A unified Energy Footprint for Simulation Software

Size: px
Start display at page:

Download "A unified Energy Footprint for Simulation Software"

Transcription

1 A unified Energy Footprint for Simulation Software Hartwig Anzt, Armen Beglarian, Suren Chilingaryan, Andrew Ferrone, Vincent Heuveline, Andreas Kopmann Hartwig Anzt September 12, 212 ENGINEERING MATHEMATICS AND COMPUTING LAB (EMCL) KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

2 Green Computing Hardware developers aim for low power devices Integration of low-consuming coprocessors (GPUs, Cell, MIC, FPGAs... ) Green5 as counterpart to performance-oriented TOP5 September 12, 212 2/2

3 Green Computing 25 TOP 1 TOP 1 Sequoia - BlueGene/Q Power BQC 16C 2 MFlops/Watt 15 1 K computer SPARC64 VIIIfx China Tianhe-1A X567, NVIDIA GPU 5 Roadrunner BladeCenter QS22/LS21 PowerXCell 8i Jaguar - Cray XT5-HE Opteron September 12, 212 3/2

4 Green Computing 25 TOP 1 TOP 1 GREEN 1 GREEN 1 2 Sequoia - BlueGene/Q Power BQC 16C MFlops/Watt 15 1 K computer SPARC64 VIIIfx China Tianhe-1A X567, NVIDIA GPU 5 Roadrunner BladeCenter QS22/LS21 PowerXCell 8i Jaguar - Cray XT5-HE Opteron September 12, 212 4/2

5 Green Computing 25 TOP 1 TOP 1 GREEN 1 GREEN 1 2 accelerated (%) Sequoia - BlueGene/Q Power BQC 16C MFlops/Watt K computer SPARC64 VIIIfx China Tianhe-1A X567, NVIDIA GPU Roadrunner BladeCenter QS22/LS21 PowerXCell 8i Jaguar - Cray XT5-HE Opteron September 12, 212 5/2

6 Green Computing Increasing focus on power & energy (e.g. Flops/Watt in Green5) Theoretical ratio usually irrelevant Challenge to transfer the power efficiency into the simulation Energy need in scientific computing depends on software implementation Compare energy & power for different simulation software September 12, 212 6/2

7 Green Computing Unified Energy Footprint Introduce unified energy-footprint for simulation software Information about hardware configuration, typical application, power & energy draft and scalability Compress information like on Autoquartett card Easy comparison for different software packages September 12, 212 7/2

8 Power measurement Supermicro X8DTG-QF GPU-workstation 2 Intel XEON (QPI-connected), 192 GB memory 4 Fermi C27 (PCI-Express 16 ) Independent, embedded measurement setup Powermeters monitor voltages and currents in lines powering chipset, the hard- disks and the GPUs (including PCI) 25 k Samples/second Motivation Power Measurement Energy Footprint COMSO Energy Footprint PyHST-CPU Energy Footprint PyHST-GPU September 12, 212 Conclusion 8/2

9 Hardware evaluation: CPU coreburn coreburn linear slope 1-6 cores linear slope 6-12 cores linear slope 1-12 cores 17 power [W] Number of active Cores Evaluate power dissipation of active CPU cores almost linear increase ( 6.5 Watts/core) Pattern when activating cores in 2nd CPU September 12, 212 9/2

10 Energy Footprint: COSMO COSMO Model (version 4.21) Numerical weather simulation In operational use by DWD, MeteoSwiss gridpoints resolution of.12 and 4 s timestep Configuration: Energy summary: System: CPU: Accelerator: Application: Resources: Supermicro X8DTG-QF 2 Intel XEON E554@2.53GHz 4 Nvidia C27 24 h forecast 6 cores total runtime : avg. power chipset : avg. power HDD : avg. power GPUs : total Energy : no GPUs used s W W. W Wh September 12, 212 1/2

11 Energy Footprint: COSMO Model 2 chipset HDD1 HDD total energy consumption net energy consumption power [W] 15 1 energy [Wh] time [s] (a) Power profile 2 chipset HDD1 HDD2 GPU1* GPU2* GPU3* GPU4* (b) Energy consumption Characteristic power draft due to communication Very compute-intensive September 12, /2

12 Energy Footprint: COSMO Model energy [Wh] application energy energy idle energy coreburn energy model runtime [1 s] / energy [Wh] runtime total energy # cores (c) Scaling wrt. hardware simulated forecast [h] (d) Scaling wrt. simulation parameters Excellent scaling wrt. core-numbers GPU implementations necessary for higher energy efficiency September 12, /2

13 COSMO s scorecard compress information on scorecard Hardware & software configuration Compact summary of power & energy analysis for easy comparison September 12, /2

