Programming Multicore Systems

Size: px
Start display at page:

Download "Programming Multicore Systems"

Transcription

1 Programming Multicore Systems Enabling real time applications for multicore with the XMOS development tools 5 th September 2011 Matt Fyles

2 XMOS Company Overview Established Fabless Semiconductor Company New class of programmable device Event Driven Processor Offices in Bristol, Chennai, Singapore, San Jose Production partner TSMC XMOS Vision XMOS programmable chips bring together the capabilities of processors, DSPs, ASICs and FPGAs, but are programmed via a unified design flow in C, XC and C++

3 XMOS Processors Used in embedded real-time systems to provide hardware interfaces and data processing capability Number of cores used depends on the application complexity and are easily scalable Hardware interconnect mechanism provides ability to transfer data efficiently between cores Programmed in high level languages with a standard software tool chain for application development

4 Input Output Ports XMOS Architecture - Processor How is XMOS different? Hardware multi-threaded Hard real time threads Each thread executes at least every 20ns Event driven execution Instant response without interrupts XCore 8KB OTP JTAG TAP 64KB SRAM Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Real Time Resources Channel Ends Software tasks #include BinarySearch.h int BinarySearch(unsigned index, unsigned table[]) { // First entry is size int start = 1; int end = table[0] + 1; int middle; int x; int found = 0; } do { middle = start + ((end - start) >>1); x = table[middle] & 0xFFFF; if (x == index) found = 1; else if (middle == start) found = -1; else if (index < x) end = middle; else start = middle; } while (found == 0); if (found == 1) return middle; else return -1; Intelligent ports Tightly coupled Channel communications Compose systems from multiple threads Thread 7 Hardware interfaces TX-CLK TX-EN Preamble SFD D AT A ETXD[3:0] CRC Signal processing capability x(n) z -1 z -1 z -1 a0 a1 a2 a3 TX-ER CRS COL

5 XMOS Architecture Real Time Support Interrupt Traditional CPU Interrupt Task A Internal operation Task B Save all registers Fetch ISR vector Execute Task B Clear request Restore registers Save all registers Fetch ISR vector etc. Event XMOS CPU Event Task A Task B Execute Task B Task B paused Execute Task B XMOS is hard real time Timing closure easily achieved and kept after design changes Tools to help guarantee timing

6 Input Output Ports Input Output Ports XMOS Architecture Channels Deterministic communications interconnect Connects threads, cores & devices at up to 1Gbps+ Synchronised, transactional and streaming modes Non blocking Compose systems from multiple threads Link Thread 0 Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Channel Ends Switch Channel Ends Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Threads on same core Threads on different core Threads on different chip Thread 7 Thread 7

7 MultiCore XMOS Platforms Development tools need to scale across systems with multiple numbers of processor cores and distribute application code Ipod Dock Platform Single Xcore Processor 8 HW Threads 64KB SRAM Motor Control Platform 3 Xcore processors 24 HW Threads 192KB SRAM XMP-64 Dev Platform 64 Xcore processors 512 HW Threads 4MB SRAM

8 Example Application Structure Multi-Channel USB Audio 2.0 Interface Dual XCore device Multiple parallel hardware threads 1 st core provides USB interface and buffering 2 nd core provides audio interface and processing

9 XMOS Development Tools XMOS DEVELOPMENT ENVIRONMENT.C.CPP.XC Embedded Software Flow Use XC, C and C++ Unified flow for control, signal processing and interfaces Supports multiple threads and cores SIMULATOR COMPILER COLLECTION DEBUGGER BINARY BOARD UTILS HARDWARE TIMING Built on industry standard platforms Eclipse (IDE) GCC/LLVM (C compiler) ELF (Object Format) GDB (Debugger) Complete set of tools in one package Includes board level tools (FLASH etc.) Unique static timing tool (XTA) Choose your own flow Windows, Linux or MAC Command line or eclipse Zero cost download

10 The XC Language #include <platform.h> #include <xs1.h> void functiona(chanend A){} void functionb(chanend A, chanend B){} void functionc(chanend B){} int main (void) { chan channela, channelb; par { on stdcore[0] : functiona(channela); on stdcore[0] : functionb(channela, channelb); on stdcore[1] : functionc(channelb); } } return 0;

11 Compilation Tools Allows user to target XMOS platforms using C / C++ / XC, built around industry standard LLVM platform XC exposes multi-core nature of XMOS architecture to users via simple built-in types and constructs Easy to set up communication paths between software tasks to allow for synchronisation and data transfer Uses the standard ELF file format wrapped in a multicore XMOS format to provide a single binary for multiple processors

12 Mapping Tools Allows users to easily manage system configuration for target platform and board configuration Sets up device routing for channel communication without required user input regarding mapping Provides feedback to user on resource usage across all the devices in an application Automatically manages setup code for using multiple threads and cores and distributes code

13 XMOS Multicore Binary File Multicore binary (.xe) file Binary per core for device network setup and XMOS link configuration and connection Binary per core for user application code containing program data and debug info Platform configuration files for target device containing information for board settings Configuration files for creating simulated device to mirror hardware in XMOS simulator

