-1761 package with optional P2040 Supported by DAQ Series data acquisition software AMC Ports 12-15

More information

Track-Finder Test Results and VME Backplane R&D. D.Acosta University of Florida

Track-Finder Test Results and VME Backplane R&D. D.Acosta University of Florida Track-Finder Test Results and VME Backplane R&D D.Acosta University of Florida 1 Technical Design Report Trigger TDR is completed! A large amount effort went not only into the 630 pages, but into CSC Track-Finder

More information

Schematic. A: Overview of the Integrated Detector Readout Electronics and DAQ-System. optical Gbit link. 1GB DDR Ram.

Schematic. A: Overview of the Integrated Detector Readout Electronics and DAQ-System. optical Gbit link. 1GB DDR Ram. A: Overview of the Integrated Detector Readout Electronics and DAQ-System N s CASCADE Detector Frontend (X0) (X) (Y0) (Y) optional: CIPix- Board (T) Optical Gigabit Link CDR.0 FPGA based readout board

More information

Streaming Readout, the JLab perspective. Graham Heyes Data Acquisition Support Group Jefferson Lab

Streaming Readout, the JLab perspective. Graham Heyes Data Acquisition Support Group Jefferson Lab Streaming Readout, the JLab perspective Graham Heyes Data Acquisition Support Group Jefferson Lab Introduction After the 12 GeV accelerator upgrade all four halls took production data in Spring of this

More information

In-chip and Inter-chip Interconnections and data transportations for Future MPAR Digital Receiving System

In-chip and Inter-chip Interconnections and data transportations for Future MPAR Digital Receiving System In-chip and Inter-chip Interconnections and data transportations for Future MPAR Digital Receiving System A presentation for LMCO-MPAR project 2007 briefing Dr. Yan Zhang School of Electrical and Computer

More information

PEX8764, PCI Express Gen3 Switch, 64 Lanes, 16 Ports

PEX8764, PCI Express Gen3 Switch, 64 Lanes, 16 Ports Highlights PEX8764 General Features o 64-lane, 16-port PCIe Gen3 switch Integrated 8.0 GT/s SerDes o 35 x 35mm 2, 1156-ball FCBGA package o Typical Power: 1. Watts PEX8764 Key Features o Standards Compliant

More information

New! New! New! New! New!

New! New! New! New! New! New! New! New! New! New! Model 5950 Features Supports Xilinx Zynq UltraScale+ RFSoC FPGAs 18 GB of DDR4 SDRAM On-board GPS receiver PCI Express (Gen. 1, 2 and 3) interface up to x8 LVDS connections to

More information

BlueGene/L. Computer Science, University of Warwick. Source: IBM

BlueGene/L. Computer Science, University of Warwick. Source: IBM BlueGene/L Source: IBM 1 BlueGene/L networking BlueGene system employs various network types. Central is the torus interconnection network: 3D torus with wrap-around. Each node connects to six neighbours

More information

An Oracle White Paper February Enabling End-to-End 10 Gigabit Ethernet in Oracle s Sun Netra ATCA Product Family

An Oracle White Paper February Enabling End-to-End 10 Gigabit Ethernet in Oracle s Sun Netra ATCA Product Family An Oracle White Paper February 2011 Enabling End-to-End 10 Gigabit Ethernet in Oracle s Sun Netra ATCA Product Family Executive Overview... 1! Introduction... 1! An Ecosystem Delivering Bandwidth and Flexibility...

More information

Introduction Technology Equipment Performance Current developments Conclusions. White Rabbit. A quick introduction. Javier Serrano

Introduction Technology Equipment Performance Current developments Conclusions. White Rabbit. A quick introduction. Javier Serrano White Rabbit A quick introduction Javier Serrano CERN BE-CO Hardware and Timing section ICALEPCS pre-conference workshop Barcelona, 7 October 2017 Javier Serrano Introduction to White Rabbit 1/29 Outline

More information

Timing distribution and Data Flow for the ATLAS Tile Calorimeter Phase II Upgrade

Timing distribution and Data Flow for the ATLAS Tile Calorimeter Phase II Upgrade Timing distribution and Data Flow for the ATLAS Tile Calorimeter Phase II Upgrade Fernando Carrió Argos on behalf of the ATLAS Tile Calorimeter Group Tile Calorimeter Segmented calorimeter of steel plates

More information

Stacked Silicon Interconnect Technology (SSIT)

Stacked Silicon Interconnect Technology (SSIT) Stacked Silicon Interconnect Technology (SSIT) Suresh Ramalingam Xilinx Inc. MEPTEC, January 12, 2011 Agenda Background and Motivation Stacked Silicon Interconnect Technology Summary Background and Motivation

More information

TOF Electronics. J. Schambach University of Texas Review, BNL, 2 Aug 2007

TOF Electronics. J. Schambach University of Texas Review, BNL, 2 Aug 2007 TOF Electronics J. Schambach University of Texas Review, BNL, 2 Aug 2007 1 Outline Electronics Overview Trigger & DAQ Interfaces Board Status, Tests & Plans 2 Electronics for One Side 3 Tray Level Electronics

More information

Modeling Resource Utilization of a Large Data Acquisition System

Modeling Resource Utilization of a Large Data Acquisition System Modeling Resource Utilization of a Large Data Acquisition System Alejandro Santos CERN / Ruprecht-Karls-Universität Heidelberg On behalf of the ATLAS Collaboration 1 Outline Introduction ATLAS TDAQ Simulation

More information

PEX 8636, PCI Express Gen 2 Switch, 36 Lanes, 24 Ports

PEX 8636, PCI Express Gen 2 Switch, 36 Lanes, 24 Ports Highlights PEX 8636 General Features o 36-lane, 24-port PCIe Gen2 switch - Integrated 5.0 GT/s SerDes o 35 x 35mm 2, 1156-ball FCBGA package o Typical Power: 8.8 Watts PEX 8636 Key Features o Standards

More information

High Capacity and High Performance 20nm FPGAs. Steve Young, Dinesh Gaitonde August Copyright 2014 Xilinx

High Capacity and High Performance 20nm FPGAs. Steve Young, Dinesh Gaitonde August Copyright 2014 Xilinx High Capacity and High Performance 20nm FPGAs Steve Young, Dinesh Gaitonde August 2014 Not a Complete Product Overview Page 2 Outline Page 3 Petabytes per month Increasing Bandwidth Global IP Traffic Growth

More information

An Introduction to PICMG 3.7 ATCA Base Extensions PENTAIR

An Introduction to PICMG 3.7 ATCA Base Extensions PENTAIR An Introduction to PICMG 3.7 ATCA Base Extensions PICMG SPECIFICATION HIERARCHY PICMG 3.0 ATCA PICMG 3.1 Ethernet PICMG 3.4 PCIe PICMG 3.5 SRIO PICMG 3.7 ATCA Extensions PICMG 3.8 RTM PICMG 3.0 ADVANCEDTCA

More information

Frontend Control Electronics for the LHCb upgrade Hardware realization and test

Frontend Control Electronics for the LHCb upgrade Hardware realization and test First Prototype of the muon Frontend Control Electronics for the LHCb upgrade Hardware realization and test V. Bocci, G. Chiodi, P. Fresch et al. International Conference on Technology and Instrumentation

More information