14 Energy Footprint: PyHST CPU-version PyHST CPU-version X-ray tomography reconstruction (3D) Filtered Back Projection (FBP) Using CPU for reconstruction Configuration: Energy summary: System: CPU: Accelerator: Application: Resources: Supermicro X8DTG-QF 2 Intel XEON E554@2.53GHz 4 Nvidia C27 4 frames (1776x177) 6 cores total runtime : avg. power chipset : avg. power HDD : avg. power GPUs : total Energy : no GPUs used s W W. W Wh September 12, /2

15 Energy Footprint: PyHST CPU-version 2 chipset HDD1 HDD2 25 total energy consumption net energy consumption 2 15 power [W] 1 energy [Wh] time [s] (e) Power profile chipset HDD1 HDD2 GPU1* GPU2* GPU3* GPU4* (f) Energy consumption I/O should be handled asynchronously to computation September 12, /2

16 Energy Footprint: PyHST CPU-version energy [Wh] application energy energy idle energy coreburn energy model # cores (g) Scaling wrt. hardware runtime [1 s] / energy [Wh] runtime total energy # processed frames (h) Scaling wrt. simulation parameters Poor core-scaling due to sequential I/O Linear runtime & energy increase for higher frame counts September 12, /2

17 Energy Footprint: PyHST GPU-version PyHST GPU-version X-ray tomography reconstruction (3D) Filtered Back Projection (FBP) Using GPU / multiple GPUs for reconstruction Configuration: Energy summary: System: CPU: Accelerator: Application: Resources: Supermicro X8DTG-QF 2 Intel XEON E554@2.53GHz 4 Nvidia C27 4 frames (1776x177) 2 cores + 2 GPUs total runtime : avg. power chipset : avg. power HDD : avg. power GPUs : total Energy : 2 GPUs used s W W W 5.9 Wh September 12, /2

18 Energy Footprint: PyHST GPU-version 2 15 chipset HDD1 HDD2 GPU1 GPU total energy consumption net energy consumption power [W] 1 energy [Wh] time [s] (i) Power profile -.5 chipset HDD1 HDD2 GPU1 GPU2 GPU3* GPU4* (j) Energy consumption runtime for I/O phase exceeds reconstruction phase September 12, /2

19 Energy Footprint: PyHST GPU-version energy [Wh] application energy energy idle energy coreburn energy model runtime [1 s] / energy [Wh] runtime total energy # GPUs (k) Scaling wrt. hardware # processed frames (l) Scaling wrt. simulation parameters No gain for multiple GPUs (CPU I/O, additional power dissipation) Initialization overhead for small frame counts September 12, /2

20 Summary & Outlook Information about power & energy draft and scaling simplifies comparison of software implementations identification of energy bottlenecks & optimization decisions when acquiring hardware Unified Energy Footprint Standard for creating a comprehensive database for software implementations. September 12, 212 2/2

Computing Infrastructure for Online Monitoring and Control of High-throughput DAQ Electronics

Computing Infrastructure for Online Monitoring and Control of High-throughput DAQ Electronics Computing Infrastructure for Online Monitoring and Control of High-throughput DAQ S. Chilingaryan, M. Caselle, T. Dritschler, T. Farago, A. Kopmann, U. Stevanovic, M. Vogelgesang Hardware, Software, and

More information

Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms

Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms H. Anzt, V. Heuveline Karlsruhe Institute of Technology, Germany

More information

A Design of Hybrid Operating System for a Parallel Computer with Multi-Core and Many-Core Processors

A Design of Hybrid Operating System for a Parallel Computer with Multi-Core and Many-Core Processors A Design of Hybrid Operating System for a Parallel Computer with Multi-Core and Many-Core Processors Mikiko Sato 1,5 Go Fukazawa 1 Kiyohiko Nagamine 1 Ryuichi Sakamoto 1 Mitaro Namiki 1,5 Kazumi Yoshinaga

More information

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories HPC Benchmarking Presentations: Jack Dongarra, University of Tennessee & ORNL The HPL Benchmark: Past, Present & Future Mike Heroux, Sandia National Laboratories The HPCG Benchmark: Challenges It Presents

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

Top500

Top500 Top500 www.top500.org Salvatore Orlando (from a presentation by J. Dongarra, and top500 website) 1 2 MPPs Performance on massively parallel machines Larger problem sizes, i.e. sizes that make sense Performance

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Waiting for Moore s Law to save your serial code start getting bleak in 2004 Source: published SPECInt data Moore s Law is not at all

More information

Using Graphics Chips for General Purpose Computation

Using Graphics Chips for General Purpose Computation White Paper Using Graphics Chips for General Purpose Computation Document Version 0.1 May 12, 2010 442 Northlake Blvd. Altamonte Springs, FL 32701 (407) 262-7100 TABLE OF CONTENTS 1. INTRODUCTION....1