14 Debugging Multicore Systems Multiple processors in system, in embedded systems there can be a complex JTAG chain to manage Separate distributed address spaces for code execution and data storage in application One program binary and symbol table per processor core, user has to manage multiple binaries Standard debugging features such as breakpoints and watchpoints need to work across multiple processors

15 XMOS Debugger Based on an extended GNU debugger (XGDB) Automatically configures to support multiple processors in JTAG chain at runtime Provides combined processor and thread view for any number of XCore devices in a system Manages the executables required for multi-core development without user interaction Extends standard GDB commands to work across multiple processor address spaces

16 XMOS IDE - Debugging Extended Eclipse CDT built on top of GNU debugger Provides enhanced thread / core view to support XMOS GNU debugger extensions

17 Profiling Multicore Systems In multicore systems it is difficult to synchronise events from different processors due to lack of a global time reference Trace data has to be collected from multiple cores in parallel and stored back on a host machine Without an accurate system level view of when each processor is active it is very hard to tune performance Must allow the real time nature of applications to continue to function correctly at runtime

18 Profiling XMOS Platforms XScope Multicore hardware profiling tool Post mortem analysis Tradition style software profiler Displays code execution information across processor cores Visualise application data values post execution Shows both timeline and graphical data views Runtime analysis Software logic analyser Displays application specific data values at runtime Can be set to trigger on specific event conditions HW oscilloscope style view of application execution

19 Profiling XMOS Data Collection Development tools interface board uses and XMOS device for the USB to host bridge Allows development adapter to become part of application device network at runtime Uses the XMOS link network of the application to transmit trace messages to the host system

20 XScope Post Mortem

21 XScope Runtime Visualisation

22 Conclusion XMOS development tools seamlessly scale from single to multiple processors The XMOS architecture allows complex multi-core systems to be built to fit the application need Extended debug and profiling capabilities built upon standard tools provide a familiar user experience Platforms designed around XMOS technology can be augmented with addition processor cores after the initial design is complete

23 To Finish Questions?

Application Note: AN00193 Getting Started with Debugging in xtimecomposer

Application Note: AN00193 Getting Started with Debugging in xtimecomposer Application Note: AN00193 Getting Started with Debugging in xtimecomposer Studio This application note shows how to get started with debugging using the xtimecomposer studio. It shows you how to create

More information

XMOS Technology Whitepaper

XMOS Technology Whitepaper XMOS Technology Whitepaper Publication Date: 2010/04/28 Copyright 2010 XMOS Ltd. All Rights Reserved. XMOS Technology Whitepaper 2/7 1 Introduction Designers for electronic products are challenged by requests

More information

Application Note: AN00194 Getting Started with VCD Tracing in xtimecomposer

Application Note: AN00194 Getting Started with VCD Tracing in xtimecomposer Application Note: AN00194 Getting Started with VCD Tracing in xtimecomposer Studio This application note shows how to get started with VCD tracing using the xtimecomposer studio. It shows you how to run

More information

Application Note: AN00198 Getting Started with Simulator Tracing in xtimecomposer Studio

Application Note: AN00198 Getting Started with Simulator Tracing in xtimecomposer Studio Application Note: AN00198 Getting Started with Simulator Tracing in xtimecomposer Studio This application note shows how to get started with simulator tracing using the xtimecomposer studio. It shows you

More information

Application Note: AN00192 Getting Started with Timing Analysis in xtimecomposer Studio

Application Note: AN00192 Getting Started with Timing Analysis in xtimecomposer Studio Application Note: AN00192 Getting Started with Timing Analysis in xtimecomposer Studio The XMOS architecture has predictable timing, which allows many interfaces to be performed in software. This application

More information

Application Note: AN00152 xscope - Bi-Directional Endpoint

Application Note: AN00152 xscope - Bi-Directional Endpoint Application Note: AN00152 xscope - Bi-Directional Endpoint This application note shows how to create a simple example which uses the XMOS xscope application trace system to provide bi-directional communication

More information

Application Note: AN00153 Programming OTP memory via SPI boot

Application Note: AN00153 Programming OTP memory via SPI boot Application Note: AN00153 Programming OTP memory via SPI boot This application note describes how to create a binary image which can be used to program the xcore tile OTP memory via SPI boot. This is the

More information

Application Note: AN00151 xscope - Custom Host Endpoint

Application Note: AN00151 xscope - Custom Host Endpoint Application Note: AN00151 xscope - Custom Host Endpoint This application note shows how to create a simple example which uses the XMOS xscope application trace system to provide instrumentation logging

More information

Application Note: AN00144 xcore-xa - xcore ARM Boot Library

Application Note: AN00144 xcore-xa - xcore ARM Boot Library Application Note: AN00144 xcore-xa - xcore ARM Boot Library This application note shows how to create a simple application which targets the XMOS xcore-xa device and demonstrates how to build and run this

More information

Application Note: AN00142 xcore-xa - xcore ARM Bridge Library

Application Note: AN00142 xcore-xa - xcore ARM Bridge Library Application Note: AN00142 xcore-xa - xcore ARM Bridge Library This application note shows how to create a simple application which targets the XMOS xcore-xa device and demonstrates how to build and run

More information

Task Partitioning and Placement in Multicore Microcontrollers. David Lacey 24 th September 2012