More information

On the Efficacy of a Fused CPU+GPU Processor (or APU) for Parallel Computing

On the Efficacy of a Fused CPU+GPU Processor (or APU) for Parallel Computing On the Efficacy of a Fued CPU+GPU Proceor (or APU) for Parallel Computing Mayank Daga, Ahwin M. Aji, and Wu-chun Feng Dept. of Computer Science Sampling of field that ue GPU Mac OS X Comology Molecular

More information

PLAN-E Workshop Switzerland. Welcome! September 8, 2016

PLAN-E Workshop Switzerland. Welcome! September 8, 2016 PLAN-E Workshop Switzerland Welcome! September 8, 2016 The Swiss National Supercomputing Centre Driving innovation in computational research in Switzerland Michele De Lorenzi (CSCS) PLAN-E September 8,

More information

Parallel Computing & Accelerators. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

Parallel Computing & Accelerators. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Parallel Computing Accelerators John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Purpose of this talk This is the 50,000 ft. view of the parallel computing landscape. We want

More information

Towards Exascale Computing with the Atmospheric Model NUMA

Towards Exascale Computing with the Atmospheric Model NUMA Towards Exascale Computing with the Atmospheric Model NUMA Andreas Müller, Daniel S. Abdi, Michal Kopera, Lucas Wilcox, Francis X. Giraldo Department of Applied Mathematics Naval Postgraduate School, Monterey

More information

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Alan Humphrey, Qingyu Meng, Martin Berzins Scientific Computing and Imaging Institute & University of Utah I. Uintah Overview

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

HPC Technology Update Challenges or Chances?

HPC Technology Update Challenges or Chances? HPC Technology Update Challenges or Chances? Swiss Distributed Computing Day Thomas Schoenemeyer, Technology Integration, CSCS 1 Move in Feb-April 2012 1500m2 16 MW Lake-water cooling PUE 1.2 New Datacenter

More information

Power Profiling of Cholesky and QR Factorizations on Distributed Memory Systems

Power Profiling of Cholesky and QR Factorizations on Distributed Memory Systems International Conference on Energy-Aware High Performance Computing Hamburg, Germany Bosilca, Ltaief, Dongarra (KAUST, UTK) Power Sept Profiling, DLA Algorithms ENAHPC / 6 Power Profiling of Cholesky and

More information

Pedraforca: a First ARM + GPU Cluster for HPC

Pedraforca: a First ARM + GPU Cluster for HPC www.bsc.es Pedraforca: a First ARM + GPU Cluster for HPC Nikola Puzovic, Alex Ramirez We ve hit the power wall ALL computers are limited by power consumption Energy-efficient approaches Multi-core Fujitsu

More information

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar CRAY XK6 REDEFINING SUPERCOMPUTING - Sanjana Rakhecha - Nishad Nerurkar CONTENTS Introduction History Specifications Cray XK6 Architecture Performance Industry acceptance and applications Summary INTRODUCTION

More information

Aggregation of Real-Time System Monitoring Data for Analyzing Large-Scale Parallel and Distributed Computing Environments

Aggregation of Real-Time System Monitoring Data for Analyzing Large-Scale Parallel and Distributed Computing Environments Aggregation of Real-Time System Monitoring Data for Analyzing Large-Scale Parallel and Distributed Computing Environments Swen Böhm 1,2, Christian Engelmann 2, and Stephen L. Scott 2 1 Department of Computer

More information

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle Dynamic Fine Grain Scheduling of Pipeline Parallelism Presented by: Ram Manohar Oruganti and Michael TeWinkle Overview Introduction Motivation Scheduling Approaches GRAMPS scheduling method Evaluation

More information

Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester

Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 11/20/13 1 Rank Site Computer Country Cores Rmax [Pflops] % of Peak Power [MW] MFlops /Watt 1 2 3 4 National

More information

Preliminary Experiences with the Uintah Framework on on Intel Xeon Phi and Stampede

Preliminary Experiences with the Uintah Framework on on Intel Xeon Phi and Stampede Preliminary Experiences with the Uintah Framework on on Intel Xeon Phi and Stampede Qingyu Meng, Alan Humphrey, John Schmidt, Martin Berzins Thanks to: TACC Team for early access to Stampede J. Davison

More information

HPC as a Driver for Computing Technology and Education

HPC as a Driver for Computing Technology and Education HPC as a Driver for Computing Technology and Education Tarek El-Ghazawi The George Washington University Washington D.C., USA NOW- July 2015: The TOP 10 Systems Rank Site Computer Cores Rmax [Pflops] %

More information

CellSs Making it easier to program the Cell Broadband Engine processor

CellSs Making it easier to program the Cell Broadband Engine processor Perez, Bellens, Badia, and Labarta CellSs Making it easier to program the Cell Broadband Engine processor Presented by: Mujahed Eleyat Outline Motivation Architecture of the cell processor Challenges of

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs Introduction Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University How to.. Process terabytes

More information

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R. Alam, Thomas C. Schulthess, Torsten Hoefler Swiss National Supercomputing

More information

Automatic Tuning of the High Performance Linpack Benchmark

Automatic Tuning of the High Performance Linpack Benchmark Automatic Tuning of the High Performance Linpack Benchmark Ruowei Chen Supervisor: Dr. Peter Strazdins The Australian National University What is the HPL Benchmark? World s Top 500 Supercomputers http://www.top500.org

More information

Interconnection Network for Tightly Coupled Accelerators Architecture

Interconnection Network for Tightly Coupled Accelerators Architecture Interconnection Network for Tightly Coupled Accelerators Architecture Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato Center for Computational Sciences University of Tsukuba, Japan 1 What

More information

Accelerating Implicit LS-DYNA with GPU

Accelerating Implicit LS-DYNA with GPU Accelerating Implicit LS-DYNA with GPU Yih-Yih Lin Hewlett-Packard Company Abstract A major hindrance to the widespread use of Implicit LS-DYNA is its high compute cost. This paper will show modern GPU,

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Intro Michael Bader Winter 2015/2016 Intro, Winter 2015/2016 1 Part I Scientific Computing and Numerical Simulation Intro, Winter 2015/2016 2 The Simulation Pipeline phenomenon,

More information

An approach to provide remote access to GPU computational power

An approach to provide remote access to GPU computational power An approach to provide remote access to computational power University Jaume I, Spain Joint research effort 1/84 Outline computing computing scenarios Introduction to rcuda rcuda structure rcuda functionality

More information

Hybrid Architectures Why Should I Bother?

Hybrid Architectures Why Should I Bother? Hybrid Architectures Why Should I Bother? CSCS-FoMICS-USI Summer School on Computer Simulations in Science and Engineering Michael Bader July 8 19, 2013 Computer Simulations in Science and Engineering,

More information

Parallel and Distributed Systems. Hardware Trends. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Hardware Trends. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

Modeling and Predicting Performance of High Performance Computing. Applications on Hardware Accelerators

Modeling and Predicting Performance of High Performance Computing. Applications on Hardware Accelerators Modeling and Predicting Performance of High Performance Computing Applications on Hardware Accelerators Mitesh R. Meswani UCSD/SDSC La Jolla, CA, USA mitesh@sdsc.edu Laura Carrington UCSD/SDSC La Jolla,

More information

Experts in Application Acceleration Synective Labs AB

Experts in Application Acceleration Synective Labs AB Experts in Application Acceleration 1 2009 Synective Labs AB Magnus Peterson Synective Labs Synective Labs quick facts Expert company within software acceleration Based in Sweden with offices in Gothenburg

More information

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation CUDA Accelerated Linpack on Clusters E. Phillips, NVIDIA Corporation Outline Linpack benchmark CUDA Acceleration Strategy Fermi DGEMM Optimization / Performance Linpack Results Conclusions LINPACK Benchmark

More information

Roadmapping of HPC interconnects

Roadmapping of HPC interconnects Roadmapping of HPC interconnects MIT Microphotonics Center, Fall Meeting Nov. 21, 2008 Alan Benner, bennera@us.ibm.com Outline Top500 Systems, Nov. 2008 - Review of most recent list & implications on interconnect

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Why High Performance Computing? Quote: It is hard to understand an ocean because it is too big. It is hard to understand a molecule because it is too small. It is hard to understand

More information

GPU Accelerated Solvers for ODEs Describing Cardiac Membrane Equations

GPU Accelerated Solvers for ODEs Describing Cardiac Membrane Equations GPU Accelerated Solvers for ODEs Describing Cardiac Membrane Equations Fred Lionetti @ CSE Andrew McCulloch @ Bioeng Scott Baden @ CSE University of California, San Diego What is heart modeling? Bioengineer

More information

Porting the ICON Non-hydrostatic Dynamics and Physics to GPUs

Porting the ICON Non-hydrostatic Dynamics and Physics to GPUs Porting the ICON Non-hydrostatic Dynamics and Physics to GPUs William Sawyer (CSCS/ETH), Christian Conti (ETH), Xavier Lapillonne (C2SM/ETH) Programming weather, climate, and earth-system models on heterogeneous