Task Partitioning and Placement in Multicore Microcontrollers. David Lacey 24 th September 2012 Task Partitioning and Placement in Multicore Microcontrollers David Lacey 24 th September 2012 Multicore Microcontrollers Many embedded systems are now multicore Maybe lots of cores: XMOS devices have

More information

XC-1A Development Board Tutorial

XC-1A Development Board Tutorial XC-1A Development Board Tutorial IN THIS DOCUMENT Introduction Illuminate an LED Flash an LED Interface with a host over a serial link Flash and cycle LEDs at different rates Run tasks concurrently Use

More information

Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim

Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim Ray Duran Staff Design Specialist FAE, Altera Corporation 408-544-7937

More information

Application Note: AN00189 Using QuadSPI for application overlay data

Application Note: AN00189 Using QuadSPI for application overlay data Application Note: AN00189 Using QuadSPI for application overlay data This application note demonstrates how to use overlay regions and how to use QuadPSI flash memory for storing and loading overlay data.

More information

Support for RISC-V. Lauterbach GmbH. Bob Kupyn Lauterbach Markus Goehrle - Lauterbach GmbH

Support for RISC-V. Lauterbach GmbH. Bob Kupyn Lauterbach Markus Goehrle - Lauterbach GmbH Company Lauterbach Profile Debug Support for RISC-V Lauterbach GmbH Bob Kupyn Lauterbach USA @2016 Markus Goehrle - Lauterbach GmbH Leading Manufacturer of Microprocessor Development Tools Founded in 1979

More information

Targeting XCore Resources from LLVM. Richard Osborne

Targeting XCore Resources from LLVM. Richard Osborne Targeting XCore Resources from LLVM Richard Osborne Introduction XMOS UK fabless semiconductor Company XCore processor Aimed at embedded market Hardware interfaces in software Ethernet, USB 2.0, SPDIF,

More information

Swallow many-core research project

Swallow many-core research project Swallow many-core research project Many-core computing with lightweight, real-time embedded processors 1-Nov-12 1 Research Group In this presentation A magic processing platform Swallow project: What are

More information

Application Note: AN00181 xcore-200 explorer - Accelerometer

Application Note: AN00181 xcore-200 explorer - Accelerometer Application Note: AN00181 xcore-200 explorer - Accelerometer This application note show how to the accelerometer on an xcore-200 explorer development kit. The kit itself has a Freescale FXOS8700CQ 6-Axis

More information

Application Note: AN00175 A startkit LED demo

Application Note: AN00175 A startkit LED demo Application Note: AN00175 A startkit LED demo This application shows a very simple program running on the XMOS startkit development board. It displays an animated pattern on the LEDS on the board by directly

More information

Application Note: AN00188 Using QuadSPI flash memory for persistent storage with xcore-200

Application Note: AN00188 Using QuadSPI flash memory for persistent storage with xcore-200 Application Note: AN00188 Using QuadSPI flash memory for persistent storage with xcore-200 This application note demonstrates how to use XFLASH option --data to store persistent data within QuadSPI flash

More information

Embedded Systems Programming

Embedded Systems Programming Embedded Systems Programming ES Development Environment (Module 3) Yann-Hang Lee Arizona State University yhlee@asu.edu (480) 727-7507 Summer 2014 Embedded System Development Need a real-time (embedded)

More information

HW / SW Implementation Overview (0A) Young Won Lim 7/16/16

HW / SW Implementation Overview (0A) Young Won Lim 7/16/16 HW / SW Implementation Copyright (c) 213-216 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Application Note: AN00177 A startkit ADC demo

Application Note: AN00177 A startkit ADC demo Application Note: AN00177 A startkit ADC demo This applications provides a very simple example of using the ADC module. It uses the on-chip ADC in one shot mode (a trigger is called every 200ms from a

More information

Application Note: AN00130 USB HID Class - Extended on slicekit

Application Note: AN00130 USB HID Class - Extended on slicekit Application Note: AN00130 USB HID Class - Extended on slicekit This application note shows how to create a USB device compliant to the standard USB Human Interface Device (HID) class on an XMOS multicore

More information

System Debug. This material exempt per Department of Commerce license exception TSU Xilinx, Inc. All Rights Reserved

System Debug. This material exempt per Department of Commerce license exception TSU Xilinx, Inc. All Rights Reserved System Debug This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Describe GNU Debugger (GDB) functionality Describe Xilinx

More information

Lecture 5: Computing Platforms. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT

Lecture 5: Computing Platforms. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT 1 Lecture 5: Computing Platforms Asbjørn Djupdal ARM Norway, IDI NTNU 2013 2 Lecture overview Bus based systems Timing diagrams Bus protocols Various busses Basic I/O devices RAM Custom logic FPGA Debug

More information

SimXMD Co-Debugging Software and Hardware in FPGA Embedded Systems

SimXMD Co-Debugging Software and Hardware in FPGA Embedded Systems University of Toronto FPGA Seminar SimXMD Co-Debugging Software and Hardware in FPGA Embedded Systems Ruediger Willenberg and Paul Chow High-Performance Reconfigurable Computing Group University of Toronto