More information

GPU > CPU. FOR HIGH PERFORMANCE COMPUTING PRESENTATION BY - SADIQ PASHA CHETHANA DILIP

GPU > CPU. FOR HIGH PERFORMANCE COMPUTING PRESENTATION BY - SADIQ PASHA CHETHANA DILIP GPU > CPU. FOR HIGH PERFORMANCE COMPUTING PRESENTATION BY - SADIQ PASHA CHETHANA DILIP INTRODUCTION or With the exponential increase in computational power of todays hardware, the complexity of the problem

More information

Tracing and Visualization of Energy Related Metrics

Tracing and Visualization of Energy Related Metrics Tracing and Visualization of Energy Related Metrics 8th Workshop on High-Performance, Power-Aware Computing 2012, Shanghai Timo Minartz, Julian Kunkel, Thomas Ludwig timo.minartz@informatik.uni-hamburg.de

More information

Overview. High Performance Computing - History of the Supercomputer. Modern Definitions (II)

Overview. High Performance Computing - History of the Supercomputer. Modern Definitions (II) Overview High Performance Computing - History of the Supercomputer Dr M. Probert Autumn Term 2017 Early systems with proprietary components, operating systems and tools Development of vector computing

More information

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 Leading Supplier of End-to-End Interconnect Solutions Analyze Enabling the Use of Data Store ICs Comprehensive End-to-End InfiniBand and Ethernet Portfolio

More information

Scalability of Uintah Past Present and Future

Scalability of Uintah Past Present and Future DOE for funding the CSAFE project (97-10), DOE NETL, DOE NNSA NSF for funding via SDCI and PetaApps, INCITE, XSEDE Scalability of Uintah Past Present and Future Martin Berzins Qingyu Meng John Schmidt,

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 2018/19 A.J.Proença Data Parallelism 3 (GPU/CUDA, Neural Nets,...) (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 1 The

More information

B. Evaluation and Exploration of Next Generation Systems for Applicability and Performance (Volodymyr Kindratenko, Guochun Shi)

B. Evaluation and Exploration of Next Generation Systems for Applicability and Performance (Volodymyr Kindratenko, Guochun Shi) A. Summary - In the area of Evaluation and Exploration of Next Generation Systems for Applicability and Performance, over the period of 10/1/10 through 12/30/10 the NCSA Innovative Systems Lab team continued

More information

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Roshan Dathathri Thejas Ramashekar Chandan Reddy Uday Bondhugula Department of Computer Science and Automation

More information

SUPERMICRO, VEXATA AND INTEL ENABLING NEW LEVELS PERFORMANCE AND EFFICIENCY FOR REAL-TIME DATA ANALYTICS FOR SQL DATA WAREHOUSE DEPLOYMENTS

SUPERMICRO, VEXATA AND INTEL ENABLING NEW LEVELS PERFORMANCE AND EFFICIENCY FOR REAL-TIME DATA ANALYTICS FOR SQL DATA WAREHOUSE DEPLOYMENTS TABLE OF CONTENTS 2 THE AGE OF INFORMATION ACCELERATION Vexata Provides the Missing Piece in The Information Acceleration Puzzle The Vexata - Supermicro Partnership 4 CREATING ULTRA HIGH-PERFORMANCE DATA

More information

Fujitsu s Technologies Leading to Practical Petascale Computing: K computer, PRIMEHPC FX10 and the Future

Fujitsu s Technologies Leading to Practical Petascale Computing: K computer, PRIMEHPC FX10 and the Future Fujitsu s Technologies Leading to Practical Petascale Computing: K computer, PRIMEHPC FX10 and the Future November 16 th, 2011 Motoi Okuda Technical Computing Solution Unit Fujitsu Limited Agenda Achievements

More information

Deutscher Wetterdienst

Deutscher Wetterdienst Porting Operational Models to Multi- and Many-Core Architectures Ulrich Schättler Deutscher Wetterdienst Oliver Fuhrer MeteoSchweiz Xavier Lapillonne MeteoSchweiz Contents Strong Scalability of the Operational

More information

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work Using Non-blocking Operations in HPC to Reduce Execution Times David Buettner, Julian Kunkel, Thomas Ludwig Euro PVM/MPI September 8th, 2009 Outline 1 Motivation 2 Theory of a non-blocking benchmark 3

More information

High-Performance Computing - and why Learn about it?