More information

SimXMD: Simulation-based HW/SW Co-Debugging for FPGA Embedded Systems

SimXMD: Simulation-based HW/SW Co-Debugging for FPGA Embedded Systems FPGAworld 2014 SimXMD: Simulation-based HW/SW Co-Debugging for FPGA Embedded Systems Ruediger Willenberg and Paul Chow High-Performance Reconfigurable Computing Group University of Toronto September 9,

More information

Application Note: AN00174 A startkit glowing LED demo

Application Note: AN00174 A startkit glowing LED demo Application Note: AN00174 A startkit glowing LED demo This application demonstrates I/O on the startkit by showing a glowing LED pattern on the LEDs. It uses the startkit support library to access the

More information

Designing with Nios II Processor for Hardware Engineers

Designing with Nios II Processor for Hardware Engineers Designing with Nios II Processor for Hardware Engineers Course Description This course provides all theoretical and practical know-how to design ALTERA SoC FPGAs based on the Nios II soft processor under

More information

Motion Control Computing Architectures for Ultra Precision Machines

Motion Control Computing Architectures for Ultra Precision Machines Motion Control Computing Architectures for Ultra Precision Machines Mile Erlic Precision MicroDynamics, Inc., #3-512 Frances Avenue, Victoria, B.C., Canada, V8Z 1A1 INTRODUCTION Several computing architectures

More information

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info. A FPGA based development platform as part of an EDK is available to target intelop provided IPs or other standard IPs. The platform with Virtex-4 FX12 Evaluation Kit provides a complete hardware environment

More information

Programming in the MAXQ environment

Programming in the MAXQ environment AVAILABLE The in-circuit debugging and program-loading features of the MAXQ2000 microcontroller combine with IAR s Embedded Workbench development environment to provide C or assembly-level application

More information

Debugging Nios II Systems with the SignalTap II Logic Analyzer

Debugging Nios II Systems with the SignalTap II Logic Analyzer Debugging Nios II Systems with the SignalTap II Logic Analyzer May 2007, ver. 1.0 Application Note 446 Introduction As FPGA system designs become more sophisticated and system focused, with increasing

More information

Combining Arm & RISC-V in Heterogeneous Designs

Combining Arm & RISC-V in Heterogeneous Designs Combining Arm & RISC-V in Heterogeneous Designs Gajinder Panesar, CTO, UltraSoC gajinder.panesar@ultrasoc.com RISC-V Summit 3 5 December 2018 Santa Clara, USA Problem statement Deterministic multi-core

More information

esi-risc Development Suite Getting Started Guide

esi-risc Development Suite Getting Started Guide 1 Contents 1 Contents 2 2 Overview 3 3 Starting the Integrated Development Environment 4 4 Hello World Tutorial 5 5 Next Steps 8 6 Support 10 Version 2.5 2 of 10 2011 EnSilica Ltd, All Rights Reserved

More information

SimXMD Simulation-based HW/SW Co-debugging for field-programmable Systems-on-Chip

SimXMD Simulation-based HW/SW Co-debugging for field-programmable Systems-on-Chip SimXMD Simulation-based HW/SW Co-debugging for field-programmable Systems-on-Chip Ruediger Willenberg and Paul Chow High-Performance Reconfigurable Computing Group University of Toronto September 4, 2013

More information

Application Note: AN00209 xcore-200 DSP Elements Library

Application Note: AN00209 xcore-200 DSP Elements Library Application Note: AN00209 xcore-200 DSP Elements Library The application note gives an overview of using the xcore-200 DSP Elements Library. Required tools and libraries xtimecomposer Tools - Version 14.0.0

More information

1 Do not confuse the MPU with the Nios II memory management unit (MMU). The MPU does not provide memory mapping or management.

1 Do not confuse the MPU with the Nios II memory management unit (MMU). The MPU does not provide memory mapping or management. Nios II MPU Usage March 2010 AN-540-1.0 Introduction This application note covers the basic features of the Nios II processor s optional memory protection unit (MPU), describing how to use it without the

More information

ARM Processors for Embedded Applications

ARM Processors for Embedded Applications ARM Processors for Embedded Applications Roadmap for ARM Processors ARM Architecture Basics ARM Families AMBA Architecture 1 Current ARM Core Families ARM7: Hard cores and Soft cores Cache with MPU or

More information

Lab-2: Profiling m4v_dec on GR-XC3S National Chiao Tung University Chun-Jen Tsai 3/28/2011

Lab-2: Profiling m4v_dec on GR-XC3S National Chiao Tung University Chun-Jen Tsai 3/28/2011 Lab-2: Profiling m4v_dec on GR-XC3S-1500 National Chiao Tung University Chun-Jen Tsai 3/28/2011 Profiling with Real-time Timer Goal: Profiling m4v_vdec on GR-XC3S-1500 using a real-time timer Tasks: Install

More information

xtimecomposer supports a single XN file that contains a single network definition. The network definition is specified as follows:

xtimecomposer supports a single XN file that contains a single network definition. The network definition is specified as follows: XN Specification IN THIS DOCUMENT Network Elements Declaration Package Node Link Device JTAGChain 1 Network Elements xtimecomposer supports a single XN file that contains a single network definition. The

More information

A Seamless Tool Access Architecture from ESL to End Product

A Seamless Tool Access Architecture from ESL to End Product A Seamless Access Architecture from ESL to End Product Albrecht Mayer Infineon Technologies AG, 81726 Munich, Germany albrecht.mayer@infineon.com Abstract access to processor cores is needed from the first