High-Performance Computing - and why Learn about it? High-Performance Computing - and why Learn about it? Tarek El-Ghazawi The George Washington University Washington D.C., USA Outline What is High-Performance Computing? Why is High-Performance Computing

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Moore's Law abandoned serial programming around 2004 Courtesy Liberty Computer Architecture Research Group

More information

CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging

CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging Saoni Mukherjee, Nicholas Moore, James Brock and Miriam Leeser September 12, 2012 1 Outline Introduction to CT Scan, 3D reconstruction

More information

GPU ACCELERATED DATABASE MANAGEMENT SYSTEMS

GPU ACCELERATED DATABASE MANAGEMENT SYSTEMS CIS 601 - Graduate Seminar Presentation 1 GPU ACCELERATED DATABASE MANAGEMENT SYSTEMS PRESENTED BY HARINATH AMASA CSU ID: 2697292 What we will talk about.. Current problems GPU What are GPU Databases GPU

More information

Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia

Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia How well do CPU, GPU and Hybrid Graph Processing Frameworks Perform? Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia Networked Systems

More information

Energy issues of GPU computing clusters

Energy issues of GPU computing clusters AlGorille INRIA Project Team Energy issues of GPU computing clusters Stéphane Vialle SUPELEC UMI GT CNRS 2958 & AlGorille INRIA Project Team EJC 19 20/11/2012 Lyon, France What means «using a GPU cluster»?

More information

Radiation Modeling Using the Uintah Heterogeneous CPU/GPU Runtime System

Radiation Modeling Using the Uintah Heterogeneous CPU/GPU Runtime System Radiation Modeling Using the Uintah Heterogeneous CPU/GPU Runtime System Alan Humphrey, Qingyu Meng, Martin Berzins, Todd Harman Scientific Computing and Imaging Institute & University of Utah I. Uintah

More information

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC 2015-09-14 Algorithms, System and Data Centre Optimisation for Energy Efficient HPC Vincent Heuveline URZ Computing Centre of Heidelberg University EMCL Engineering Mathematics and Computing Lab 1 Energy

More information

Dense Linear Algebra on Heterogeneous Platforms: State of the Art and Trends

Dense Linear Algebra on Heterogeneous Platforms: State of the Art and Trends Dense Linear Algebra on Heterogeneous Platforms: State of the Art and Trends Paolo Bientinesi AICES, RWTH Aachen pauldj@aices.rwth-aachen.de ComplexHPC Spring School 2013 Heterogeneous computing - Impact

More information

Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory

Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory Quinn Mitchell HPC UNIX/LINUX Storage Systems ORNL is managed by UT-Battelle for the US Department of Energy U.S. Department

More information

The Optimal CPU and Interconnect for an HPC Cluster

The Optimal CPU and Interconnect for an HPC Cluster 5. LS-DYNA Anwenderforum, Ulm 2006 Cluster / High Performance Computing I The Optimal CPU and Interconnect for an HPC Cluster Andreas Koch Transtec AG, Tübingen, Deutschland F - I - 15 Cluster / High Performance

More information

REAL PERFORMANCE RESULTS WITH VMWARE HORIZON AND VIEWPLANNER

REAL PERFORMANCE RESULTS WITH VMWARE HORIZON AND VIEWPLANNER April 4-7, 2016 Silicon Valley REAL PERFORMANCE RESULTS WITH VMWARE HORIZON AND VIEWPLANNER Manvender Rawat, NVIDIA Jason K. Lee, NVIDIA Uday Kurkure, VMware Inc. Overview of VMware Horizon 7 and NVIDIA

More information

Kyoung Hwan Lim and Taewhan Kim Seoul National University

Kyoung Hwan Lim and Taewhan Kim Seoul National University Kyoung Hwan Lim and Taewhan Kim Seoul National University Table of Contents Introduction Motivational Example The Proposed Algorithm Experimental Results Conclusion In synchronous circuit design, all sequential

More information

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI CMPE 655- MULTIPLE PROCESSOR SYSTEMS OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI What is MULTI PROCESSING?? Multiprocessing is the coordinated processing

More information

High Performance Computing with Accelerators

High Performance Computing with Accelerators High Performance Computing with Accelerators Volodymyr Kindratenko Innovative Systems Laboratory @ NCSA Institute for Advanced Computing Applications and Technologies (IACAT) National Center for Supercomputing

More information

GPU Architecture. Alan Gray EPCC The University of Edinburgh

GPU Architecture. Alan Gray EPCC The University of Edinburgh GPU Architecture Alan Gray EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? Architectural reasons for accelerator performance advantages Latest GPU Products From

More information

What is Good Performance. Benchmark at Home and Office. Benchmark at Home and Office. Program with 2 threads Home program.