More information

The Next Steps in the Evolution of ARM Cortex-M

The Next Steps in the Evolution of ARM Cortex-M The Next Steps in the Evolution of ARM Cortex-M Joseph Yiu Senior Embedded Technology Manager CPU Group ARM Tech Symposia China 2015 November 2015 Trust & Device Integrity from Sensor to Server 2 ARM 2015

More information

Managing Complex Trace Filtering and Triggering Capabilities of CoreSight. Jens Braunes pls Development Tools

Managing Complex Trace Filtering and Triggering Capabilities of CoreSight. Jens Braunes pls Development Tools Managing Complex Trace Filtering and Triggering Capabilities of CoreSight Jens Braunes pls Development Tools Outline 2 Benefits and challenges of on-chip trace The evolution of embedded systems and the

More information

IBM PSSC Montpellier Customer Center. Content

IBM PSSC Montpellier Customer Center. Content Content IBM PSSC Montpellier Customer Center Standard Tools Compiler Options GDB IBM System Blue Gene/P Specifics Core Files + addr2line Coreprocessor Supported Commercial Software TotalView Debugger Allinea

More information

This presentation of uclinux-on-microblaze given

This presentation of uclinux-on-microblaze given This presentation of uclinux-on-microblaze given By: David Banas, Xilinx FAE Nu Horizons Electronics Corp. 2070 Ringwood Ave. San Jose, CA 95131 At: Xilinx Learning Center, San

More information

Contents of this presentation: Some words about the ARM company

Contents of this presentation: Some words about the ARM company The architecture of the ARM cores Contents of this presentation: Some words about the ARM company The ARM's Core Families and their benefits Explanation of the ARM architecture Architecture details, features

More information

Fujitsu System Applications Support. Fujitsu Microelectronics America, Inc. 02/02

Fujitsu System Applications Support. Fujitsu Microelectronics America, Inc. 02/02 Fujitsu System Applications Support 1 Overview System Applications Support SOC Application Development Lab Multimedia VoIP Wireless Bluetooth Processors, DSP and Peripherals ARM Reference Platform 2 SOC

More information

TRACE32. Product Overview

TRACE32. Product Overview TRACE32 Product Overview Preprocessor Product Portfolio Lauterbach is the world s leading manufacturer of complete, modular microprocessor development tools with 35 years experience in the field of embedded

More information

Reduce SW Development Time with DAVE 3. March, 2012

Reduce SW Development Time with DAVE 3. March, 2012 Reduce SW Development Time with DAVE 3 March, 2012 Why DAVE 3? XMC 4500 Offering Powerful, SWconfigurable peripherals Flexible interconnections and pin mapping options Pressure to Engineer Short time to

More information

Markets Demanding More Performance

Markets Demanding More Performance The Tile Processor Architecture: Embedded Multicore for Networking and Digital Multimedia Tilera Corporation August 20 th 2007 Hotchips 2007 Markets Demanding More Performance Networking market - Demand

More information

Engineer-to-Engineer Note

Engineer-to-Engineer Note Engineer-to-Engineer Note EE-377 Technical notes on using Analog Devices products and development tools Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or e-mail

More information

Compute Node Design for DAQ and Trigger Subsystem in Giessen. Justus Liebig University in Giessen

Compute Node Design for DAQ and Trigger Subsystem in Giessen. Justus Liebig University in Giessen Compute Node Design for DAQ and Trigger Subsystem in Giessen Justus Liebig University in Giessen Outline Design goals Current work in Giessen Hardware Software Future work Justus Liebig University in Giessen,

More information

5. ARM 기반모니터프로그램사용. Embedded Processors. DE1-SoC 보드 (IntelFPGA) Application Processors. Development of the ARM Architecture.

5. ARM 기반모니터프로그램사용. Embedded Processors. DE1-SoC 보드 (IntelFPGA) Application Processors. Development of the ARM Architecture. Embedded Processors 5. ARM 기반모니터프로그램사용 DE1-SoC 보드 (IntelFPGA) 2 Application Processors Development of the ARM Architecture v4 v5 v6 v7 Halfword and signed halfword / byte support System mode Thumb instruction

More information

Simplifying the Development and Debug of 8572-Based SMP Embedded Systems. Wind River Workbench Development Tools

Simplifying the Development and Debug of 8572-Based SMP Embedded Systems. Wind River Workbench Development Tools Simplifying the Development and Debug of 8572-Based SMP Embedded Systems Wind River Workbench Development Tools Agenda Introducing multicore systems Debugging challenges of multicore systems Development

More information

Application Note: AN00136 USB Vendor Specific Device

Application Note: AN00136 USB Vendor Specific Device Application Note: AN00136 USB Vendor Specific Device This application note shows how to create a vendor specific USB device which is on an XMOS multicore microcontroller. The code associated with this

More information

IMPLICIT+EXPLICIT Architecture

IMPLICIT+EXPLICIT Architecture IMPLICIT+EXPLICIT Architecture Fortran Carte Programming Environment C Implicitly Controlled Device Dense logic device Typically fixed logic µp, DSP, ASIC, etc. Implicit Device Explicit Device Explicitly

More information

Application Note: AN00182 USB HID Class - Extended on xcore-200 Explorer

Application Note: AN00182 USB HID Class - Extended on xcore-200 Explorer Application Note: AN00182 USB HID Class - Extended on xcore-200 Explorer This application note shows how to create a USB device compliant to the standard USB Human Interface Device (HID) class on an XMOS

More information

Massively Parallel Processor Breadboarding (MPPB)

Massively Parallel Processor Breadboarding (MPPB) Massively Parallel Processor Breadboarding (MPPB) 28 August 2012 Final Presentation TRP study 21986 Gerard Rauwerda CTO, Recore Systems Gerard.Rauwerda@RecoreSystems.com Recore Systems BV P.O. Box 77,

More information

Bringing the benefits of Cortex-M processors to FPGA

Bringing the benefits of Cortex-M processors to FPGA Bringing the benefits of Cortex-M processors to FPGA Presented By Phillip Burr Senior Product Marketing Manager Simon George Director, Product & Technical Marketing System Software and SoC Solutions Agenda

More information

OUTLINE. STM32F0 Architecture Overview STM32F0 Core Motivation for RISC and Pipelining Cortex-M0 Programming Model Toolchain and Project Structure

OUTLINE. STM32F0 Architecture Overview STM32F0 Core Motivation for RISC and Pipelining Cortex-M0 Programming Model Toolchain and Project Structure ARCHITECTURE AND PROGRAMMING George E Hadley, Timothy Rogers, and David G Meyer 2018, Images Property of their Respective Owners OUTLINE STM32F0 Architecture Overview STM32F0 Core Motivation for RISC and

More information

Realtime Signal Processing on Embedded GPUs

Realtime Signal Processing on Embedded GPUs Realtime Signal Processing on Embedded s Dr. Matthias Rosenthal Armin Weiss Dr. Amin Mazloumian Institute of Embedded Systems Realtime Platforms Research Group Zurich University of Applied Sciences Motivation

More information

Evaluating SiFive RISC- V Core IP

Evaluating SiFive RISC- V Core IP Evaluating SiFive RISC- V Core IP Drew Barbier January 2018 drew@sifive.com 3 Part Webinar Series Webinar Recordings and Slides: https://info.sifive.com/risc-v-webinar RISC-V 101 The Fundamentals of RISC-V

More information

Software Defined Modem A commercial platform for wireless handsets

Software Defined Modem A commercial platform for wireless handsets Software Defined Modem A commercial platform for wireless handsets Charles F Sturman VP Marketing June 22 nd ~ 24 th Brussels charles.stuman@cognovo.com www.cognovo.com Agenda SDM Separating hardware from

More information

AN 830: Intel FPGA Triple-Speed Ethernet and On-Board PHY Chip Reference Design

AN 830: Intel FPGA Triple-Speed Ethernet and On-Board PHY Chip Reference Design AN 830: Intel FPGA Triple-Speed Ethernet and On-Board PHY Chip Reference Design Subscribe Send Feedback Latest document on the web: PDF HTML Contents Contents 1 Intel FPGA Triple-Speed Ethernet and On-Board

More information

Design UART Loopback with Interrupts

Design UART Loopback with Interrupts Once the E is displayed, will the 0 reappear if you return the DIP switch to its OFF position and re-establish the loopback path? Usually not. When you break the loopback path, it will most likely truncate

More information

Overview of Microcontroller and Embedded Systems

Overview of Microcontroller and Embedded Systems UNIT-III Overview of Microcontroller and Embedded Systems Embedded Hardware and Various Building Blocks: The basic hardware components of an embedded system shown in a block diagram in below figure. These

More information

Optimizing Models of an FPGA Embedded System. Adam Donlin Xilinx Research Labs September 2004

Optimizing Models of an FPGA Embedded System. Adam Donlin Xilinx Research Labs September 2004 Optimizing Models of an FPGA Embedded System Adam Donlin Xilinx Research Labs September 24 Outline Target System Architecture Model Optimizations and Simulation Impact Port Datatypes Threads and Methods

More information

Intel Parallel Studio XE 2017 Composer Edition BETA C++ - Debug Solutions Release Notes

Intel Parallel Studio XE 2017 Composer Edition BETA C++ - Debug Solutions Release Notes Developer Zone Intel Parallel Studio XE 2017 Composer Edition BETA C++ - Debug Solutions Release Notes Submitted by Georg Z. (Intel) on August 5, 2016 This page provides the current Release Notes for the

More information

Distributed Debugging API for ORBs and Services. Request for Proposal, test/ Dale Parson, Distinguished Member of Technical Staff

Distributed Debugging API for ORBs and Services. Request for Proposal, test/ Dale Parson, Distinguished Member of Technical Staff Lucent CORBA Seminar 1999 Distributed Debugging API for ORBs and Services Request for Proposal, test/99-08-02 September 28, 1999 Dale Parson, Distinguished Member of Technical Staff Bell Labs, Microelectronics

More information

April 4, 2001: Debugging Your C24x DSP Design Using Code Composer Studio Real-Time Monitor