What is Good Performance. Benchmark at Home and Office. Benchmark at Home and Office. Program with 2 threads Home program. Performance COMP375 Computer Architecture and dorganization What is Good Performance Which is the best performing jet? Airplane Passengers Range (mi) Speed (mph) Boeing 737-100 101 630 598 Boeing 747 470

More information

vs. GPU Performance Without the Answer University of Virginia Computer Engineering g Labs

vs. GPU Performance Without the Answer University of Virginia Computer Engineering g Labs Where is the Data? Why you Cannot Debate CPU vs. GPU Performance Without the Answer Chris Gregg and Kim Hazelwood University of Virginia Computer Engineering g Labs 1 GPUs and Data Transfer GPU computing

More information

Cell Broadband Engine. Spencer Dennis Nicholas Barlow

Cell Broadband Engine. Spencer Dennis Nicholas Barlow Cell Broadband Engine Spencer Dennis Nicholas Barlow The Cell Processor Objective: [to bring] supercomputer power to everyday life Bridge the gap between conventional CPU s and high performance GPU s History

More information

Big Data Systems on Future Hardware. Bingsheng He NUS Computing

Big Data Systems on Future Hardware. Bingsheng He NUS Computing Big Data Systems on Future Hardware Bingsheng He NUS Computing http://www.comp.nus.edu.sg/~hebs/ 1 Outline Challenges for Big Data Systems Why Hardware Matters? Open Challenges Summary 2 3 ANYs in Big

More information

Data processing in the wake of massive multi-core processors

Data processing in the wake of massive multi-core processors Journal of Physics: Conference Series OPEN ACCESS Data processing in the wake of massive multi-core processors To cite this article: J Kowalkowski 2014 J. Phys.: Conf. Ser. 513 052015 Related content -

More information

Parallel waveform extraction algorithms for the Cherenkov Telescope Array Real-Time Analysis

Parallel waveform extraction algorithms for the Cherenkov Telescope Array Real-Time Analysis Parallel waveform extraction algorithms for the Cherenkov Telescope Array Real-Time Analysis, a, Andrea Bulgarelli a, Adriano De Rosa a, Alessio Aboudan a, Valentina Fioretti a, Giovanni De Cesare a, Ramin

More information

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc.

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc. HPC Runtime Software Rishi Khan SC 11 Current Programming Models Shared Memory Multiprocessing OpenMP fork/join model Pthreads Arbitrary SMP parallelism (but hard to program/ debug) Cilk Work Stealing

More information

An Introduction to the SPEC High Performance Group and their Benchmark Suites

An Introduction to the SPEC High Performance Group and their Benchmark Suites An Introduction to the SPEC High Performance Group and their Benchmark Suites Robert Henschel Manager, Scientific Applications and Performance Tuning Secretary, SPEC High Performance Group Research Technologies

More information

High Performance Computing. Leopold Grinberg T. J. Watson IBM Research Center, USA

High Performance Computing. Leopold Grinberg T. J. Watson IBM Research Center, USA High Performance Computing Leopold Grinberg T. J. Watson IBM Research Center, USA High Performance Computing Why do we need HPC? High Performance Computing Amazon can ship products within hours would it

More information

Overview. CS 472 Concurrent & Parallel Programming University of Evansville

Overview. CS 472 Concurrent & Parallel Programming University of Evansville Overview CS 472 Concurrent & Parallel Programming University of Evansville Selection of slides from CIS 410/510 Introduction to Parallel Computing Department of Computer and Information Science, University

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

Techniques and tools for measuring energy efficiency of scientific software applications

Techniques and tools for measuring energy efficiency of scientific software applications Techniques and tools for measuring energy efficiency of scientific software applications 16th international workshop on Advanced Computing and Analysis Techniques in Physics Research Giulio Eulisse Fermi

More information

Interdisciplinary practical course on parallel finite element method using HiFlow 3

Interdisciplinary practical course on parallel finite element method using HiFlow 3 Interdisciplinary practical course on parallel finite element method using HiFlow 3 E. Treiber, S. Gawlok, M. Hoffmann, V. Heuveline, W. Karl EuroEDUPAR, 2015/08/24 KARLSRUHE INSTITUTE OF TECHNOLOGY -

More information

Overlapping Computation and Communication for Advection on Hybrid Parallel Computers

Overlapping Computation and Communication for Advection on Hybrid Parallel Computers Overlapping Computation and Communication for Advection on Hybrid Parallel Computers James B White III (Trey) trey@ucar.edu National Center for Atmospheric Research Jack Dongarra dongarra@eecs.utk.edu

More information

The Heterogeneous Programming Jungle. Service d Expérimentation et de développement Centre Inria Bordeaux Sud-Ouest

The Heterogeneous Programming Jungle. Service d Expérimentation et de développement Centre Inria Bordeaux Sud-Ouest The Heterogeneous Programming Jungle Service d Expérimentation et de développement Centre Inria Bordeaux Sud-Ouest June 19, 2012 Outline 1. Introduction 2. Heterogeneous System Zoo 3. Similarities 4. Programming