April 4, 2001: Debugging Your C24x DSP Design Using Code Composer Studio Real-Time Monitor 1 This presentation was part of TI s Monthly TMS320 DSP Technology Webcast Series April 4, 2001: Debugging Your C24x DSP Design Using Code Composer Studio Real-Time Monitor To view this 1-hour 1 webcast

More information

STM32F3. Cuauhtémoc Carbajal ITESM CEM 12/08/2013

STM32F3. Cuauhtémoc Carbajal ITESM CEM 12/08/2013 STM32F3 Cuauhtémoc Carbajal ITESM CEM 12/08/2013 1 STM32 Portfolio 2 32 bit/dsc Applications A typical embedded system with both control and signal processing requirements Digital Signal Controllers efficient

More information

Software Driven Verification at SoC Level. Perspec System Verifier Overview

Software Driven Verification at SoC Level. Perspec System Verifier Overview Software Driven Verification at SoC Level Perspec System Verifier Overview June 2015 IP to SoC hardware/software integration and verification flows Cadence methodology and focus Applications (Basic to

More information

NEW DEVELOPER TOOLS FEATURES IN CUDA 8.0. Sanjiv Satoor

NEW DEVELOPER TOOLS FEATURES IN CUDA 8.0. Sanjiv Satoor NEW DEVELOPER TOOLS FEATURES IN CUDA 8.0 Sanjiv Satoor CUDA TOOLS 2 NVIDIA NSIGHT Homogeneous application development for CPU+GPU compute platforms CUDA-Aware Editor CUDA Debugger CPU+GPU CUDA Profiler

More information

XC Input and Output. 1 Outputting Data

XC Input and Output. 1 Outputting Data XC Input and Output IN THIS DOCUMENT Outputting Data Inputting Data Waiting for a Condition on an Input Pin Controlling I/O Data Rates with Timers Case Study: UART (Part 1) Responding to Multiple Inputs

More information

DoCD IP Core. DCD on Chip Debug System v. 6.02

DoCD IP Core. DCD on Chip Debug System v. 6.02 2018 DoCD IP Core DCD on Chip Debug System v. 6.02 C O M P A N Y O V E R V I E W Digital Core Design is a leading IP Core provider and a System-on-Chip design house. The company was founded in 1999 and

More information

3 2-bit ARM Cortex TM -M3 based

3 2-bit ARM Cortex TM -M3 based 3 2-bit ARM Cortex TM -M3 based Microcontroller FM3 Family High-performance Group The FM3 Family is the group of microcontrollers that adopts Cortex-M3, the global standard core manufactured by ARM, which

More information

PCI-4IPM Revision C. Second Generation Intelligent IP Carrier for PCI Systems Up to Four IndustryPack Modules Dual Ported SRAM, Bus Master DMA

PCI-4IPM Revision C. Second Generation Intelligent IP Carrier for PCI Systems Up to Four IndustryPack Modules Dual Ported SRAM, Bus Master DMA PCI-4IPM Revision C Second Generation Intelligent IP Carrier for PCI Systems Up to Four IndustryPack Modules Dual Ported SRAM, Bus Master DMA REFERENCE MANUAL 781-21-000-4000 Version 2.1 April 2003 ALPHI

More information

VTA: Open & Flexible DL Acceleration. Thierry Moreau TVM Conference, Dec 12th 2018

VTA: Open & Flexible DL Acceleration. Thierry Moreau TVM Conference, Dec 12th 2018 VTA: Open & Flexible DL Acceleration Thierry Moreau TVM Conference, Dec 12th 2018 TVM Stack High-Level Differentiable IR Tensor Expression IR LLVM CUDA Metal TVM Stack High-Level Differentiable IR Tensor

More information

Embedded Systems Laboratory Manual ARM 9 TDMI

Embedded Systems Laboratory Manual ARM 9 TDMI Embedded Systems Laboratory Manual ARM 9 TDMI 1. Laboratory Rules a) Laboratory assessment: Presence during the laboratory is mandatory. One time unexcused absence is allowed within the semester. Students

More information

CSE 351. GDB Introduction

CSE 351. GDB Introduction CSE 351 GDB Introduction Lab 2 Out either tonight or tomorrow Due April 27 th (you have ~12 days) Reading and understanding x86_64 assembly Debugging and disassembling programs Today: General debugging

More information

AN 830: Intel FPGA Triple-Speed Ethernet and On-Board PHY Chip Reference Design

AN 830: Intel FPGA Triple-Speed Ethernet and On-Board PHY Chip Reference Design AN 830: Intel FPGA Triple-Speed Ethernet and On-Board PHY Chip Reference Subscribe Latest document on the web: PDF HTML Contents Contents 1. Intel FPGA Triple-Speed Ethernet and On-Board PHY Chip Reference

More information

Graphics Performance Analyzer for Android

Graphics Performance Analyzer for Android Graphics Performance Analyzer for Android 1 What you will learn from this slide deck Detailed optimization workflow of Graphics Performance Analyzer Android* System Analysis Only Please see subsequent

More information

EMBEDDED SYSTEMS WITH ROBOTICS AND SENSORS USING ERLANG

EMBEDDED SYSTEMS WITH ROBOTICS AND SENSORS USING ERLANG EMBEDDED SYSTEMS WITH ROBOTICS AND SENSORS USING ERLANG Adam Lindberg github.com/eproxus HARDWARE COMPONENTS SOFTWARE FUTURE Boot, Serial console, Erlang shell DEMO THE GRISP BOARD SPECS Hardware & specifications

More information

Experiment 1. Development Platform. Ahmad Khayyat, Hazem Selmi, Saleh AlSaleh

Experiment 1. Development Platform. Ahmad Khayyat, Hazem Selmi, Saleh AlSaleh Experiment 1 Development Platform Ahmad Khayyat, Hazem Selmi, Saleh AlSaleh Version 162, 13 February 2017 Table of Contents 1. Objectives........................................................................................

More information

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): ( Volume I, Issue II, 2016

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): (  Volume I, Issue II, 2016 A CASE STUDY OF IMPLEMENTING A GDB INTERFACE BETWEEN AN ARM BASED IC SIMULATOR AND GNU DEBUGGER H. S. Sachin Kumar* & Trisila Devi Nagavi** Department of Computer Science & Engineering, Sri Jaya Chamarajendra

More information

Five Ways to Build Flexibility into Industrial Applications with FPGAs

Five Ways to Build Flexibility into Industrial Applications with FPGAs GM/M/A\ANNETTE\2015\06\wp-01154- flexible-industrial.docx Five Ways to Build Flexibility into Industrial Applications with FPGAs by Jason Chiang and Stefano Zammattio, Altera Corporation WP-01154-2.0 White

More information

Building an EZ-Host/OTG Project From Start to Finish

Building an EZ-Host/OTG Project From Start to Finish Introduction The CY3663 EZ-Host and EZ-OTG Development Kit contains a full set of standard GNU-based tools. These tools have been ported to our CY16 processor-based EZ-Host and EZ-OTG products. This application

More information

S2C K7 Prodigy Logic Module Series

S2C K7 Prodigy Logic Module Series S2C K7 Prodigy Logic Module Series Low-Cost Fifth Generation Rapid FPGA-based Prototyping Hardware The S2C K7 Prodigy Logic Module is equipped with one Xilinx Kintex-7 XC7K410T or XC7K325T FPGA device

More information

Application Note: AN00160 How to use the SPI library as SPI master

Application Note: AN00160 How to use the SPI library as SPI master Application Note: AN00160 How to use the SPI library as SPI master This application note shows how to use the SPI library to make the xcore drive an SPI bus as SPI master. The application is the simplest

More information

Formal for Everyone Challenges in Achievable Multicore Design and Verification. FMCAD 25 Oct 2012 Daryl Stewart

Formal for Everyone Challenges in Achievable Multicore Design and Verification. FMCAD 25 Oct 2012 Daryl Stewart Formal for Everyone Challenges in Achievable Multicore Design and Verification FMCAD 25 Oct 2012 Daryl Stewart 1 ARM is an IP company ARM licenses technology to a network of more than 1000 partner companies

More information

NIOS II Pixel Display

NIOS II Pixel Display NIOS Pixel Display SDRAM 512Mb Clock Reset_bar CPU Onchip Memory External Memory Controller JTAG UART Pixel DMA Resampler Scaler Dual Port FIFO VGA Controller Timer System ID VGA Connector PLL 2 tj SDRAM

More information

Tile Processor (TILEPro64)

Tile Processor (TILEPro64) Tile Processor Case Study of Contemporary Multicore Fall 2010 Agarwal 6.173 1 Tile Processor (TILEPro64) Performance # of cores On-chip cache (MB) Cache coherency Operations (16/32-bit BOPS) On chip bandwidth

More information

System Wide Tracing User Need

System Wide Tracing User Need System Wide Tracing User Need dominique toupin ericsson com April 2010 About me Developer Tool Manager at Ericsson, helping Ericsson sites to develop better software efficiently Background

More information

Intel System Studio 2014 Overview

Intel System Studio 2014 Overview Intel System Studio 2014 Overview What you will learn from this slide deck High level overview of each component for Intel System Studio, along with how they address these development environments System

More information

Low-Power Processor Solutions for Always-on Devices

Low-Power Processor Solutions for Always-on Devices Low-Power Processor Solutions for Always-on Devices Pieter van der Wolf MPSoC 2014 July 7 11, 2014 2014 Synopsys, Inc. All rights reserved. 1 Always-on Mobile Devices Mobile devices on the move Mobile

More information

Qualcomm Snapdragon Profiler

Qualcomm Snapdragon Profiler Qualcomm Technologies, Inc. Qualcomm Snapdragon Profiler User Guide September 21, 2018 Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are products

More information

The Embedded computing platform. Four-cycle handshake. Bus protocol. Typical bus signals. Four-cycle example. CPU bus.

The Embedded computing platform. Four-cycle handshake. Bus protocol. Typical bus signals. Four-cycle example. CPU bus. The Embedded computing platform CPU bus. Memory. I/O devices. CPU bus Connects CPU to: memory; devices. Protocol controls communication between entities. Bus protocol Determines who gets to use the bus

More information

Measuring Interrupt Latency

Measuring Interrupt Latency NXP Semiconductors Document Number: AN12078 Application Note Rev. 0, 10/2017 Measuring Interrupt Latency 1. Introduction The term interrupt latency refers to the delay between the start of an Interrupt

More information