More information

Accelerating HPL on Heterogeneous GPU Clusters

Accelerating HPL on Heterogeneous GPU Clusters Accelerating HPL on Heterogeneous GPU Clusters Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda Outline

More information

Performance Analysis of the PSyKAl Approach for a NEMO-based Benchmark

Performance Analysis of the PSyKAl Approach for a NEMO-based Benchmark Performance Analysis of the PSyKAl Approach for a NEMO-based Benchmark Mike Ashworth, Rupert Ford and Andrew Porter Scientific Computing Department and STFC Hartree Centre STFC Daresbury Laboratory United

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Moore's Law abandoned serial programming around 2004 Courtesy Liberty Computer Architecture Research Group

More information

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics H. Y. Schive ( 薛熙于 ) Graduate Institute of Physics, National Taiwan University Leung Center for Cosmology and Particle Astrophysics

More information

Lecture 6: Input Compaction and Further Studies

Lecture 6: Input Compaction and Further Studies PASI Summer School Advanced Algorithmic Techniques for GPUs Lecture 6: Input Compaction and Further Studies 1 Objective To learn the key techniques for compacting input data for reduced consumption of

More information

Matrix Computations. Enrique S. Quintana-Ortí. September 11, 2012, Hamburg, Germany

Matrix Computations. Enrique S. Quintana-Ortí. September 11, 2012, Hamburg, Germany Doing Nothing to Save Energy in Matrix Computations Enrique S. Quintana-Ortí quintana@icc.uji.esuji eeclust Workshop, Energy efficiency Motivation Doing nothing to save energy? Why at Ena-HPC then? Energy

More information

Integrating GPUs as fast co-processors into the existing parallel FE package FEAST

Integrating GPUs as fast co-processors into the existing parallel FE package FEAST Integrating GPUs as fast co-processors into the existing parallel FE package FEAST Dipl.-Inform. Dominik Göddeke (dominik.goeddeke@math.uni-dortmund.de) Mathematics III: Applied Mathematics and Numerics

More information

Research on performance dependence of cluster computing system based on GPU accelerators on architecture and number of cluster nodes

Research on performance dependence of cluster computing system based on GPU accelerators on architecture and number of cluster nodes Research on performance dependence of cluster computing system based on GPU accelerators on architecture and number of cluster nodes D. Akhmedov, S. Yelubayev, T. Bopeyev, F. Abdoldina, D. Muratov, R.

More information

Geant4 Computing Performance Benchmarking and Monitoring

Geant4 Computing Performance Benchmarking and Monitoring Journal of Physics: Conference Series PAPER OPEN ACCESS Geant4 Computing Performance Benchmarking and Monitoring To cite this article: Andrea Dotti et al 2015 J. Phys.: Conf. Ser. 664 062021 View the article

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

PART I - Fundamentals of Parallel Computing

PART I - Fundamentals of Parallel Computing PART I - Fundamentals of Parallel Computing Objectives What is scientific computing? The need for more computing power The need for parallel computing and parallel programs 1 What is scientific computing?

More information

VIA ProSavageDDR KM266 Chipset

VIA ProSavageDDR KM266 Chipset VIA ProSavageDDR KM266 Chipset High Performance Integrated DDR platform for the AMD Athlon XP Page 1 The VIA ProSavageDDR KM266: High Performance Integrated DDR platform for the AMD Athlon XP processor

More information

Confessions of an Accidental Benchmarker

Confessions of an Accidental Benchmarker Confessions of an Accidental Benchmarker http://bit.ly/hpcg-benchmark 1 Appendix B of the Linpack Users Guide Designed to help users extrapolate execution Linpack software package First benchmark report

More information

SUN SERVER X2-4 SYSTEM

SUN SERVER X2-4 SYSTEM SUN SERVER X2-4 SYSTEM KEY FEATURES Compact 3U enterprise-class server Powered by up to four Intel Xeon processor E7-4800 product family CPUs Up to 64 DIMMs with a maximum memory of 1 TB SSDs Up to four

More information

Vectorisation and Portable Programming using OpenCL

Vectorisation and Portable Programming using OpenCL Vectorisation and Portable Programming using OpenCL Mitglied der Helmholtz-Gemeinschaft Jülich Supercomputing Centre (JSC) Andreas Beckmann, Ilya Zhukov, Willi Homberg, JSC Wolfram Schenck, FH Bielefeld

More information

Managing Hardware Power Saving Modes for High Performance Computing

Managing Hardware Power Saving Modes for High Performance Computing Managing Hardware Power Saving Modes for High Performance Computing Second International Green Computing Conference 2011, Orlando Timo Minartz, Michael Knobloch, Thomas Ludwig, Bernd Mohr timo.minartz@informatik.uni-hamburg.de

More information